{-| @GenValidity@ exists to make tests involving @Validity@ types easier and speed up the generation of data for them. Let's use the example from @Data.Validity@ again: A datatype that represents primes. To implement tests for this datatype, we would have to be able to generate both primes and non-primes. We could do this with @(Prime <$> arbitrary) `suchThat` isValid@ but this is tedious and inefficient. The @GenValid@ type class allows you to specify how to (efficiently) generate valid data of the given type to allow for easier and quicker testing. Just instantiating @GenUnchecked@ already gives you access to a default instance of @GenValid@ and @GenInvalid@ but writing custom implementations of these functions may speed up the generation of data. For example, to generate primes, we don't have to consider even numbers other than 2. A more efficient implementation could then look as follows: > instance GenUnchecked Prime where > genUnchecked = Prime <$> arbitrary > instance GenValid Prime where > genValid = Prime <$> > (oneof > [ pure 2 > , ((\y -> 2 * abs y + 1) <$> arbitrary) `suchThat` isPrime) > ]) Typical examples of tests involving validity could look as follows: > it "succeeds when given valid input" $ do > forAllValid $ \input -> > myFunction input `shouldSatisfy` isRight > it "produces valid output when it succeeds" $ do > forAllUnchecked $ \input -> > case myFunction input of > Nothing -> return () -- Can happen > Just output -> output `shouldSatisfy` isValid -} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 710 #define OVERLAPPING_ {-# OVERLAPPING #-} #else {-# LANGUAGE OverlappingInstances #-} #define OVERLAPPING_ #endif module Data.GenValidity ( module Data.Validity , module Data.GenValidity ) where import Data.Validity import Data.Fixed (Fixed(..), HasResolution) #if MIN_VERSION_base(4,9,0) import Data.List.NonEmpty (NonEmpty((:|))) #endif import Data.Word (Word, Word8, Word16, Word32, Word64) import GHC.Generics import GHC.Real (Ratio(..)) import Test.QuickCheck hiding (Fixed) import Control.Applicative ((<*>), (<$>), pure) import Control.Monad (forM) {-# ANN module "HLint: ignore Reduce duplication" #-} -- | A class of types for which truly arbitrary values can be generated. -- -- === Automatic instances with 'Generic' -- An instance of this class can be made automatically if the type in question -- has a 'Generic' instance. This instance will try to use 'genUnchecked' to -- generate all structural sub-parts of the value that is being generated. -- -- Example: -- -- > {-# LANGUAGE DeriveGeneric #-} -- > -- > data MyType = MyType Double String -- > deriving (Show, Eq, Generic) -- > -- > instance GenUnchecked MyType -- -- generates something like: -- -- > instance GenUnchecked MyType where -- > genUnchecked = MyType <$> genUnchecked <*> genUnchecked class GenUnchecked a where genUnchecked :: Gen a default genUnchecked :: (Generic a, GGenUnchecked (Rep a)) => Gen a genUnchecked = to <$> gGenUnchecked shrinkUnchecked :: a -> [a] default shrinkUnchecked :: (Generic a, GUncheckedRecursivelyShrink (Rep a), GUncheckedSubterms (Rep a) a) => a -> [a] shrinkUnchecked = gShrinkUnchecked -- | A class of types for which valid values can be generated. -- -- If you also write @Arbitrary@ instances for @GenValid@ types, it may be -- best to simply write @arbitrary = genValid@. class (Validity a, GenUnchecked a) => GenValid a where genValid :: Gen a -- | Generate a valid datum, this should