{-# LANGUAGE CPP, MagicHash, RecordWildCards, BangPatterns #-} {-# OPTIONS_GHC -fprof-auto-top #-} -- -- (c) The University of Glasgow 2002-2006 -- -- | ByteCodeGen: Generate bytecode from Core module ByteCodeGen ( UnlinkedBCO, byteCodeGen, coreExprToBCOs ) where #include "HsVersions.h" import ByteCodeInstr import ByteCodeAsm import ByteCodeTypes import GHCi import GHCi.FFI import GHCi.RemoteTypes import BasicTypes import DynFlags import Outputable import Platform import Name import MkId import Id import ForeignCall import HscTypes import CoreUtils import CoreSyn import PprCore import Literal import PrimOp import CoreFVs import Type import RepType import Kind ( isLiftedTypeKind ) import DataCon import TyCon import Util import VarSet import TysPrim import ErrUtils import Unique import FastString import Panic import StgCmmLayout ( ArgRep(..), toArgRep, argRepSizeW ) import SMRep import Bitmap import OrdList import Maybes import VarEnv import Data.List import Foreign import Control.Monad import Data.Char import UniqSupply import Module import Control.Arrow ( second ) import Control.Exception import Data.Array import Data.ByteString (ByteString) import Data.Map (Map) import Data.IntMap (IntMap) import qualified Data.Map as Map import qualified Data.IntMap as IntMap import qualified FiniteMap as Map import Data.Ord #if MIN_VERSION_base(4,9,0) import GHC.Stack.CCS #else import GHC.Stack as GHC.Stack.CCS #endif -- ----------------------------------------------------------------------------- -- Generating byte code for a complete module byteCodeGen :: HscEnv -> Module -> CoreProgram -> [TyCon] -> Maybe ModBreaks -> IO CompiledByteCode byteCodeGen hsc_env this_mod binds tycs mb_modBreaks = withTiming (pure dflags) (text "ByteCodeGen"<+>brackets (ppr this_mod)) (const ()) $ do -- Split top-level binds into strings and others. -- See Note [generating code for top-level string literal bindings]. let (strings, flatBinds) = splitEithers $ do (bndr, rhs) <- flattenBinds binds return $ case rhs of Lit (MachStr str) -> Left (bndr, str) _ -> Right (bndr, simpleFreeVars rhs) stringPtrs <- allocateTopStrings hsc_env strings us <- mkSplitUniqSupply 'y' (BcM_State{..}, proto_bcos) <- runBc hsc_env us this_mod mb_modBreaks (mkVarEnv stringPtrs) $ mapM schemeTopBind flatBinds when (notNull ffis) (panic "ByteCodeGen.byteCodeGen: missing final emitBc?") dumpIfSet_dyn dflags Opt_D_dump_BCOs "Proto-BCOs" (vcat (intersperse (char ' ') (map ppr proto_bcos))) cbc <- assembleBCOs hsc_env proto_bcos tycs (map snd stringPtrs) (case modBreaks of Nothing -> Nothing Just mb -> Just mb{ modBreaks_breakInfo = breakInfo }) -- Squash space leaks in the CompiledByteCode. This is really -- important, because when loading a set of modules into GHCi -- we don't touch the CompiledByteCode until the end when we -- do linking. Forcing out the thunks here reduces space -- usage by more than 50% when loading a large number of -- modules. evaluate (seqCompiledByteCode cbc) return cbc where dflags = hsc_dflags hsc_env allocateTopStrings :: HscEnv -> [(Id, ByteString)] -> IO [(Var, RemotePtr ())] allocateTopStrings hsc_env topStrings = do let !(bndrs, strings) = unzip topStrings ptrs <- iservCmd hsc_env $ MallocStrings strings return $ zip bndrs ptrs {- Note [generating code for top-level string literal bindings] Here is a summary on how the byte code generator deals with top-level string literals: 1. Top-level string literal bindings are spearted from the rest of the module. 