{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Generics.Deriving.TH -- Copyright : (c) 2008--2009 Universiteit Utrecht -- License : BSD3 -- -- Maintainer : generics@haskell.org -- Stability : experimental -- Portability : non-portable -- -- This module contains Template Haskell code that can be used to -- automatically generate the boilerplate code for the generic deriving -- library. -- -- To use these functions, pass the name of a data type as an argument: -- -- @ -- {-# LANGUAGE TemplateHaskell #-} -- -- data Example a = Example Int Char a -- $('deriveAll0' ''Example) -- Derives Generic instance -- $('deriveAll1' ''Example) -- Derives Generic1 instance -- $('deriveAll0And1' ''Example) -- Derives Generic and Generic1 instances -- @ -- -- On GHC 7.4 or later, this code can also be used with data families. To derive -- for a data family instance, pass the name of one of the instance's constructors: -- -- @ -- {-# LANGUAGE FlexibleInstances, TemplateHaskell, TypeFamilies #-} -- -- data family Family a b -- newtype instance Family Char x = FamilyChar Char -- data instance Family Bool x = FamilyTrue | FamilyFalse -- -- $('deriveAll0' 'FamilyChar) -- instance Generic (Family Char b) where ... -- $('deriveAll1' 'FamilyTrue) -- instance Generic1 (Family Bool) where ... -- -- Alternatively, one could type $(deriveAll1 'FamilyFalse) -- @ ----------------------------------------------------------------------------- -- Adapted from Generics.Regular.TH module Generics.Deriving.TH ( deriveMeta , deriveData , deriveConstructors , deriveSelectors , deriveAll , deriveAll0 , deriveAll1 , deriveAll0And1 , deriveRepresentable0 , deriveRepresentable1 , deriveRep0 , deriveRep1 , simplInstance -- * -@WithSigs@ functions -- $withSigs , deriveAll0WithKindSigs , deriveAll1WithKindSigs , deriveAll0And1WithKindSigs , deriveRepresentable0WithKindSigs , deriveRepresentable1WithKindSigs , deriveRep0WithKindSigs , deriveRep1WithKindSigs -- * @make@- functions -- $make , makeRep0 , makeRep0FromType , makeFrom , makeFrom0 , makeTo , makeTo0 , makeRep1 , makeRep1FromType , makeFrom1 , makeTo1 ) where import Control.Monad ((>=>), unless, when) #if MIN_VERSION_template_haskell(2,8,0) && !(MIN_VERSION_template_haskell(2,10,0)) import Data.Foldable (foldr') #endif import Data.List (nub) import qualified Data.Map as Map (fromList) import Generics.Deriving.TH.Internal #if __GLASGOW_HASKELL__ >= 711 import Generics.Deriving.TH.Post711 #else import Generics.Deriving.TH.Pre711 #endif import Language.Haskell.TH.Lib import Language.Haskell.TH {- $withSigs By default, 'deriveRep0', 'deriveRep1', and functions that invoke it generate type synonyms whose type variable binders do not have explicit kind binders for polykinded type variables. This is a pretty reasonable default, since puts less of a burden on the Template Haskell machinery to get the kinds just right, and lets the kind inferencer do more work. However, there are times when you want to have explicit kind signatures, such as if you have a datatype that uses @-XTypeInType@. For example: @ data Prox (a :: k) (b :: *) = Prox k $('deriveRep0WithKindSigs' ''Prox) @ will result in something like: @ type Rep0Prox (a :: k) (b :: *) = Rec0 k @ Whereas if you had used 'deriveRep0', you would have something like: @ type Rep0Prox a (b :: *) = Rec0 k @ which will fail to compile, since k is out-of-scope! -} -- | Given the names of a generic class, a type to instantiate, a function in -- the class and the default implementation, generates the code for a basic -- generic instance. simplInstance :: Name -> Name -> Name -> Name -> Q [Dec] simplInstance cl ty fn df = do x <- newName "x" let typ = ForallT [PlainTV x] [] ((foldl (\a -> AppT a . VarT . tyVarBndrName) (ConT (genRepName Generic DataPlain ty)) []) `AppT` (VarT x)) fmap (: []) $ instanceD (cxt []) (conT cl `appT` conT ty) [funD fn [clause [] (normalB (varE df `appE` (sigE (varE undefinedValName) (return typ)))) []]] -- | A backwards-compatible synonym for 'deriveAll0'. deriveAll :: Name -> Q [Dec] deriveAll = deriveAll0 -- | Given the type and the name (as string) for the type to derive, -- generate the 'Data' instance, the 'Constructor' instances, the 'Selector' -- instances, and the 'Representable0' instance. deriveAll0 :: Name -> Q [Dec] deriveAll0 = deriveAllCommon True False False -- | Like 'deriveAll0', except that the type variable binders in the -- 'Rep' type synonym will have explicit kind signatures. deriveAll0WithKindSigs :: Name -> Q [Dec] deriveAll0WithKindSigs = deriveAllCommon True False True -- | Given the type and the name (as string) for the type to derive, -- generate the 'Data' instance, the 'Constructor' instances, the 'Selector' -- instances, and the 'Representable1' instance. deriveAll1 :: Name -> Q [Dec] deriveAll1 = deriveAllCommon False True False -- | Like 'deriveAll1', except that the type variable binders in the -- 'Rep1' type synonym will have explicit kind signatures. deriveAll1WithKindSigs :: Name -> Q [Dec] deriveAll1WithKindSigs = deriveAllCommon False True True -- | Given the type and the name (as string) for the type to derive, -- generate the 'Data' instance, the 'Constructor' instances, the 'Selector' -- instances, the 'Representable0' instance, and the 'Representable1' instance. deriveAll0And1 :: Name -> Q [Dec] deriveAll0And1 = deriveAllCommon True True False -- | Like 'deriveAll0And1', except that the type variable binders in the -- 'Rep' and 'Rep1' type synonyms will have explicit kind signatures. deriveAll0And1WithKindSigs :: Name -> Q [Dec] deriveAll0And1WithKindSigs = deriveAllCommon True True True deriveAllCommon :: Bool -> Bool -> Bool -> Name -> Q [Dec] deriveAllCommon generic generic1 useKindSigs n = do a <- deriveMeta n b <- if generic then deriveRepresentableCommon Generic useKindSigs n else return [] c <- if generic1 then deriveRepresentableCommon Generic1 useKindSigs n else return [] return (a ++ b ++ c) -- | Given the type and the name (as string) for the Representable0 type -- synonym to derive, generate the 'Representable0' instance. deriveRepresentable0 :: Name -> Q [Dec] deriveRepresentable0 = deriveRepresentableCommon Generic False -- | Like 'deriveRepresentable0', except that the type variable binders in the -- 'Rep' type synonym will have explicit kind signatures. deriveRepresentable0WithKindSigs :: Name -> Q [Dec] deriveRepresentable0WithKindSigs = deriveRepresentableCommon Generic True -- | Given the type and the name (as string) for the Representable1 type -- synonym to derive, generate the 'Representable1' instance. deriveRepresentable1 :: Name -> Q [Dec] deriveRepresentable1 = deriveRepresentableCommon Generic1 False -- | Like 'deriveRepresentable1', except that the type variable binders in the -- 'Rep1' type synonym will have explicit kind signatures. deriveRepresentable1WithKindSigs :: Name -> Q [Dec] deriveRepresentable1WithKindSigs = deriveRepresentableCommon Generic1 True deriveRepresentableCommon :: GenericClass -> Bool -> Name -> Q [Dec] deriveRepresentableCommon gClass useKindSigs n = do rep <- deriveRepCommon gClass useKindSigs n inst <- deriveInst gClass n return (rep ++ inst) -- | Derive only the 'Rep0' type synonym. Not needed if 'deriveRepresentable0' -- is used. deriveRep0 :: Name -> Q [Dec] deriveRep0 = deriveRepCommon Generic False -- | Like 'deriveRep0', except that the type variable binders in the 'Rep' -- type synonym will have explicit kind signatures. deriveRep0WithKindSigs :: Name -> Q [Dec] deriveRep0WithKindSigs = deriveRepCommon Generic True -- | Derive only the 'Rep1' type synonym. Not needed if 'deriveRepresentable1' -- is used. deriveRep1 :: Name -> Q [Dec] deriveRep1 = deriveRepCommon Generic1 False -- | Like 'deriveRep1', except that the type variable binders in the 'Rep1' -- type synonym will have explicit kind signatures. deriveRep1WithKindSigs :: Name -> Q [Dec] deriveRep1WithKindSigs = deriveRepCommon Generic1 True deriveRepCommon :: GenericClass -> Bool -> Name -> Q [Dec] deriveRepCommon gClass useKindSigs n = do i <- reifyDataInfo n let (name, isNT, declTvbs, cons, dv) = either error id i -- See Note [Forcing buildTypeInstance] !_ <- buildTypeInstance gClass name declTvbs dv tySynTvbs <- grabTyVarBndrsFromCons gClass cons let tySynTvbs' = if useKindSigs then tySynTvbs else map (\tvb -> if isKindMonomorphic (tyVarBndrKind tvb) then tvb else unKindedTV tvb) tySynTvbs fmap (:[]) $ tySynD (genRepName gClass dv name) tySynTvbs' -- The typechecker will infer the kinds of the TyVarBndrs -- in a type synonym declaration, so we don't need to -- splice them in explicitly (hence the unKindedTV call). (repType gClass dv name isNT cons tySynTvbs) deriveInst :: GenericClass -> Name -> Q [Dec] deriveInst Generic = deriveInstCommon genericTypeName repTypeName Generic fromValName toValName deriveInst Generic1 = deriveInstCommon generic1TypeName rep1TypeName Generic1 from1ValName to1ValName deriveInstCommon :: Name -> Name -> GenericClass -> Name -> Name -> Name -> Q [Dec] deriveInstCommon genericName repName gClass fromName toName n = do i <- reifyDataInfo n let (name, _, allTvbs, cons, dv) = either error id i origTy <- buildTypeInstance gClass name allTvbs dv repTySynApp <- makeRepTySynApp gClass dv name cons origTy let tyIns = TySynInstD repName #if __GLASGOW_HASKELL__ >= 707 (TySynEqn [origTy] repTySynApp) #else [origTy] repTySynApp #endif mkBody maker = [clause [] (normalB $ mkCaseExp gClass name cons maker) []] fcs = mkBody mkFrom tcs = mkBody mkTo fmap (:[]) $ instanceD (cxt []) (conT genericName `appT` return origTy) [return tyIns, funD fromName fcs, funD toName tcs] {- $make There are some data types for which the Template Haskell deriver functions in this module are not sophisticated enough to infer the correct 'Generic' or 'Generic1' instances. As an example, consider this data type: @ data Fix f a = Fix (f (Fix f a)) @ A proper 'Generic1' instance would look like this: @ instance Functor f => Generic1 (Fix f) where ... @ Unfortunately, 'deriveRepresentable1' cannot