cover all possible valid values in -- the type -- -- The default implementation is as follows: -- -- > genValid = genUnchecked `suchThat` isValid -- -- To speed up testing, it may be a good idea to implement this yourself. -- If you do, make sure that it is possible to generate all possible valid -- data, otherwise your testing may not cover all cases. genValid = genUnchecked `suchThat` isValid shrinkValid :: a -> [a] shrinkValid = filter isValid . shrinkUnchecked -- | A class of types for which invalid values can be generated. class (Validity a, GenUnchecked a) => GenInvalid a where genInvalid :: Gen a -- | Generate an invalid datum, this should cover all possible invalid -- values -- -- > genInvalid = genUnchecked `suchThat` isInvalid -- -- To speed up testing, it may be a good idea to implement this yourself. -- If you do, make sure that it is possible to generate all possible -- invalid data, otherwise your testing may not cover all cases. genInvalid = genUnchecked `suchThat` isInvalid shrinkInvalid :: a -> [a] shrinkInvalid = filter isInvalid . shrinkUnchecked instance (GenUnchecked a, GenUnchecked b) => GenUnchecked (a, b) where genUnchecked = sized $ \n -> do (r, s) <- genSplit n a <- resize r genUnchecked b <- resize s genUnchecked return (a, b) instance (GenValid a, GenValid b) => GenValid (a, b) where genValid = sized $ \n -> do (r, s) <- genSplit n a <- resize r genValid b <- resize s genValid return (a, b) instance (GenInvalid a, GenInvalid b) => GenInvalid (a, b) where genInvalid = sized $ \n -> do (r, s) <- genSplit n oneof [ do a <- resize r genUnchecked b <- resize s genInvalid return (a, b) , do a <- resize r genInvalid b <- resize s genUnchecked return (a, b) ] instance (GenUnchecked a, GenUnchecked b) => GenUnchecked (Either a b) where genUnchecked = oneof [Left <$> genUnchecked, Right <$> genUnchecked] instance (GenValid a, GenValid b) => GenValid (Either a b) where genValid = oneof [Left <$> genValid, Right <$> genValid] -- | This instance ensures that the generated tupse contains at least one invalid element. The other element is unchecked. instance (GenInvalid a, GenInvalid b) => GenInvalid (Either a b) where genInvalid = oneof [Left <$> genInvalid, Right <$> genInvalid] instance (GenUnchecked a, GenUnchecked b, GenUnchecked c) => GenUnchecked (a, b, c) where genUnchecked = sized $ \n -> do (r, s, t) <- genSplit3 n a <- resize r genUnchecked b <- resize s genUnchecked c <- resize t genUnchecked return (a, b, c) instance (GenValid a, GenValid b, GenValid c) => GenValid (a, b, c) where genValid = sized $ \n -> do (r, s, t) <- genSplit3 n a <- resize r genValid b <- resize s genValid c <- resize t genValid return (a, b, c) -- | This instance ensures that the generated triple contains at least one invalid element. The other two are unchecked. instance (GenInvalid a, GenInvalid b, GenInvalid c) => GenInvalid (a, b, c) where genInvalid = sized $ \n -> do (r, s, t) <- genSplit3 n oneof [ do a <- resize r genInvalid b <- resize s genUnchecked c <- resize t genUnchecked return (a, b, c) , do a <- resize r genUnchecked b <- resize s genInvalid c <- resize t genUnchecked return (a, b, c) , do a <- resize r genUnchecked b <- resize s genUnchecked c <- resize t genInvalid return (a, b, c) ] instance (GenUnchecked a, GenUnchecked b, GenUnchecked c, GenUnchecked d) => GenUnchecked (a, b, c, d) where genUnchecked = sized $ \n -> do (r, s, t, u) <- genSplit4 n a <- resize r genUnchecked