2. The strings are allocated via iservCmd, in allocateTopStrings 3. The mapping from binders to allocated strings (topStrings) are maintained in BcM and used when generating code for variable references. -} -- ----------------------------------------------------------------------------- -- Generating byte code for an expression -- Returns: the root BCO for this expression coreExprToBCOs :: HscEnv -> Module -> CoreExpr -> IO UnlinkedBCO coreExprToBCOs hsc_env this_mod expr = withTiming (pure dflags) (text "ByteCodeGen"<+>brackets (ppr this_mod)) (const ()) $ do -- create a totally bogus name for the top-level BCO; this -- should be harmless, since it's never used for anything let invented_name = mkSystemVarName (mkPseudoUniqueE 0) (fsLit "ExprTopLevel") invented_id = Id.mkLocalId invented_name (panic "invented_id's type") -- the uniques are needed to generate fresh variables when we introduce new -- let bindings for ticked expressions us <- mkSplitUniqSupply 'y' (BcM_State _dflags _us _this_mod _final_ctr mallocd _ _ _, proto_bco) <- runBc hsc_env us this_mod Nothing emptyVarEnv $ schemeTopBind (invented_id, simpleFreeVars expr) when (notNull mallocd) (panic "ByteCodeGen.coreExprToBCOs: missing final emitBc?") dumpIfSet_dyn dflags Opt_D_dump_BCOs "Proto-BCOs" (ppr proto_bco) assembleOneBCO hsc_env proto_bco where dflags = hsc_dflags hsc_env -- The regular freeVars function gives more information than is useful to -- us here. simpleFreeVars does the impedance matching. simpleFreeVars :: CoreExpr -> AnnExpr Id DVarSet simpleFreeVars = go . freeVars where go :: AnnExpr Id FVAnn -> AnnExpr Id DVarSet go (ann, e) = (freeVarsOfAnn ann, go' e) go' :: AnnExpr' Id FVAnn -> AnnExpr' Id DVarSet go' (AnnVar id) = AnnVar id go' (AnnLit lit) = AnnLit lit go' (AnnLam bndr body) = AnnLam bndr (go body) go' (AnnApp fun arg) = AnnApp (go fun) (go arg) go' (AnnCase scrut bndr ty alts) = AnnCase (go scrut) bndr ty (map go_alt alts) go' (AnnLet bind body) = AnnLet (go_bind bind) (go body) go' (AnnCast expr (ann, co)) = AnnCast (go expr) (freeVarsOfAnn ann, co) go' (AnnTick tick body) = AnnTick tick (go body) go' (AnnType ty) = AnnType ty go' (AnnCoercion co) = AnnCoercion co go_alt (con, args, expr) = (con, args, go expr) go_bind (AnnNonRec bndr rhs) = AnnNonRec bndr (go rhs) go_bind (AnnRec pairs) = AnnRec (map (second go) pairs) -- ----------------------------------------------------------------------------- -- Compilation schema for the bytecode generator type BCInstrList = OrdList BCInstr type Sequel = Word -- back off to this depth before ENTER -- Maps Ids to the offset from the stack _base_ so we don't have -- to mess with it after each push/pop. type BCEnv = Map Id Word -- To find vars on the stack {- ppBCEnv :: BCEnv -> SDoc ppBCEnv p = text "begin-env" $$ nest 4 (vcat (map pp_one (sortBy cmp_snd (Map.toList p)))) $$ text "end-env" where pp_one (var, offset) = int offset <> colon <+> ppr var <+> ppr (bcIdArgRep var) cmp_snd x y = compare (snd x) (snd y) -} -- Create a BCO and do a spot of peephole optimisation on the insns -- at the same time. mkProtoBCO :: DynFlags -> name -> BCInstrList -> Either [AnnAlt Id DVarSet] (AnnExpr Id DVarSet) -> Int -> Word16 -> [StgWord] -> Bool -- True <=> is a return point, rather than a function -> [FFIInfo] -> ProtoBCO name mkProtoBCO dflags nm instrs_ordlist origin arity bitmap_size bitmap is_ret ffis = ProtoBCO { protoBCOName = nm, protoBCOInstrs = maybe_with_stack_check, protoBCOBitmap = bitmap, protoBCOBitmapSize = bitmap_size, protoBCOArity = arity, protoBCOExpr = origin, protoBCOFFIs = ffis } where -- Overestimate the stack usage (in words) of this BCO, -- and if >= iNTERP_STACK_CHECK_THRESH, add an