infer the @Functor f@ constraint. One can still define a 'Generic1' instance for @Fix@, however, by using the functions in this module that are prefixed with @make@-. For example: @ $('deriveMeta' ''Fix) $('deriveRep1' ''Fix) instance Functor f => Generic1 (Fix f) where type Rep1 (Fix f) = $('makeRep1FromType' ''Fix [t| Fix f |]) from1 = $('makeFrom1' ''Fix) to1 = $('makeTo1' ''Fix) @ Note that due to the lack of type-level lambdas in Haskell, one must manually apply @'makeRep1FromType' ''Fix@ to the type @Fix f@. Be aware that there is a bug on GHC 7.0, 7.2, and 7.4 which might prevent you from using 'makeRep0FromType' and 'makeRep1FromType'. In the @Fix@ example above, you would experience the following error: @ Kinded thing `f' used as a type In the Template Haskell quotation [t| Fix f |] @ Then a workaround is to use 'makeRep1' instead, which requires you to pass as arguments the type variables that occur in the instance, in order from left to right, excluding duplicates. (Normally, 'makeRep1FromType' would figure this out for you.) Using the above example: @ $('deriveMeta' ''Fix) $('deriveRep1' ''Fix) instance Functor f => Generic1 (Fix f) where type Rep1 (Fix f) = $('makeRep1' ''Fix) f from1 = $('makeFrom1' ''Fix) to1 = $('makeTo1' ''Fix) @ On GHC 7.4, you might encounter more complicated examples involving data families. For instance: @ data family Fix a b c d newtype instance Fix b (f c) (g b) a = Fix (f (Fix b (f c) (g b) a)) $('deriveMeta' ''Fix) $('deriveRep1' ''Fix) instance Functor f => Generic1 (Fix b (f c) (g b)) where type Rep1 (Fix b (f c) (g b)) = $('makeRep1' 'Fix) b f c g from1 = $('makeFrom1' 'Fix) to1 = $('makeTo1' 'Fix) @ Note that you don't pass @b@ twice, only once. -} -- | Generates the 'Rep' type synonym constructor (as opposed to 'deriveRep0', -- which generates the type synonym declaration). After splicing it into -- Haskell source, it expects types as arguments. For example: -- -- @ -- type Rep (Foo a b) = $('makeRep0' ''Foo) a b -- @ makeRep0 :: Name -> Q Type makeRep0 n = makeRepCommon Generic n Nothing -- | Generates the 'Rep1' type synonym constructor (as opposed to 'deriveRep1', -- which generates the type synonym declaration). After splicing it into -- Haskell source, it expects types as arguments. For example: -- -- @ -- type Rep1 (Foo a b) = $('makeRep1' ''Foo) a b -- @ makeRep1 :: Name -> Q Type makeRep1 n = makeRepCommon Generic1 n Nothing -- | Generates the 'Rep' type synonym constructor (as opposed to 'deriveRep0', -- which generates the type synonym declaration) applied to its type arguments. -- Unlike 'makeRep0', this also takes a quoted 'Type' as an argument, e.g., -- -- @ -- type Rep (Foo a b) = $('makeRep0FromType' ''Foo [t| Foo a b |]) -- @ makeRep0FromType :: Name -> Q Type -> Q Type makeRep0FromType n = makeRepCommon Generic n . Just -- | Generates the 'Rep1' type synonym constructor (as opposed to 'deriveRep1', -- which generates the type synonym declaration) applied to its type arguments. -- Unlike 'makeRep1', this also takes a quoted 'Type' as an argument, e.g., -- -- @ -- type Rep1 (Foo a b) = $('makeRep1FromType' ''Foo [t| Foo a b |]) -- @ makeRep1FromType :: Name -> Q Type -> Q Type makeRep1FromType n = makeRepCommon Generic1 n . Just makeRepCommon :: GenericClass -> Name -> Maybe (Q Type) -> Q Type makeRepCommon gClass n mbQTy = do i <- reifyDataInfo n let (name, _, _, cons, dv) = either error id i case mbQTy of Just qTy -> do ty <- qTy makeRepTySynApp gClass dv name cons ty Nothing -> conT $ genRepName gClass dv name makeRepTySynApp :: GenericClass -> DataVariety -> Name -> [Con] -> Type -> Q Type makeRepTySynApp gClass dv name cons ty = do -- Here, we figure out the distinct type variables (in order from left-to-right) -- of the LHS of the Rep(1) instance. We call unKindedTV because the kind -- inferencer can figure out the kinds perfectly well, so we don't need to -- give anything here explicit kind signatures. let instTvbs = nub . map unKindedTV $ visibleTyVarsOfType ty -- We grab the type variables from the first constructor's type signature. -- Or, if there are no constructors, we grab no type variables. The latter -- is okay because we use zipWith to ensure that we never pass more type -- variables than the generated type synonym can accept. -- See Note [Arguments to generated type synonyms] tySynTvbs <- grabTyVarBndrsFromCons gClass cons return . applyTyToTvbs (genRepName gClass dv name) $ zipWith const instTvbs tySynTvbs -- | A backwards-compatible synonym for 'makeFrom0'. makeFrom :: Name -> Q Exp makeFrom = makeFrom0 -- | Generates a lambda expression which behaves like 'from'. makeFrom0 :: Name -> Q Exp makeFrom0 = makeFunCommon mkFrom Generic -- | A backwards-compatible synonym for 'makeTo0'. makeTo :: Name -> Q Exp makeTo = makeTo0 -- | Generates a lambda expression which behaves like 'to'. makeTo0 :: Name -> Q Exp makeTo0 = makeFunCommon mkTo Generic -- | Generates a lambda expression which behaves like 'from1'. makeFrom1 :: Name -> Q Exp makeFrom1 = makeFunCommon mkFrom Generic1 -- | Generates a lambda expression which behaves like 'to1'. makeTo1 :: Name -> Q Exp makeTo1 = makeFunCommon mkTo Generic1 makeFunCommon :: (GenericClass -> Int -> Int -> Name -> [Con] -> [Q Match]) -> GenericClass -> Name -> Q Exp makeFunCommon maker gClass n = do i <- reifyDataInfo n let (name, _, allTvbs, cons, dv) = either error id i -- See Note [Forcing buildTypeInstance] buildTypeInstance gClass name allTvbs dv `seq` mkCaseExp gClass name cons maker genRepName :: GenericClass -> DataVariety -> Name -> Name genRepName gClass dv n = mkName . showsDataVariety dv . (("Rep" ++ show (fromEnum gClass)) ++) . ((showNameQual n ++ "_") ++) . sanitizeName $ nameBase n repType :: GenericClass -> DataVariety -> Name -> Bool -> [Con] -> [TyVarBndr] -> Q Type repType gClass dv dt isNT cs tySynTvbs = conT d1TypeName `appT` mkMetaDataType dv dt isNT `appT` foldr1' sum' (conT v1TypeName) (map (repCon gClass dv dt tySynTvbs) cs) where sum' :: Q Type -> Q Type -> Q Type sum' a b = conT sumTypeName `appT` a `appT` b repCon :: GenericClass -> DataVariety -> Name -> [TyVarBndr] -> Con -> Q Type repCon gClass dv dt tySynTvbs (NormalC n bts) = do let bangs = map fst bts ssis <- reifySelStrictInfo n bangs repConWith gClass dv dt n tySynTvbs Nothing ssis False False repCon gClass dv dt tySynTvbs (RecC n vbts) = do let (selNames, bangs, _) = unzip3 vbts ssis <- reifySelStrictInfo n bangs repConWith gClass dv dt n tySynTvbs (Just selNames) ssis True False repCon gClass dv dt tySynTvbs (InfixC t1 n t2) = do let bangs = map fst [t1, t2] ssis <- reifySelStrictInfo n bangs repConWith gClass dv dt n tySynTvbs Nothing ssis False True repCon _ _ _ _ con = gadtError con repConWith :: GenericClass -> DataVariety -> Name -> Name -> [TyVarBndr] -> Maybe [Name] -> [SelStrictInfo] -> Bool -> Bool -> Q Type repConWith gClass dv dt n tySynTvbs mbSelNames ssis isRecord isInfix = do (conTvbs, ts, gk) <- reifyConTys gClass n let structureType :: Q Type structureType = case ssis of [] -> conT u1TypeName _ -> foldr1 prodT f -- See Note [Substituting types in a constructor type signature] typeSubst :: TypeSubst typeSubst = Map.fromList $ zip (concatMap tyVarNamesOfTyVarBndr conTvbs) (concatMap (map VarT . tyVarNamesOfTyVarBndr) tySynTvbs) f :: [Q Type] f = case mbSelNames of Just selNames -> zipWith3 (repField gk dv dt n typeSubst . Just) selNames ssis ts Nothing -> zipWith (repField gk dv dt n typeSubst Nothing) ssis ts conT c1TypeName `appT` mkMetaConsType dv dt n isRecord isInfix `appT` structureType prodT :: Q Type -> Q Type -> Q Type prodT a b = conT productTypeName `appT` a `appT` b repField :: GenericKind -> DataVariety -> Name -> Name -> TypeSubst -> Maybe Name -> SelStrictInfo -> Type -> Q Type repField gk dv dt ns typeSubst mbF ssi t = conT s1TypeName `appT` mkMetaSelType dv dt ns mbF ssi `appT` (repFieldArg gk =<< expandSyn t'') where -- See Note [Substituting types in constructor type signatures] t', t'' :: Type t' = case gk of Gen1 _ (Just kvName) -> substNameWithKind kvName starK t _ -> t t'' = substType typeSubst t' repFieldArg :: GenericKind -> Type -> Q Type repFieldArg _ ForallT{} = rankNError repFieldArg gk (SigT t _) = repFieldArg gk t repFieldArg Gen0 t = boxT t repFieldArg (Gen1 name _) (VarT t) | t == name = conT par1TypeName repFieldArg gk@(Gen1 name _) t = do let tyHead:tyArgs = unapplyTy t numLastArgs = min 1 $ length tyArgs (lhsArgs, rhsArgs) = splitAt (length tyArgs - numLastArgs) tyArgs rec0Type = boxT t phiType = return $ applyTyToTys tyHead lhsArgs inspectTy :: Type -> Q Type inspectTy (VarT a) | a == name = conT rec1TypeName `appT` phiType inspectTy (SigT ty _) = inspectTy ty inspectTy beta | not (ground beta name) = conT composeTypeName `appT` phiType `appT` repFieldArg gk beta inspectTy _ = rec0Type itf <- isTyFamily tyHead if any (not . (`ground` name)) lhsArgs || any (not . (`ground` name)) tyArgs && itf then outOfPlaceTyVarError else case rhsArgs of [] -> rec0Type ty:_ -> inspectTy ty boxT :: Type -> Q Type boxT ty = case unboxedRepNames ty of Just (boxTyName, _, _) -> conT boxTyName Nothing -> conT rec0TypeName `appT` return ty mkCaseExp :: GenericClass -> Name -> [Con] -> (GenericClass -> Int -> Int -> Name -> [Con] -> [Q Match]) -> Q Exp mkCaseExp gClass dt cs matchmaker = do val <- newName "val" lam1E (varP val) $ caseE (varE val) $ matchmaker gClass 1 0 dt cs mkFrom :: GenericClass -> Int -> Int -> Name -> [Con] -> [Q Match] mkFrom _ _ _ dt [] = [errorFrom dt] mkFrom gClass m i _ cs = zipWith (fromCon gClass wrapE (length cs)) [0..] cs where wrapE e = lrE m i e errorFrom :: Name -> Q Match errorFrom dt = match wildP (normalB $ appE (conE m1DataName) $ varE errorValName `appE` stringE ("No generic representation for empty datatype " ++ nameBase dt)) [] errorTo :: Name -> Q Match errorTo dt = match (conP m1DataName [wildP]) (normalB $ varE errorValName `appE` stringE ("No values for empty datatype " ++ nameBase dt)) [] mkTo :: GenericClass -> Int -> Int -> Name -> [Con] -> [Q Match] mkTo _ _ _ dt [] = [errorTo dt] mkTo gClass m i _ cs = zipWith (toCon gClass wrapP (length cs)) [0..] cs where wrapP p = lrP m i p fromCon :: GenericClass -> (Q Exp -> Q Exp) -> Int -> Int -> Con -> Q Match fromCon _ wrap m i (NormalC cn []) = match (conP cn []) (normalB $ appE (conE m1DataName) $ wrap $ lrE m i $ conE m1DataName `appE` (conE u1DataName)) [] fromCon gClass wrap m i (NormalC cn _) = do (ts, gk) <- fmap shrink $ reifyConTys gClass cn fNames <- newNameList "f" $ length ts match (conP cn (map varP fNames)) (normalB $ appE (conE m1DataName) $ wrap $ lrE m i $ conE m1DataName `appE` foldr1 prodE (zipWith (fromField gk) fNames ts)) [] fromCon _ wrap m i (RecC cn []) = match (conP cn []) (normalB $ appE (conE m1DataName) $ wrap $ lrE m i $ conE m1DataName `appE` (conE u1DataName)) [] fromCon gClass wrap m i (RecC cn _) = do (ts, gk) <- fmap shrink $ reifyConTys gClass cn fNames <- newNameList "f" $ length ts match (conP cn (map varP fNames)) (normalB $ appE (conE m1DataName) $ wrap $ lrE m i $ conE m1DataName `appE` foldr1 prodE (zipWith (fromField gk) fNames ts)) [] fromCon gClass wrap m i (InfixC t1 cn t2) = fromCon gClass wrap m i (NormalC cn [t1,t2]) fromCon _ _ _ _ con = gadtError con prodE :: Q Exp -> Q Exp -> Q Exp prodE x y = conE productDataName `appE` x `appE` y fromField :: GenericKind -> Name -> Type -> Q Exp fromField gk nr t = conE m1DataName `appE` (fromFieldWrap gk nr =<< expandSyn t) fromFieldWrap :: GenericKind -> Name -> Type -> Q Exp fromFieldWrap _ _ ForallT{} = rankNError fromFieldWrap gk nr (SigT t _) = fromFieldWrap gk nr t fromFieldWrap Gen0 nr t = conE (boxRepName t) `appE` varE nr fromFieldWrap (Gen1 name _) nr t = wC t name `appE` varE nr wC :: Type -> Name -> Q Exp wC (VarT t) name | t == name = conE par1DataName wC t name | ground t name = conE $ boxRepName t | otherwise = do let tyHead:tyArgs = unapplyTy t numLastArgs = min 1 $ length tyArgs (lhsArgs, rhsArgs) = splitAt (length tyArgs - numLastArgs) tyArgs inspectTy :: Type -> Q Exp inspectTy ForallT{} = rankNError inspectTy (SigT ty _) = inspectTy ty inspectTy (VarT a) | a == name = conE rec1DataName inspectTy beta = infixApp (conE comp1DataName) (varE composeValName) (varE fmapValName `appE` wC beta name) itf <- isTyFamily tyHead if any (not . (`ground` name)) lhsArgs || any (not . (`ground` name)) tyArgs && itf then outOfPlaceTyVarError else case rhsArgs of [] -> conE $ boxRepName t ty:_ -> inspectTy ty boxRepName :: Type -> Name boxRepName = maybe k1DataName snd3 . unboxedRepNames toCon :: GenericClass -> (Q Pat -> Q Pat) -> Int -> Int -> Con -> Q Match toCon _ wrap m i (NormalC cn []) = match (wrap $ conP m1DataName [lrP m i $ conP m1DataName [conP u1DataName []]]) (normalB $ conE cn) [] toCon gClass wrap m i (NormalC cn _) = do (ts, gk) <- fmap shrink $ reifyConTys gClass cn fNames <- newNameList "f" $ length ts match (wrap $ conP m1DataName [lrP m i $ conP m1DataName [foldr1 prod (zipWith (toField gk) fNames ts)]]) (normalB $ foldl appE (conE cn) (zipWith (\nr -> expandSyn >=> toConUnwC gk nr) fNames ts)) [] where prod x y = conP productDataName [x,y] toCon _ wrap m i (RecC cn []) = match (wrap $ conP m1DataName [lrP m i $ conP m1DataName [conP u1DataName []]]) (normalB $ conE cn) [] toCon gClass wrap m i (RecC cn _) = do (ts, gk) <- fmap shrink $ reifyConTys gClass cn fNames <- newNameList "f" $ length ts match (wrap $ conP m1DataName [lrP m i $ conP m1DataName [foldr1 prod (zipWith (toField gk) fNames ts)]]) (normalB $ foldl appE (conE cn) (zipWith (\nr -> expandSyn >=> toConUnwC gk nr) fNames ts)) [] where prod x y = conP productDataName [x,y] toCon gk wrap m i (InfixC t1 cn t2) = toCon gk wrap m i (NormalC cn [t1,t2]) toCon _ _ _ _ con = gadtError con toConUnwC :: GenericKind -> Name -> Type -> Q Exp toConUnwC Gen0 nr _ = varE nr toConUnwC (Gen1 name _) nr t = unwC t name `appE` varE nr toField :: GenericKind -> Name -> Type -> Q Pat toField gk nr t = conP m1DataName [toFieldWrap gk nr t] toFieldWrap :: GenericKind -> Name -> Type -> Q Pat toFieldWrap Gen0 nr t = conP (boxRepName t) [varP nr] toFieldWrap Gen1{} nr _ = varP nr unwC :: Type -> Name -> Q Exp unwC (SigT t _) name = unwC t name unwC (VarT t) name | t == name = varE unPar1ValName unwC t name | ground t name = varE $ unboxRepName t | otherwise = do let tyHead:tyArgs = unapplyTy t numLastArgs = min 1 $ length tyArgs (lhsArgs, rhsArgs) = splitAt (length tyArgs - numLastArgs) tyArgs inspectTy :: Type -> Q Exp inspectTy ForallT{} = rankNError inspectTy (SigT ty _) = inspectTy ty inspectTy (VarT a) | a == name = varE unRec1ValName inspectTy beta = infixApp (varE fmapValName `appE` unwC beta name) (varE composeValName) (varE unComp1ValName) itf <- isTyFamily tyHead if any (not . (`ground` name)) lhsArgs || any (not . (`ground` name)) tyArgs && itf then outOfPlaceTyVarError else case rhsArgs of [] -> varE $ unboxRepName t ty:_ -> inspectTy ty unboxRepName :: Type -> Name unboxRepName = maybe unK1ValName trd3 . unboxedRepNames lrP :: Int -> Int -> (Q Pat -> Q