b <- resize s genUnchecked c <- resize t genUnchecked d <- resize u genUnchecked return (a, b, c, d) instance (GenValid a, GenValid b, GenValid c, GenValid d) => GenValid (a, b, c, d) where genValid = sized $ \n -> do (r, s, t, u) <- genSplit4 n a <- resize r genValid b <- resize s genValid c <- resize t genValid d <- resize u genValid return (a, b, c, d) -- | This instance ensures that the generated triple contains at least one invalid element. The other two are unchecked. instance (GenInvalid a, GenInvalid b, GenInvalid c, GenInvalid d) => GenInvalid (a, b, c, d) where genInvalid = sized $ \n -> do (r, s, t, u) <- genSplit4 n oneof [ do a <- resize r genInvalid b <- resize s genUnchecked c <- resize t genUnchecked d <- resize u genUnchecked return (a, b, c, d) , do a <- resize r genUnchecked b <- resize s genInvalid c <- resize t genUnchecked d <- resize u genUnchecked return (a, b, c, d) , do a <- resize r genUnchecked b <- resize s genUnchecked c <- resize t genInvalid d <- resize u genUnchecked return (a, b, c, d) , do a <- resize r genUnchecked b <- resize s genUnchecked c <- resize t genUnchecked d <- resize u genInvalid return (a, b, c, d) ] instance GenUnchecked a => GenUnchecked (Maybe a) where genUnchecked = oneof [pure Nothing, Just <$> genUnchecked] instance GenValid a => GenValid (Maybe a) where genValid = oneof [pure Nothing, Just <$> genValid] instance GenInvalid a => GenInvalid (Maybe a) where genInvalid = Just <$> genInvalid instance GenUnchecked a => GenUnchecked [a] where genUnchecked = genListOf genUnchecked shrinkUnchecked = shrinkList shrinkUnchecked #if MIN_VERSION_base(4,9,0) instance GenUnchecked a => GenUnchecked (NonEmpty a) where genUnchecked = (:|) <$> genUnchecked <*> genUnchecked shrinkUnchecked (v :| vs) = [ e :| es | (e, es) <- shrinkUnchecked (v, vs)] instance GenValid a => GenValid (NonEmpty a) where genValid = (:|) <$> genValid <*> genValid instance GenInvalid a => GenInvalid (NonEmpty a) where genInvalid = sized $ \n -> do (a, b) <- genSplit n oneof [ (:|) <$> resize a genUnchecked <*> resize b genInvalid , (:|) <$> resize a genInvalid <*> resize b genUnchecked ] #endif -- | If we can generate values of a certain type, we can also generate lists of -- them. instance GenValid a => GenValid [a] where genValid = genListOf genValid -- | This instance ensures that the generated list contains at least one element -- that satisfies 'isInvalid'. The rest is unchecked. instance GenInvalid a => GenInvalid [a] where genInvalid = sized $ \n -> do (x, y, z) <- genSplit3 n before <- resize x $ genListOf genUnchecked middle <- resize y genInvalid after <- resize z $ genListOf genUnchecked return $ before ++ [middle] ++ after instance GenUnchecked () where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid () instance GenUnchecked Bool where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Bool instance GenUnchecked Ordering where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Ordering instance GenUnchecked Char where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Char instance GenUnchecked Int where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Int instance GenUnchecked Word where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Word instance GenUnchecked Word8 where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Word8 instance GenUnchecked Word16 where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Word16 instance GenUnchecked Word32 