explicit -- stack check. (The interpreter always does a stack check -- for iNTERP_STACK_CHECK_THRESH words at the start of each -- BCO anyway, so we only need to add an explicit one in the -- (hopefully rare) cases when the (overestimated) stack use -- exceeds iNTERP_STACK_CHECK_THRESH. maybe_with_stack_check | is_ret && stack_usage < fromIntegral (aP_STACK_SPLIM dflags) = peep_d -- don't do stack checks at return points, -- everything is aggregated up to the top BCO -- (which must be a function). -- That is, unless the stack usage is >= AP_STACK_SPLIM, -- see bug #1466. | stack_usage >= fromIntegral iNTERP_STACK_CHECK_THRESH = STKCHECK stack_usage : peep_d | otherwise = peep_d -- the supposedly common case -- We assume that this sum doesn't wrap stack_usage = sum (map bciStackUse peep_d) -- Merge local pushes peep_d = peep (fromOL instrs_ordlist) peep (PUSH_L off1 : PUSH_L off2 : PUSH_L off3 : rest) = PUSH_LLL off1 (off2-1) (off3-2) : peep rest peep (PUSH_L off1 : PUSH_L off2 : rest) = PUSH_LL off1 (off2-1) : peep rest peep (i:rest) = i : peep rest peep [] = [] argBits :: DynFlags -> [ArgRep] -> [Bool] argBits _ [] = [] argBits dflags (rep : args) | isFollowableArg rep = False : argBits dflags args | otherwise = take (argRepSizeW dflags rep) (repeat True) ++ argBits dflags args -- ----------------------------------------------------------------------------- -- schemeTopBind -- Compile code for the right-hand side of a top-level binding schemeTopBind :: (Id, AnnExpr Id DVarSet) -> BcM (ProtoBCO Name) schemeTopBind (id, rhs) | Just data_con <- isDataConWorkId_maybe id, isNullaryRepDataCon data_con = do dflags <- getDynFlags -- Special case for the worker of a nullary data con. -- It'll look like this: Nil = /\a -> Nil a -- If we feed it into schemeR, we'll get -- Nil = Nil -- because mkConAppCode treats nullary constructor applications -- by just re-using the single top-level definition. So -- for the worker itself, we must allocate it directly. -- ioToBc (putStrLn $ "top level BCO") emitBc (mkProtoBCO dflags (getName id) (toOL [PACK data_con 0, ENTER]) (Right rhs) 0 0 [{-no bitmap-}] False{-not alts-}) | otherwise = schemeR [{- No free variables -}] (id, rhs) -- ----------------------------------------------------------------------------- -- schemeR -- Compile code for a right-hand side, to give a BCO that, -- when executed with the free variables and arguments on top of the stack, -- will return with a pointer to the result on top of the stack, after -- removing the free variables and arguments. -- -- Park the resulting BCO in the monad. Also requires the -- variable to which this value was bound, so as to give the -- resulting BCO a name. schemeR :: [Id] -- Free vars of the RHS, ordered as they -- will appear in the thunk. Empty for -- top-level things, which have no free vars. -> (Id, AnnExpr Id DVarSet) -> BcM (ProtoBCO Name) schemeR fvs (nm, rhs) {- | trace (showSDoc ( (char ' ' $$ (ppr.filter (not.isTyVar).dVarSetElems.fst) rhs $$ pprCoreExpr (deAnnotate rhs) $$ char ' ' ))) False = undefined | otherwise -} = schemeR_wrk fvs nm rhs (collect rhs) collect :: AnnExpr Id DVarSet -> ([Var], AnnExpr' Id DVarSet) collect (_, e) = go [] e where go xs e | Just e' <- bcView e = go xs e' go xs (AnnLam x (_,e)) | typePrimRep (idType x) `lengthExceeds` 1 = multiValException | otherwise = go (x:xs) e go xs not_lambda = (reverse xs, not_lambda) schemeR_wrk :: [Id] -> Id -> AnnExpr Id DVarSet -> ([Var], AnnExpr' Var DVarSet) -> BcM (ProtoBCO Name) schemeR_wrk fvs nm original_body (args, body) = do dflags <- getDynFlags let all_args = reverse