Pat) lrP 1 0 p = p lrP _ 0 p = conP l1DataName [p] lrP m i p = conP r1DataName [lrP (m-1) (i-1) p] lrE :: Int -> Int -> (Q Exp -> Q Exp) lrE 1 0 e = e lrE _ 0 e = conE l1DataName `appE` e lrE m i e = conE r1DataName `appE` lrE (m-1) (i-1) e unboxedRepNames :: Type -> Maybe (Name, Name, Name) unboxedRepNames ty | ty == ConT addrHashTypeName = Just (uAddrTypeName, uAddrDataName, uAddrHashValName) | ty == ConT charHashTypeName = Just (uCharTypeName, uCharDataName, uCharHashValName) | ty == ConT doubleHashTypeName = Just (uDoubleTypeName, uDoubleDataName, uDoubleHashValName) | ty == ConT floatHashTypeName = Just (uFloatTypeName, uFloatDataName, uFloatHashValName) | ty == ConT intHashTypeName = Just (uIntTypeName, uIntDataName, uIntHashValName) | ty == ConT wordHashTypeName = Just (uWordTypeName, uWordDataName, uWordHashValName) | otherwise = Nothing -- | Deduces the instance type to use for a Generic(1) instance. buildTypeInstance :: GenericClass -- ^ Generic or Generic1 -> Name -- ^ The type constructor or data family name -> [TyVarBndr] -- ^ The type variables from the data type/data family declaration -> DataVariety -- ^ If using a data family instance, provides the types used -- to instantiate the instance -> Q Type -- Plain data type/newtype case buildTypeInstance gClass tyConName tvbs DataPlain = let varTys :: [Type] varTys = map tyVarBndrToType tvbs in buildTypeInstanceFromTys gClass tyConName varTys False -- Data family instance case -- -- The CPP is present to work around a couple of annoying old GHC bugs. -- See Note [Polykinded data families in Template Haskell] buildTypeInstance gClass parentName tvbs (DataFamily _ instTysAndKinds) = do #if !(MIN_VERSION_template_haskell(2,8,0)) || MIN_VERSION_template_haskell(2,10,0) let instTys :: [Type] instTys = zipWith stealKindForType tvbs instTysAndKinds #else let kindVarNames :: [Name] kindVarNames = nub $ concatMap (tyVarNamesOfType . tyVarBndrKind) tvbs numKindVars :: Int numKindVars = length kindVarNames givenKinds, givenKinds' :: [Kind] givenTys :: [Type] (givenKinds, givenTys) = splitAt numKindVars instTysAndKinds givenKinds' = map sanitizeStars givenKinds -- A GHC 7.6-specific bug requires us to replace all occurrences of -- (ConT GHC.Prim.*) with StarT, or else Template Haskell will reject it. -- Luckily, (ConT GHC.Prim.*) only seems to occur in this one spot. sanitizeStars :: Kind -> Kind sanitizeStars = go where go :: Kind -> Kind go (AppT t1 t2) = AppT (go t1) (go t2) go (SigT t k) = SigT (go t) (go k) go (ConT n) | n == starKindName = StarT go t = t -- If we run this code with GHC 7.8, we might have to generate extra type -- variables to compensate for any type variables that Template Haskell -- eta-reduced away. -- See Note [Polykinded data families in Template Haskell] xTypeNames <- newNameList "tExtra" (length tvbs - length givenTys) let xTys :: [Type] xTys = map VarT xTypeNames -- ^ Because these type variables were eta-reduced away, we can only -- determine their kind by using stealKindForType. Therefore, we mark -- them as VarT to ensure they will be given an explicit kind annotation -- (and so the kind inference machinery has the right information). substNamesWithKinds :: [(Name, Kind)] -> Type -> Type substNamesWithKinds nks t = foldr' (uncurry substNameWithKind) t nks -- The types from the data family instance might not have explicit kind -- annotations, which the kind machinery needs to work correctly. To -- compensate, we use stealKindForType to explicitly annotate any -- types without kind annotations. instTys :: [Type] instTys = map (substNamesWithKinds (zip kindVarNames givenKinds')) -- ^ Note that due to a GHC 7.8-specific bug -- (see Note [Polykinded data families in Template Haskell]), -- there may be more kind variable names than there are kinds -- to substitute. But this is OK! If a kind is eta-reduced, it -- means that is was not instantiated to something more specific, -- so we need not substitute it. Using stealKindForType will -- grab the correct kind. $ zipWith stealKindForType tvbs (givenTys ++ xTys) #endif buildTypeInstanceFromTys gClass parentName instTys True -- For the given Types, deduces the instance type to use for a Generic(1) instance. -- Coming up with the instance type isn't as simple as dropping the last types, as -- you need to be wary of kinds being instantiated with *. -- See Note [Type inference in derived instances] buildTypeInstanceFromTys :: GenericClass -- ^ Generic or Generic1 -> Name -- ^ The type constructor or data family name -> [Type] -- ^ The types to instantiate the instance with -> Bool -- ^ True if it's a data family, False otherwise -> Q Type buildTypeInstanceFromTys gClass tyConName varTysOrig isDataFamily = do -- Make sure to expand through type/kind synonyms! Otherwise, the -- eta-reduction check might get tripped up over type variables in a -- synonym that are actually dropped. -- (See GHC Trac #11416 for a scenario where this actually happened.) varTysExp <- mapM expandSyn varTysOrig let remainingLength :: Int remainingLength = length varTysOrig - fromEnum gClass droppedTysExp :: [Type] droppedTysExp = drop remainingLength varTysExp droppedStarKindStati :: [StarKindStatus] droppedStarKindStati = map canRealizeKindStar droppedTysExp -- Check there are enough types to drop and that all of them are either of -- kind * or kind k (for some kind variable k). If not, throw an error. when (remainingLength < 0 || any (== NotKindStar) droppedStarKindStati) $ derivingKindError tyConName let droppedKindVarNames :: [Name] droppedKindVarNames = catKindVarNames droppedStarKindStati -- Substitute kind * for any dropped kind variables varTysExpSubst :: [Type] varTysExpSubst = map (substNamesWithKindStar droppedKindVarNames) varTysExp -- We must take care to avoid allowing Generic1 instances where a visible kind -- binder is instantiated to * (which should only happen in the presence of -- -XTypeInType). See the documentation for instantiationError for an example -- of when this can occur. -- -- A quick-and-dirty way to accomplish this is to check if the visible type -- binders of the original type, and of the type post-synonym-expansion, are -- both the same. If not, it's likely that one of the type binders was -- instantiated to a specific type (likely *). when (concatMap visibleTyVarsOfType varTysExp /= concatMap visibleTyVarsOfType varTysExpSubst) $ instantiationError tyConName let remainingTysExpSubst, droppedTysExpSubst :: [Type] (remainingTysExpSubst, droppedTysExpSubst) = splitAt remainingLength varTysExpSubst -- If any of the dropped types were polykinded, ensure that there are of -- kind * after substituting * for the dropped kind variables. If not, -- throw an error. unless (all hasKindStar droppedTysExpSubst) $ derivingKindError tyConName -- We now substitute all of the specialized-to-* kind variable names -- with *, but in the original types, not the synonym-expanded types. The reason -- we do this is a superficial one: we want the derived instance to resemble -- the datatype written in source code as closely as possible. For example, -- for the following data family instance: -- -- data family Fam a -- newtype instance Fam String = Fam String -- -- We'd want to generate the instance: -- -- instance C (Fam String) -- -- Not: -- -- instance C (Fam [Char]) let remainingTysOrigSubst :: [Type] remainingTysOrigSubst = map (substNamesWithKindStar droppedKindVarNames) $ take remainingLength varTysOrig remainingTysOrigSubst' :: [Type] -- See Note [Kind signatures in derived instances] for an explanation -- of the isDataFamily check. remainingTysOrigSubst' = if isDataFamily then remainingTysOrigSubst else map unSigT remainingTysOrigSubst instanceType :: Type instanceType = applyTyToTys (ConT tyConName) remainingTysOrigSubst' -- Ensure the dropped types can be safely eta-reduced. Otherwise, -- throw an error. unless (canEtaReduce remainingTysExpSubst droppedTysExpSubst) $ etaReductionError instanceType return instanceType -- See Note [Arguments to generated type synonyms] grabTyVarBndrsFromCons :: GenericClass -> [Con] -> Q [TyVarBndr] grabTyVarBndrsFromCons _ [] = return [] grabTyVarBndrsFromCons gClass (con:_) = fmap fst3 $ reifyConTys gClass (constructorName con) {- Note [Forcing buildTypeInstance] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Sometimes, we don't explicitly need to generate a Generic(1) type instance, but we force buildTypeInstance nevertheless. This is because it performs some checks for whether or not the provided datatype can actually have Generic(1) implemented for it, and produces errors if it can't. Otherwise, laziness would cause these checks to be skipped entirely, which could result in some indecipherable type errors down the road. Note [Substituting types in constructor type signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ While reifyConTys gives you the type variables of a constructor, they may not be the same of the data declaration's type variables. The classic example of this is GADTs: data GADT a b where GADTCon :: e -> f -> GADT e f The type variables of GADTCon are completely different from the declaration's, which can cause a problem when generating a Rep instance: type Rep (GADT a b) = Rec0 e :*: Rec0 f Naïvely, we would generate something like this, since traversing the constructor would give us precisely those arguments. Not good. We need to perform a type substitution to ensure that e maps to a, and f maps to b. This turns out to be surprisingly simple. Whenever you have a constructor type signature like (e -> f -> GADT e f), take the result type, collect all of its distinct type variables in order from left-to-right, and then map them to their corresponding type variables from the data declaration. There is another obscure case where we need to do a type subtitution. With -XTypeInType enabled, you might have something like this: data Proxy (a :: k) (b :: k) = Proxy k deriving Generic1 Then k gets specialized to *, which means that k should NOT show up in the RHS of a