where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Word32 instance GenUnchecked Word64 where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Word64 instance GenUnchecked Float where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Float where genValid = arbitrary -- | Either 'NaN' or 'Infinity'. instance GenInvalid Float where genInvalid = elements [read "NaN", read "Infinity"] instance GenUnchecked Double where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Double -- | Either 'NaN' or 'Infinity'. instance GenInvalid Double where genInvalid = elements [read "NaN", read "Infinity"] instance GenUnchecked Integer where genUnchecked = arbitrary shrinkUnchecked = shrink instance GenValid Integer instance (Integral a, GenUnchecked a) => GenUnchecked (Ratio a) where genUnchecked = do n <- genUnchecked d <- genUnchecked pure $ n :% d shrinkUnchecked (n :% d) = [n' :% d' | (n', d') <- shrinkUnchecked (n, d)] instance (Integral a, Num a, Ord a, GenValid a) => GenValid (Ratio a) instance HasResolution a => GenUnchecked (Fixed a) where genUnchecked = MkFixed <$> genUnchecked shrinkUnchecked = shrink instance HasResolution a => GenValid (Fixed a) shrinkT2 :: (a -> [a]) -> (a, a) -> [(a, a)] shrinkT2 s (a, b) = (,) <$> s a <*> s b shrinkT3 :: (a -> [a]) -> (a, a, a) -> [(a, a, a)] shrinkT3 s (a, b, c) = (,,) <$> s a <*> s b <*> s c -- | 'upTo' generates an integer between 0 (inclusive) and 'n'. upTo :: Int -> Gen Int upTo n | n <= 0 = pure 0 | otherwise = elements [0 .. n] -- | 'genSplit a' generates a tuple '(b, c)' such that 'b + c' equals 'a'. genSplit :: Int -> Gen (Int, Int) genSplit n | n < 0 = pure (0, 0) | otherwise = do i <- choose (0, n) let j = n - i pure (i, j) -- | 'genSplit3 a' generates a triple '(b, c, d)' such that 'b + c + d' equals 'a'. genSplit3 :: Int -> Gen (Int, Int, Int) genSplit3 n | n < 0 = pure (0, 0, 0) | otherwise = do (a, z) <- genSplit n (b, c) <- genSplit z return (a, b, c) -- | 'genSplit4 a' generates a quadruple '(b, c, d, e)' such that 'b + c + d + e' equals 'a'. genSplit4 :: Int -> Gen (Int, Int, Int, Int) genSplit4 n | n < 0 = pure (0, 0, 0, 0) | otherwise = do (y, z) <- genSplit n (a, b) <- genSplit y (c, d) <- genSplit z return (a, b, c, d) -- | 'arbPartition n' generates a list 'ls' such that 'sum ls' equals 'n'. arbPartition :: Int -> Gen [Int] arbPartition k | k <= 0 = pure [] | otherwise = do first <- elements [1 .. k] rest <- arbPartition $ k - first return $ first : rest -- | A version of @listOf@ that takes size into account more accurately. genListOf :: Gen a -> Gen [a] genListOf func = sized $ \n -> do size <- upTo n pars <- arbPartition size forM pars $ \i -> resize i func class GGenUnchecked f where gGenUnchecked :: Gen (f a) instance GGenUnchecked U1 where gGenUnchecked = pure U1 instance (GGenUnchecked a, GGenUnchecked b) => GGenUnchecked (a :*: b) where gGenUnchecked = do g1 <- gGenUnchecked g2 <- gGenUnchecked pure $ g1 :*: g2 instance (GGenUnchecked a, GGenUnchecked b) => GGenUnchecked (a :+: b) where gGenUnchecked = oneof [L1 <$> gGenUnchecked, R1 <$> gGenUnchecked] instance (GGenUnchecked a) => GGenUnchecked (M1 i c a) where gGenUnchecked = M1 <$> gGenUnchecked instance (GenUnchecked a) => GGenUnchecked (K1 i a) where gGenUnchecked = K1 <$> genUnchecked -- | Shrink a term to any of its immediate subterms, -- and also recursively shrink all subterms. gShrinkUnchecked :: (Generic a, GUncheckedRecursivelyShrink (Rep a), GUncheckedSubterms (Rep a) a) => a -> [a] gShrinkUnchecked x = uncheckedSubterms x ++ uncheckedRecursivelyShrink x -- | Recursively shrink all immediate uncheckedSubterms. uncheckedRecursivelyShrink :: (Generic a, GUncheckedRecursivelyShrink (Rep a)) => a -> [a] uncheckedRecursivelyShrink = map to . gUncheckedRecursivelyShrink . from class GUncheckedRecursivelyShrink f where gUncheckedRecursivelyShrink :: f a -> [f a] instance (GUncheckedRecursivelyShrink f, GUncheckedRecursivelyShrink g) => GUncheckedRecursivelyShrink (f :*: g) where gUncheckedRecursivelyShrink (x :*: y) = [x' :*: y | x' <- gUncheckedRecursivelyShrink x] ++ [x :*: y' | y' <- gUncheckedRecursivelyShrink y] instance (GUncheckedRecursivelyShrink f, GUncheckedRecursivelyShrink g) => GUncheckedRecursivelyShrink (f :+: g) where gUncheckedRecursivelyShrink (L1 x) = map L1 (gUncheckedRecursivelyShrink x) gUncheckedRecursivelyShrink (R1 x) = map R1 (gUncheckedRecursivelyShrink x) instance GUncheckedRecursivelyShrink f => GUncheckedRecursivelyShrink (M1 i c f) where gUncheckedRecursivelyShrink (M1 x) = map M1 (gUncheckedRecursivelyShrink x) instance GenUnchecked a => GUncheckedRecursivelyShrink (K1 i a) where gUncheckedRecursivelyShrink (K1 x) = map K1 (shrinkUnchecked x) instance GUncheckedRecursivelyShrink U1 where gUncheckedRecursivelyShrink U1 = [] instance GUncheckedRecursivelyShrink V1 where -- The empty type can't be shrunk to anything. gUncheckedRecursivelyShrink _ = [] -- | All immediate uncheckedSubterms of a term. uncheckedSubterms :: (Generic a, GUncheckedSubterms (Rep a) a) => a -> [a] uncheckedSubterms = gUncheckedSubterms . from class GUncheckedSubterms f a where gUncheckedSubterms :: f a -> [a] instance GUncheckedSubterms V1 a where gUncheckedSubterms _ = [] instance GUncheckedSubterms U1 a where gUncheckedSubterms U1 = [] instance (GUncheckedSubtermsIncl f a, GUncheckedSubtermsIncl g a) => GUncheckedSubterms (f :*: g) a where gUncheckedSubterms (l :*: r) = gUncheckedSubtermsIncl l ++ gUncheckedSubtermsIncl r instance (GUncheckedSubtermsIncl f a, GUncheckedSubtermsIncl g a) => GUncheckedSubterms (f :+: g) a where gUncheckedSubterms (L1 x) = gUncheckedSubtermsIncl x gUncheckedSubterms (R1 x) = gUncheckedSubtermsIncl x instance GUncheckedSubterms f a => GUncheckedSubterms (M1 i c f) a where gUncheckedSubterms (M1 x) = gUncheckedSubterms x instance GUncheckedSubterms (K1 i a) b where gUncheckedSubterms (K1 _) = [] class GUncheckedSubtermsIncl f a where gUncheckedSubtermsIncl :: f a -> [a] instance GUncheckedSubtermsIncl V1 a where gUncheckedSubtermsIncl _ = [] instance GUncheckedSubtermsIncl U1 a where gUncheckedSubtermsIncl U1 = [] instance (GUncheckedSubtermsIncl f a, GUncheckedSubtermsIncl g a) => GUncheckedSubtermsIncl (f :*: g) a where gUncheckedSubtermsIncl (l :*: r) = gUncheckedSubtermsIncl l ++ gUncheckedSubtermsIncl r instance (GUncheckedSubtermsIncl f a, GUncheckedSubtermsIncl g a) => GUncheckedSubtermsIncl (f :+: g) a where gUncheckedSubtermsIncl (L1 x) = gUncheckedSubtermsIncl x gUncheckedSubtermsIncl (R1 x) = gUncheckedSubtermsIncl x instance GUncheckedSubtermsIncl f a => GUncheckedSubtermsIncl (M1 i c f) a where gUncheckedSubtermsIncl (M1 x) = gUncheckedSubtermsIncl x -- This is the important case: We've found a term of the same type. instance OVERLAPPING_ GUncheckedSubtermsIncl (K1 i a) a where gUncheckedSubtermsIncl (K1 x) = [x] instance OVERLAPPING_ GUncheckedSubtermsIncl (K1 i a) b where gUncheckedSubtermsIncl (K1 _) = []