args ++ fvs arity = length all_args -- all_args are the args in reverse order. We're compiling a function -- \fv1..fvn x1..xn -> e -- i.e. the fvs come first szsw_args = map (fromIntegral . idSizeW dflags) all_args szw_args = sum szsw_args p_init = Map.fromList (zip all_args (mkStackOffsets 0 szsw_args)) -- make the arg bitmap bits = argBits dflags (reverse (map bcIdArgRep all_args)) bitmap_size = genericLength bits bitmap = mkBitmap dflags bits body_code <- schemeER_wrk szw_args p_init body emitBc (mkProtoBCO dflags (getName nm) body_code (Right original_body) arity bitmap_size bitmap False{-not alts-}) -- introduce break instructions for ticked expressions schemeER_wrk :: Word -> BCEnv -> AnnExpr' Id DVarSet -> BcM BCInstrList schemeER_wrk d p rhs | AnnTick (Breakpoint tick_no fvs) (_annot, newRhs) <- rhs = do code <- schemeE (fromIntegral d) 0 p newRhs cc_arr <- getCCArray this_mod <- moduleName <$> getCurrentModule let idOffSets = getVarOffSets d p fvs let breakInfo = CgBreakInfo { cgb_vars = idOffSets , cgb_resty = exprType (deAnnotate' newRhs) } newBreakInfo tick_no breakInfo dflags <- getDynFlags let cc | interpreterProfiled dflags = cc_arr ! tick_no | otherwise = toRemotePtr nullPtr let breakInstr = BRK_FUN (fromIntegral tick_no) (getUnique this_mod) cc return $ breakInstr `consOL` code | otherwise = schemeE (fromIntegral d) 0 p rhs getVarOffSets :: Word -> BCEnv -> [Id] -> [(Id, Word16)] getVarOffSets d p = catMaybes . map (getOffSet d p) getOffSet :: Word -> BCEnv -> Id -> Maybe (Id, Word16) getOffSet d env id = case lookupBCEnv_maybe id env of Nothing -> Nothing Just offset -> Just (id, trunc16 $ d - offset) trunc16 :: Word -> Word16 trunc16 w | w > fromIntegral (maxBound :: Word16) = panic "stack depth overflow" | otherwise = fromIntegral w fvsToEnv :: BCEnv -> DVarSet -> [Id] -- Takes the free variables of a right-hand side, and -- delivers an ordered list of the local variables that will -- be captured in the thunk for the RHS -- The BCEnv argument tells which variables are in the local -- environment: these are the ones that should be captured -- -- The code that constructs the thunk, and the code that executes -- it, have to agree about this layout fvsToEnv p fvs = [v | v <- dVarSetElems fvs, isId v, -- Could be a type variable v `Map.member` p] -- ----------------------------------------------------------------------------- -- schemeE returnUnboxedAtom :: Word -> Sequel -> BCEnv -> AnnExpr' Id DVarSet -> ArgRep -> BcM BCInstrList -- Returning an unlifted value. -- Heave it on the stack, SLIDE, and RETURN. returnUnboxedAtom d s p e e_rep = do (push, szw) <- pushAtom d p e return (push -- value onto stack `appOL` mkSLIDE szw (d-s) -- clear to sequel `snocOL` RETURN_UBX e_rep) -- go -- Compile code to apply the given expression to the remaining args -- on the stack, returning a HNF. schemeE :: Word -> Sequel -> BCEnv -> AnnExpr' Id DVarSet -> BcM BCInstrList schemeE d s p e | Just e' <- bcView e = schemeE d s p e' -- Delegate tail-calls to schemeT. schemeE d s p e@(AnnApp _ _) = schemeT d s p e schemeE d s p e@(AnnLit lit) = returnUnboxedAtom d s p e (typeArgRep (literalType lit)) schemeE d s p e@(AnnCoercion {}) = returnUnboxedAtom d s p e V schemeE d s p e@(AnnVar v) | isUnliftedType (idType v) = returnUnboxedAtom d s p e (bcIdArgRep v) | otherwise = schemeT d s p e schemeE d s p (AnnLet (AnnNonRec x (_,rhs)) (_,body)) | (AnnVar v, args_r_to_l) <- splitApp rhs, Just data_con <- isDataConWorkId_maybe v, dataConRepArity data_con == length args_r_to_l = do -- Special case for a non-recursive let whose RHS is a -- saturated constructor application. -- Just allocate the constructor and carry on alloc_code <- mkConAppCode d s p data_con args_r_to_l body_code <- schemeE (d+1) s (Map.insert x d p) body return (alloc_code `appOL` body_code) -- General case for let. Generates correct, if inefficient, code in -- all situations. schemeE d s p (AnnLet binds (_,body)) = do dflags <- getDynFlags let (xs,rhss) = case binds of AnnNonRec x rhs -> ([x],[rhs]) AnnRec xs_n_rhss -> unzip xs_n_rhss n_binds = genericLength xs fvss = map (fvsToEnv p' . fst) rhss -- Sizes of free vars sizes = map (\rhs_fvs -> sum (map (fromIntegral . idSizeW dflags) rhs_fvs)) fvss -- the arity of each rhs arities = map (genericLength . fst . collect) rhss -- This p', d' defn is safe because all the items being pushed -- are ptrs, so all have size 1. d' and p' reflect the stack -- after the closures have been allocated in the heap (but not -- filled in), and pointers to them parked on the stack. p' = Map.insertList (zipE xs (mkStackOffsets d (genericReplicate n_binds 1))) p d' = d + fromIntegral n_binds zipE = zipEqual "schemeE" -- ToDo: don't build thunks for things with no free variables build_thunk _ [] size bco off arity = return (PUSH_BCO bco `consOL` unitOL (mkap (off+size) size)) where mkap | arity == 0 = MKAP | otherwise = MKPAP build_thunk dd (fv:fvs) size bco off arity = do (push_code, pushed_szw) <- pushAtom dd p' (AnnVar fv) more_push_code <- build_thunk (dd + fromIntegral pushed_szw) fvs size bco off arity return (push_code `appOL` more_push_code) alloc_code = toOL (zipWith mkAlloc sizes arities) where mkAlloc sz 0 | is_tick = ALLOC_AP_NOUPD sz | otherwise = ALLOC_AP sz mkAlloc sz arity = ALLOC_PAP arity sz is_tick = case binds of AnnNonRec id _ -> occNameFS (getOccName id) == tickFS _other -> False compile_bind d' fvs x rhs size arity off = do bco <- schemeR fvs (x,rhs) build_thunk d' fvs size bco off arity compile_binds = [ compile_bind d' fvs x rhs size arity n | (fvs, x, rhs, size, arity, n) <- zip6 fvss xs rhss sizes arities [n_binds, n_binds-1 .. 1] ] body_code <- schemeE d' s p' body thunk_codes <- sequence compile_binds return (alloc_code `appOL` concatOL thunk_codes `appOL` body_code) -- Introduce a let binding for a ticked case expression. This rule -- *should* only fire when the expression was not already let-bound -- (the code gen for let bindings should take care of that). Todo: we -- call exprFreeVars on a deAnnotated expression, this may not be the -- best way to calculate the free vars but it seemed like the least -- intrusive thing to do schemeE d s p exp@(AnnTick (Breakpoint _id _fvs) _rhs) | isLiftedTypeKind (typeKind ty) = do id <- newId ty -- Todo: is emptyVarSet correct on the next line? let letExp = AnnLet (AnnNonRec id (fvs, exp)) (emptyDVarSet, AnnVar id) schemeE d s p letExp | otherwise = do -- If the result type is not definitely lifted, then we must generate -- let f = \s . tick e -- in f realWorld# -- When we stop at the breakpoint, _result will have an unlifted -- type and hence won't be bound in the environment, but the -- breakpoint will otherwise work fine. -- -- NB (Trac #12007) this /also/ applies for if (ty :: TYPE r), where -- r :: RuntimeRep is a variable. This can happen in the -- continuations for a pattern-synonym matcher -- match = /\(r::RuntimeRep) /\(a::TYPE r). -- \(k :: Int -> a) \(v::T). -- case v of MkV n -> k n -- Here (k n) :: a :: Type r, so we don't know if it's lifted -- or not; but that should be fine provided we add that void arg. id <- newId (mkFunTy realWorldStatePrimTy ty) st <- newId realWorldStatePrimTy