--# -path=.:../abstract:../../prelude:../common --1 English Lexical Paradigms -- -- Aarne Ranta 2003--2005 -- -- This is an API for the user of the resource grammar -- for adding lexical items. It gives functions for forming -- expressions of open categories: nouns, adjectives, verbs. -- -- Closed categories (determiners, pronouns, conjunctions) are -- accessed through the resource syntax API, $Structural.gf$. -- -- The main difference with $MorphoEng.gf$ is that the types -- referred to are compiled resource grammar types. We have moreover -- had the design principle of always having existing forms, rather -- than stems, as string arguments of the paradigms. -- -- The structure of functions for each word class $C$ is the following: -- first we give a handful of patterns that aim to cover all -- regular cases. Then we give a worst-case function $mkC$, which serves as an -- escape to construct the most irregular words of type $C$. -- However, this function should only seldom be needed: we have a -- separate module [``IrregEng`` ../../english/IrregEng.gf], -- which covers irregular verbss. resource ParadigmsEng = open (Predef=Predef), Prelude, MorphoEng, ResEng, CatEng in { --2 Parameters -- -- To abstract over gender names, we define the following identifiers. oper Gender : Type ; human : Gender ; nonhuman : Gender ; masculine : Gender ; --% feminine : Gender ; --% -- To abstract over number names, we define the following. Number : Type ; singular : Number ; plural : Number ; -- To abstract over case names, we define the following. Case : Type ; --% nominative : Case ; --% genitive : Case ; --% -- Prepositions are used in many-argument functions for rection. -- The resource category $Prep$ is used. -- The number of a noun phrase can be extracted with the following -- function. npNumber : NP -> Number ; -- exctract the number of a noun phrase --2 Nouns -- Nouns are constructed by the function $mkN$, which takes a varying -- number of arguments. mkN : overload { -- The regular function captures the variants for nouns ending with -- "s","sh","x","z" or "y": "kiss - kisses", "flash - flashes"; -- "fly - flies" (but "toy - toys"), mkN : (flash : Str) -> N ; -- plural s, incl. flash-flashes, fly-flies -- In practice the worst case is to give singular and plural nominative. mkN : (man,men : Str) -> N ; -- irregular plural -- The theoretical worst case: give all four forms. mkN : (man,men,man's,men's : Str) -> N ; -- irregular genitives -- Change gender from the default $nonhuman$. mkN : Gender -> N -> N ; -- default nonhuman --3 Compound nouns -- -- A compound noun is an uninflected string attached to an inflected noun, -- such as "baby boom", "chief executive officer". mkN : Str -> N -> N -- e.g. baby + boom } ; --3 Relational nouns mkN2 : overload { mkN2 : Str -> N2 ; -- reg. noun, prep. "of" --% mkN2 : N -> N2 ; -- e.g. wife of (default prep. to) mkN2 : N -> Str -> N2 ; -- access to --% mkN2 : N -> Prep -> N2 ; -- e.g. access to mkN2 : Str -> Str -> N2 ; -- access to (regular noun) --% } ; -- Use the function $mkPrep$ or see the section on prepositions below to -- form other prepositions. -- -- Three-place relational nouns ("the connection from x to y") need two prepositions. mkN3 : N -> Prep -> Prep -> N3 ; -- e.g. connection from x to y --3 Proper names and noun phrases -- -- Proper names, with a regular genitive, are formed from strings. mkPN : overload { mkPN : Str -> PN ; -- Sometimes a common noun can be reused as a proper name, e.g. "Bank" mkPN : N -> PN --% } ; --3 Determiners and quantifiers mkQuant : overload { mkQuant : (this, these : Str) -> Quant ; --% mkQuant : (no_sg, no_pl, none_sg, non_pl : Str) -> Quant ; --% } ; mkOrd : Str -> Ord ; --% --2 Adjectives mkA : overload { -- For regular adjectives, the adverbial and comparison forms are derived. This holds -- even for cases with the variations "happy - happily - happier - happiest", -- "free - freely - freer - freest", and "rude - rudest". mkA : (happy : Str) -> A ; -- regular adj, incl. happy-happier, rude-ruder -- However, the duplication of the final consonant cannot be predicted, -- but a separate case is used to give the comparative mkA : (fat,fatter : Str) -> A ; -- irreg. comparative -- As many as four forms may be needed. mkA : (good,better,best,well : Str) -> A -- completely irreg. } ; -- Regular comparison is formed by "more - most" for words with two vowels separated -- and terminated by some other letters. To force this or the opposite, -- the following can be used: compoundA : A -> A ; -- force comparison with more/most simpleA : A -> A ; -- force comparison with -er,-est irregAdv : A -> Str -> A ; -- adverb irreg, e.g. "fast" --3 Two-place adjectives mkA2 : overload { mkA2 : A -> Prep -> A2 ; -- absent from mkA2 : A -> Str -> A2 ; -- absent from --% mkA2 : Str -> Prep -> A2 ; -- absent from --% mkA2 : Str -> Str -> A2 -- absent from --% } ; --2 Adverbs -- Adverbs are not inflected. Most lexical ones have position -- after the verb. Some can be preverbal (e.g. "always"). mkAdv : Str -> Adv ; -- e.g. today mkAdV : Str -> AdV ; -- e.g. always -- Adverbs modifying adjectives and sentences can also be formed. mkAdA : Str -> AdA ; -- e.g. quite -- Adverbs modifying numerals mkAdN : Str -> AdN ; -- e.g. approximately --2 Prepositions -- -- A preposition as used for rection in the lexicon, as well as to -- build $PP$s in the resource API, just requires a string. mkPrep : Str -> Prep ; -- e.g. "in front of" noPrep : Prep ; -- no preposition -- (These two functions are synonyms.) --2 Conjunctions -- mkConj : overload { mkConj : Str -> Conj ; -- and (plural agreement) --% mkConj : Str -> Number -> Conj ; -- or (agrement number given as argument) --% mkConj : Str -> Str -> Conj ; -- both ... and (plural) --% mkConj : Str -> Str -> Number -> Conj ; -- either ... or (agrement number given as argument) --% } ; --2 Verbs -- -- Verbs are constructed by the function $mkV$, which takes a varying -- number of arguments. mkV : overload { -- The regular verb function recognizes the special cases where the last -- character is "y" ("cry-cries" but "buy-buys") or a sibilant -- ("kiss-"kisses", "jazz-jazzes", "rush-rushes", "munch - munches", -- "fix - fixes"). mkV : (cry : Str) -> V ; -- regular, incl. cry-cries, kiss-kisses etc -- Give the present and past forms for regular verbs where -- the last letter is duplicated in some forms, -- e.g. "rip - ripped - ripping". mkV : (stop, stopped : Str) -> V ; -- reg. with consonant duplication -- There is an extensive list of irregular verbs in the module $IrregularEng$. -- In practice, it is enough to give three forms, -- e.g. "drink - drank - drunk". mkV : (drink, drank, drunk : Str) -> V ; -- ordinary irregular -- Irregular verbs with duplicated consonant in the present participle. mkV : (run, ran, run, running : Str) -> V ; -- irregular with duplication --% -- Except for "be", the worst case needs five forms: the infinitive and -- the third person singular present, the past indicative, and the -- past and present participles. mkV : (go, goes, went, gone, going : Str) -> V ; -- totally irregular -- Adds a prefix to an exisiting verb. This is most useful to create -- prefix-variants of irregular verbs from $IrregEng$, e.g. "undertake". mkV : Str -> V -> V ; -- fix compound, e.g. under+take }; -- Verbs with a particle. -- The particle, such as in "switch on", is given as a string. partV : V -> Str -> V ; -- with particle, e.g. switch + on -- Reflexive verbs. -- By default, verbs are not reflexive; this function makes them that. reflV : V -> V ; -- reflexive e.g. behave oneself --3 Two-place verbs -- -- Two-place verbs need a preposition, except the special case with direct object. -- (transitive verbs). Notice that a particle comes from the $V$. mkV2 : overload { mkV2 : Str -> V2 ; -- kill --% mkV2 : V -> V2 ; -- transitive, e.g. hit mkV2 : V -> Prep -> V2 ; -- with preposiiton, e.g. believe in mkV2 : V -> Str -> V2 ; -- believe in --% mkV2 : Str -> Prep -> V2 ; -- believe in --% mkV2 : Str -> Str -> V2 -- believe in --% }; --3 Three-place verbs -- -- Three-place (ditransitive) verbs need two prepositions, of which -- the first one or both can be absent. mkV3 : overload { mkV3 : V -> V3 ; -- ditransitive, e.g. give,_,_ mkV3 : V -> Prep -> Prep -> V3 ; -- two prepositions, e.g. speak, with, about mkV3 : V -> Prep -> V3 ; -- give,_,to --% mkV3 : V -> Str -> V3 ; -- give,_,to --% mkV3 : Str -> Str -> V3 ; -- give,_,to --% mkV3 : Str -> V3 ; -- give,_,_ --% }; --3 Other complement patterns -- -- Verbs and adjectives can take complements such as sentences, -- questions, verb phrases, and adjectives. mkV0 : V -> V0 ; --% mkVS : V -> VS ; -- sentence-compl e.g. say (that S) mkV2S : V -> Prep -> V2S ; -- e.g. tell (NP) (that S) mkVV : V -> VV ; -- e.g. want (to VP) ingVV : V -> VV ; -- e.g. start (VPing) mkV2V : V -> Prep -> Prep -> V2V ; -- e.g. want (noPrep NP) (to VP) ingV2V : V -> Prep -> Prep -> V2V ; -- e.g. prevent (noPrep NP) (from VP-ing) mkVA : V -> VA ; -- e.g. become (AP) mkV2A : V -> Prep -> V2A ; -- e.g. paint (NP) (AP) mkVQ : V -> VQ ; -- e.g. wonder (QS) mkV2Q : V -> Prep -> V2Q ; -- e.g. ask (NP) (QS) mkAS : A -> AS ; --% mkA2S : A -> Prep -> A2S ; --% mkAV : A -> AV ; --% mkA2V : A -> Prep -> A2V ; --% -- Notice: Categories $V0, AS, A2S, AV, A2V$ are just $A$. -- $V0$ is just $V$; the second argument is treated as adverb. V0 : Type ; --% AS, A2S, AV, A2V : Type ; --% --2 Other categories mkSubj : Str -> Subj = \s -> lin Subj {s = s} ; --% --. --2 Definitions of paradigms -- -- The definitions should not bother the user of the API. So they are -- hidden from the document. Gender = ResEng.Gender ; Number = ResEng.Number ; Case = ResEng.NPCase ; human = Masc ; nonhuman = Neutr ; masculine = Masc ; feminine = Fem ; singular = Sg ; plural = Pl ; nominative = npNom ; genitive = npGen ; npNumber np = (fromAgr np.a).n ; Preposition : Type = Str ; -- obsolete regN = \ray -> let rays = add_s ray in mk2N ray rays ; add_s : Str -> Str = \w -> case w of { _ + ("io" | "oo") => w + "s" ; -- radio, bamboo _ + ("s" | "z" | "x" | "sh" | "ch" | "o") => w + "es" ; -- bus, hero _ + ("a" | "o" | "u" | "e") + "y" => w + "s" ; -- boy x + "y" => x + "ies" ; -- fly _ => w + "s" -- car } ; duplFinal : Str -> Str = \w -> case w of { _ + ("a" | "e" | "o") + ("a" | "e" | "i" | "o" | "u") + ? => w ; -- waited, needed _ + ("a" | "e" | "i" | "o" | "u") + c@("b"|"d"|"g"|"m"|"n"|"p"|"r"|"t") => w + c ; -- omitted, manned _ => w } ; mk2N = \man,men -> let mens = case last men of { "s" => men + "'" ; _ => men + "'s" } in mk4N man men (man + "'s") mens ; mk4N = \man,men,man's,men's -> lin N (mkNoun man man's men men's ** {g = Neutr}) ; genderN g man = lin N {s = man.s ; g = g} ; compoundN s n = lin N {s = \\x,y => s ++ n.s ! x ! y ; g=n.g} ; mkPN = overload { mkPN : Str -> PN = regPN ; mkPN : N -> PN = nounPN } ; mkN2 = overload { mkN2 : N -> Prep -> N2 = prepN2 ; mkN2 : N -> Str -> N2 = \n,s -> prepN2 n (mkPrep s); mkN2 : Str -> Str -> N2 = \n,s -> prepN2 (regN n) (mkPrep s); mkN2 : N -> N2 = \n -> prepN2 n (mkPrep "of") ; mkN2 : Str -> N2 = \s -> prepN2 (regN s) (mkPrep "of") } ; prepN2 = \n,p -> lin N2 (n ** {c2 = p.s}) ; regN2 n = prepN2 (regN n) (mkPrep "of") ; mkN3 = \n,p,q -> lin N3 (n ** {c2 = p.s ; c3 = q.s}) ; --3 Relational common noun phrases -- -- In some cases, you may want to make a complex $CN$ into a -- relational noun (e.g. "the old town hall of"). cnN2 : CN -> Prep -> N2 ; cnN3 : CN -> Prep -> Prep -> N3 ; -- This is obsolete. cnN2 = \n,p -> lin N2 (n ** {c2 = p.s}) ; cnN3 = \n,p,q -> lin N3 (n ** {c2 = p.s ; c3 = q.s}) ; regPN n = regGenPN n human ; regGenPN n g = lin PN {s = table {Gen => n + "'s" ; _ => n} ; g = g} ; nounPN n = lin PN {s = n.s ! singular ; g = n.g} ; mkQuant = overload { mkQuant : (this, these : Str) -> Quant = \sg,pl -> mkQuantifier sg pl sg pl; mkQuant : (no_sg, no_pl, none_sg, non_pl : Str) -> Quant = mkQuantifier; } ; mkQuantifier : Str -> Str -> Str -> Str -> Quant = \sg,pl,sg',pl' -> lin Quant { s = \\_ => table { Sg => sg ; Pl => pl } ; sp = \\_ => table { Sg => \\c => regGenitiveS sg' ! npcase2case c ; Pl => \\c => regGenitiveS pl' ! npcase2case c} } ; mkOrd : Str -> Ord = \x -> lin Ord { s = regGenitiveS x}; mk2A a b = mkAdjective a a a b ; regA a = case a of { _ + ("a" | "e" | "i" | "o" | "u" | "y") + ? + _ + ("a" | "e" | "i" | "o" | "u" | "y") + ? + _ => lin A (compoundADeg (regADeg a)) ; _ => lin A (regADeg a) } ; prepA2 a p = lin A2 (a ** {c2 = p.s}) ; ADeg = A ; ---- mkADeg a b c d = mkAdjective a b c d ; regADeg happy = let happ = init happy ; y = last happy ; happie = case y of { "y" => happ + "ie" ; "e" => happy ; _ => duplFinal happy + "e" } ; in mkADeg happy (happie + "r") (happie + "st") (adj2adv happy) ; adj2adv : Str -> Str = \happy -> case happy of { _ + "ble" => init happy + "y" ; _ + "y" => init happy + "ily" ; _ + "ll" => happy + "y" ; _ => happy + "ly" } ; duplADeg fat = mkADeg fat (fat + last fat + "er") (fat + last fat + "est") (adj2adv fat) ; compoundADeg a = let ad = (a.s ! AAdj Posit Nom) in mkADeg ad ("more" ++ ad) ("most" ++ ad) (a.s ! AAdv) ; adegA a = a ; mkAdv x = lin Adv (ss x) ; mkAdV x = lin AdV (ss x) ; mkAdA x = lin AdA (ss x) ; mkAdN x = lin AdN (ss x) ; mkPrep p = lin Prep (ss p) ; noPrep = mkPrep [] ; mk5V a b c d e = lin V (mkVerb a b c d e ** {s1 = []}) ; regV cry = let cries = (regN cry).s ! Pl ! Nom ; -- ! cried : Str = case cries of { _ + "es" => init cries + "d" ; _ => duplFinal cry + "ed" } ; crying : Str = case cry of { _ + "ee" => cry + "ing" ; d + "ie" => d + "ying" ; us + "e" => us + "ing" ; _ => duplFinal cry + "ing" } in mk5V cry cries cried cried crying ; reg2V fit fitted = let fitt = Predef.tk 2 fitted ; in if_then_else V (pbool2bool (Predef.eqStr (last fit) (last fitt))) (mk5V fit (fit + "s") (fitt + "ed") (fitt + "ed") (fitt + "ing")) (regV fit) ; regDuplV fit = case last fit of { ("a" | "e" | "i" | "o" | "u" | "y") => Predef.error (["final duplication makes no sense for"] ++ fit) ; t => let fitt = fit + t in mk5V fit (fit + "s") (fitt + "ed") (fitt + "ed") (fitt + "ing") } ; irregV x y z = let reg = (regV x).s in mk5V x (reg ! VPres) y z (reg ! VPresPart) ** {s1 = []} ; irreg4V x y z w = let reg = (regV x).s in mk5V x (reg ! VPres) y z w ** {s1 = []} ; irregDuplV fit y z = let fitting = (regDuplV fit).s ! VPresPart in mk5V fit (fit + "s") y z fitting ; partV v p = lin V {s = \\f => v.s ! f ++ p ; isRefl = v.isRefl} ; reflV v = lin V {s = v.s ; part = v.part ; isRefl = True} ; prepV2 v p = lin V2 {s = v.s ; s1 = v.s1 ; c2 = p.s ; isRefl = v.isRefl} ; dirV2 v = prepV2 v noPrep ; prepPrepV3 v p q = lin V3 {s = v.s ; s1 = v.s1 ; c2 = p.s ; c3 = q.s ; isRefl = v.isRefl} ; dirV3 v p = prepPrepV3 v noPrep p ; dirdirV3 v = dirV3 v noPrep ; mkVS v = lin VS v ; mkVV v = lin VV { s = table {VVF vf => v.s ! vf ; _ => v.s ! VInf} ; typ = VVInf } ; ingVV v = lin VV { s = table {VVF vf => v.s ! vf ; _ => v.s ! VInf} ; typ = VVPresPart } ; mkVQ v = lin VQ v ; V0 : Type = V ; -- V2S, V2V, V2Q : Type = V2 ; AS, A2S, AV : Type = A ; A2V : Type = A2 ; mkV0 v = v ; mkV2S v p = lin V2S (prepV2 v p) ; mkV2V v p t = lin V2V (prepV2 v p ** {c3 = t.s ; typ = VVAux}) ; ingV2V v p t = lin V2V (prepV2 v p ** {c3 = t.s ; typ = VVPresPart}) ; mkVA v = lin VA v ; mkV2A v p = lin V2A (prepV2 v p) ; mkV2Q v p = lin V2Q (prepV2 v p) ; mkAS v = v ; mkA2S v p = lin A (prepA2 v p) ; mkAV v = v ; mkA2V v p = prepA2 v p ; -- pre-overload API and overload definitions mk4N : (man,men,man's,men's : Str) -> N ; regN : Str -> N ; mk2N : (man,men : Str) -> N ; genderN : Gender -> N -> N ; compoundN : Str -> N -> N ; mkN = overload { mkN : (man,men,man's,men's : Str) -> N = mk4N ; mkN : Str -> N = regN ; mkN : (man,men : Str) -> N = mk2N ; mkN : Gender -> N -> N = genderN ; mkN : Str -> N -> N = compoundN } ; -- Relational nouns ("daughter of x") need a preposition. prepN2 : N -> Prep -> N2 ; -- The most common preposition is "of", and the following is a -- shortcut for regular relational nouns with "of". regN2 : Str -> N2 ; mk2A : (free,freely : Str) -> A ; regA : Str -> A ; mkA = overload { mkA : Str -> A = regA ; mkA : (fat,fatter : Str) -> A = \fat,fatter -> mkAdjective fat fatter (init fatter + "st") (adj2adv fat) ; mkA : (good,better,best,well : Str) -> A = \a,b,c,d -> mkAdjective a b c d } ; compoundA = compoundADeg ; simpleA a = let ad = (a.s ! AAdj Posit Nom) in regADeg ad ; irregAdv a adv = lin A {s = table {AAdv => adv; aform => a.s ! aform}} ; prepA2 : A -> Prep -> A2 ; mkA2 = overload { mkA2 : A -> Prep -> A2 = prepA2 ; mkA2 : A -> Str -> A2 = \a,p -> prepA2 a (mkPrep p) ; mkA2 : Str -> Prep -> A2 = \a,p -> prepA2 (regA a) p; mkA2 : Str -> Str -> A2 = \a,p -> prepA2 (regA a) (mkPrep p); } ; mk5V : (go, goes, went, gone, going : Str) -> V ; regV : (cry : Str) -> V ; reg2V : (stop, stopped : Str) -> V; irregV : (drink, drank, drunk : Str) -> V ; irreg4V : (run, ran, run, running : Str) -> V ; -- Use reg2V instead regDuplV : Str -> V ; -- Use irreg4V instead irregDuplV : (get, got, gotten : Str) -> V ; mkV = overload { mkV : (cry : Str) -> V = regV ; mkV : (stop, stopped : Str) -> V = reg2V ; mkV : (drink, drank, drunk : Str) -> V = irregV ; mkV : (run, ran, run, running : Str) -> V = irreg4V ; mkV : (go, goes, went, gone, going : Str) -> V = mk5V ; mkV : Str -> V -> V = prefixV }; prepV2 : V -> Prep -> V2 ; dirV2 : V -> V2 ; prefixV : Str -> V -> V = \p,v -> lin V { s = \\vform => p + v.s ! vform; isRefl = v.isRefl } ; mkV2 = overload { mkV2 : V -> V2 = dirV2 ; mkV2 : Str -> V2 = \s -> dirV2 (regV s) ; mkV2 : V -> Prep -> V2 = prepV2 ; mkV2 : V -> Str -> V2 = \v,p -> prepV2 v (mkPrep p) ; mkV2 : Str -> Prep -> V2 = \v,p -> prepV2 (regV v) p ; mkV2 : Str -> Str -> V2 = \v,p -> prepV2 (regV v) (mkPrep p) }; prepPrepV3 : V -> Prep -> Prep -> V3 ; dirV3 : V -> Prep -> V3 ; dirdirV3 : V -> V3 ; mkV3 = overload { mkV3 : V -> Prep -> Prep -> V3 = prepPrepV3 ; mkV3 : V -> Prep -> V3 = dirV3 ; mkV3 : V -> Str -> V3 = \v,s -> dirV3 v (mkPrep s); mkV3 : Str -> Str -> V3 = \v,s -> dirV3 (regV v) (mkPrep s); mkV3 : V -> V3 = dirdirV3 ; mkV3 : Str -> V3 = \v -> dirdirV3 (regV v) ; } ; mkConj = overload { mkConj : Str -> Conj = \y -> mk2Conj [] y plural ; mkConj : Str -> Number -> Conj = \y,n -> mk2Conj [] y n ; mkConj : Str -> Str -> Conj = \x,y -> mk2Conj x y plural ; mkConj : Str -> Str -> Number -> Conj = mk2Conj ; } ; mk2Conj : Str -> Str -> Number -> Conj = \x,y,n -> lin Conj (sd2 x y ** {n = n}) ; ---- obsolete -- Comparison adjectives may two more forms. ADeg : Type ; mkADeg : (good,better,best,well : Str) -> ADeg ; -- The regular pattern recognizes two common variations: -- "-e" ("rude" - "ruder" - "rudest") and -- "-y" ("happy - happier - happiest - happily") regADeg : Str -> ADeg ; -- long, longer, longest -- However, the duplication of the final consonant is nor predicted, -- but a separate pattern is used: duplADeg : Str -> ADeg ; -- fat, fatter, fattest -- If comparison is formed by "more", "most", as in general for -- long adjective, the following pattern is used: compoundADeg : A -> ADeg ; -- -/more/most ridiculous -- From a given $ADeg$, it is possible to get back to $A$. adegA : ADeg -> A ; regPN : Str -> PN ; regGenPN : Str -> Gender -> PN ; -- John, John's -- Sometimes you can reuse a common noun as a proper name, e.g. "Bank". nounPN : N -> PN ; } ;