Rep1 type instance! To avoid this, make sure to substitute k with *. Note [Arguments to generated type synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A surprisingly difficult component of generating the type synonyms for Rep/Rep1 is coming up with the type synonym variable arguments, since they have to be just the right name and kind to work. The type signature of a constructor does a remarkably good job of coming up with these type variables for us, so if at least one constructor exists, we simply steal the type variables from that constructor's type signature for use in the generated type synonym. We also count the number of type variables that the first constructor's type signature has in order to determine how many type variables we should give it as arguments in the generated (type Rep (Foo ...) = ...) code. This leads one to ask: what if there are no constructors? If that's the case, then we're OK, since that means no type variables can possibly appear on the RHS of the type synonym! In such a special case, we're perfectly justified in making the type synonym not have any type variable arguments, and similarly, we don't apply any arguments to it in the generated (type Rep Foo = ) code. Note [Polykinded data families in Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In order to come up with the correct instance context and head for an instance, e.g., instance C a => C (Data a) where ... We need to know the exact types and kinds used to instantiate the instance. For plain old datatypes, this is simple: every type must be a type variable, and Template Haskell reliably tells us the type variables and their kinds. Doing the same for data families proves to be much harder for three reasons: 1. On any version of Template Haskell, it may not tell you what an instantiated type's kind is. For instance, in the following data family instance: data family Fam (f :: * -> *) (a :: *) data instance Fam f a Then if we use TH's reify function, it would tell us the TyVarBndrs of the data family declaration are: [KindedTV f (AppT (AppT ArrowT StarT) StarT),KindedTV a StarT] and the instantiated types of the data family instance are: [VarT f1,VarT a1] We can't just pass [VarT f1,VarT a1] to buildTypeInstanceFromTys, since we have no way of knowing their kinds. Luckily, the TyVarBndrs tell us what the kind is in case an instantiated type isn't a SigT, so we use the stealKindForType function to ensure all of the instantiated types are SigTs before passing them to buildTypeInstanceFromTys. 2. On GHC 7.6 and 7.8, a bug is present in which Template Haskell lists all of the specified kinds of a data family instance efore any of the instantiated types. Fortunately, this is easy to deal with: you simply count the number of distinct kind variables in the data family declaration, take that many elements from the front of the Types list of the data family instance, substitute the kind variables with their respective instantiated kinds (which you took earlier), and proceed as normal. 3. On GHC 7.8, an even uglier bug is present (GHC Trac #9692) in which Template Haskell might not even list all of the Types of a data family instance, since they are eta-reduced away! And yes, kinds can be eta-reduced too. The simplest workaround is to count how many instantiated types are missing from the list and generate extra type variables to use in their place. Luckily, we needn't worry much if its kind was eta-reduced away, since using stealKindForType will get it back. Note [Kind signatures in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to put explicit kind signatures into the derived instances, e.g., instance C a => C (Data (f :: * -> *)) where ... But it is preferable to avoid this if possible. If we come up with an incorrect kind signature (which is entirely possible, since our type inferencer is pretty unsophisticated - see Note [Type inference in derived instances]), then GHC will flat-out reject the instance, which is quite unfortunate. Plain old datatypes have the advantage that you can avoid using any kind signatures at all in their instances. This is because a datatype declaration uses all type variables, so the types that we use in a derived instance uniquely determine their kinds. As long as we plug in the right types, the kind inferencer can do the rest of the work. For this reason, we use unSigT to remove all kind signatures before splicing in the instance context and head. Data family instances are trickier, since a data family can have two instances that are distinguished by kind alone, e.g., data family Fam (a :: k) data instance Fam (a :: * -> *) data instance Fam (a :: *) If we dropped the kind signatures for C (Fam a), then GHC will have no way of knowing which instance we are talking about. To avoid this scenario, we always include explicit kind signatures in data family instances. There is a chance that the inferred kind signatures will be incorrect, but if so, we can always fall back on the make- functions. -}