let letExp = AnnLet (AnnNonRec id (fvs, AnnLam st (emptyDVarSet, exp))) (emptyDVarSet, (AnnApp (emptyDVarSet, AnnVar id) (emptyDVarSet, AnnVar realWorldPrimId))) schemeE d s p letExp where exp' = deAnnotate' exp fvs = exprFreeVarsDSet exp' ty = exprType exp' -- ignore other kinds of tick schemeE d s p (AnnTick _ (_, rhs)) = schemeE d s p rhs schemeE d s p (AnnCase (_,scrut) _ _ []) = schemeE d s p scrut -- no alts: scrut is guaranteed to diverge schemeE d s p (AnnCase scrut bndr _ [(DataAlt dc, [bind1, bind2], rhs)]) | isUnboxedTupleCon dc -- handles pairs with one void argument (e.g. state token) -- Convert -- case .... of x { (# V'd-thing, a #) -> ... } -- to -- case .... of a { DEFAULT -> ... } -- because the return convention for both are identical. -- -- Note that it does not matter losing the void-rep thing from the -- envt (it won't be bound now) because we never look such things up. , Just res <- case (typePrimRep (idType bind1), typePrimRep (idType bind2)) of ([], [_]) -> Just $ doCase d s p scrut bind2 [(DEFAULT, [], rhs)] (Just bndr) ([_], []) -> Just $ doCase d s p scrut bind1 [(DEFAULT, [], rhs)] (Just bndr) _ -> Nothing = res schemeE d s p (AnnCase scrut bndr _ [(DataAlt dc, [bind1], rhs)]) | isUnboxedTupleCon dc , length (typePrimRep (idType bndr)) <= 1 -- handles unit tuples = doCase d s p scrut bind1 [(DEFAULT, [], rhs)] (Just bndr) schemeE d s p (AnnCase scrut bndr _ alt@[(DEFAULT, [], _)]) | isUnboxedTupleType (idType bndr) , Just ty <- case typePrimRep (idType bndr) of [_] -> Just (unwrapType (idType bndr)) [] -> Just voidPrimTy _ -> Nothing -- handles any pattern with a single non-void binder; in particular I/O -- monad returns (# RealWorld#, a #) = doCase d s p scrut (bndr `setIdType` ty) alt (Just bndr) schemeE d s p (AnnCase scrut bndr _ alts) = doCase d s p scrut bndr alts Nothing{-not an unboxed tuple-} schemeE _ _ _ expr = pprPanic "ByteCodeGen.schemeE: unhandled case" (pprCoreExpr (deAnnotate' expr)) {- Ticked Expressions ------------------ The idea is that the "breakpoint E" is really just an annotation on the code. When we find such a thing, we pull out the useful information, and then compile the code as if it was just the expression E. -} -- Compile code to do a tail call. Specifically, push the fn, -- slide the on-stack app back down to the sequel depth, -- and enter. Four cases: -- -- 0. (Nasty hack). -- An application "GHC.Prim.tagToEnum# unboxed-int". -- The int will be on the stack. Generate a code sequence -- to convert it to the relevant constructor, SLIDE and ENTER. -- -- 1. The fn denotes a ccall. Defer to generateCCall. -- -- 2. (Another nasty hack). Spot (# a::V, b #) and treat -- it simply as b -- since the representations are identical -- (the V takes up zero stack space). Also, spot -- (# b #) and treat it as b. -- -- 3. Application of a constructor, by defn saturated. -- Split the args into ptrs and non-ptrs, and push the nonptrs, -- then the ptrs, and then do PACK and RETURN. -- -- 4. Otherwise, it must be a function call. Push the args -- right to left, SLIDE and ENTER. schemeT :: Word -- Stack depth -> Sequel -- Sequel depth -> BCEnv -- stack env -> AnnExpr' Id DVarSet -> BcM BCInstrList schemeT d s p app -- | trace ("schemeT: env in = \n" ++ showSDocDebug (ppBCEnv p)) False -- = panic "schemeT ?!?!" -- | trace ("\nschemeT\n" ++ showSDoc (pprCoreExpr (deAnnotate' app)) ++ "\n") False -- = error "?!?!" -- Case 0 | Just (arg, constr_names) <- maybe_is_tagToEnum_call app = implement_tagToId d s p arg constr_names -- Case 1 | Just (CCall ccall_spec) <- isFCallId_maybe fn = if isSupportedCConv ccall_spec then generateCCall d s p ccall_spec fn args_r_to_l else unsupportedCConvException -- Case 2: Constructor application | Just con <- maybe_saturated_dcon , isUnboxedTupleCon con = case args_r_to_l of [arg1,arg2] | isVAtom arg1 -> unboxedTupleReturn d s p arg2 [arg1,arg2] | isVAtom arg2 -> unboxedTupleReturn d s p arg1 _other -> multiValException -- Case 3: Ordinary data constructor | Just con <- maybe_saturated_dcon = do alloc_con <- mkConAppCode d s p con args_r_to_l return (alloc_con `appOL` mkSLIDE 1 (d - s) `snocOL` ENTER) -- Case 4: Tail call of function | otherwise = doTailCall d s p fn args_r_to_l where -- Extract the args (R->L) and fn -- The function will necessarily be a variable, -- because we are compiling a tail call (AnnVar fn, args_r_to_l) = splitApp app -- Only consider this to be a constructor application iff it is -- saturated. Otherwise, we'll call the constructor wrapper. n_args = length args_r_to_l maybe_saturated_dcon = case isDataConWorkId_maybe fn of Just con | dataConRepArity con == n_args -> Just con _ -> Nothing -- ----------------------------------------------------------------------------- -- Generate code to build a constructor application, -- leaving it on top of the stack mkConAppCode :: Word -> Sequel -> BCEnv -> DataCon -- The data constructor -> [AnnExpr' Id DVarSet] -- Args, in *reverse* order -> BcM BCInstrList mkConAppCode _ _ _ con [] -- Nullary constructor = ASSERT( isNullaryRepDataCon con ) return (unitOL (PUSH_G (getName (dataConWorkId con)))) -- Instead of doing a PACK, which would allocate a fresh -- copy of this constructor, use the single shared version. mkConAppCode orig_d _ p con args_r_to_l = ASSERT( dataConRepArity con == length args_r_to_l ) do_pushery orig_d (non_ptr_args ++ ptr_args) where -- The args are already in reverse order, which is the way PACK -- expects them to be. We must push the non-ptrs after the ptrs. (ptr_args, non_ptr_args) = partition isPtrAtom args_r_to_l do_pushery d (arg:args) = do (push, arg_words) <- pushAtom d p arg more_push_code <- do_pushery (d + fromIntegral arg_words) args return (push `appOL` more_push_code) do_pushery d [] = return (unitOL (PACK con n_arg_words)) where n_arg_words = trunc16 $ d - orig_d -- ----------------------------------------------------------------------------- -- Returning an unboxed tuple with one non-void component (the only -- case we can handle). -- -- Remember, we don't want to *evaluate* the component that is being -- returned, even if it is a pointed type. We always just return. unboxedTupleReturn :: Word -> Sequel -> BCEnv -> AnnExpr' Id DVarSet -> BcM BCInstrList unboxedTupleReturn d s p arg = returnUnboxedAtom d s p arg (atomRep arg) -- ----------------------------------------------------------------------------- -- Generate code for a tail-call doTailCall :: Word -> Sequel -> BCEnv -> Id -> [AnnExpr' Id DVarSet] -> BcM BCInstrList doTailCall init_d s p fn args = do_pushes init_d args (map atomRep args) where do_pushes d [] reps = do ASSERT( null reps ) return () (push_fn, sz) <- pushAtom d p (AnnVar fn) ASSERT( sz == 1 ) return () return (push_fn `appOL` ( mkSLIDE (trunc16 $ d - init_d + 1) (init_d - s) `appOL` unitOL ENTER)) do_pushes d args reps = do let (push_apply, n, rest_of_reps) = findPushSeq reps (these_args, rest_of_args) = splitAt n args (next_d, push_code) <- push_seq d these_args instrs <- do_pushes (next_d + 1) rest_of_args rest_of_reps -- ^^^ for the PUSH_APPLY_ instruction return (push_code `appOL` (push_apply `consOL` instrs)) push_seq d [] = return (d, nilOL) push_seq d (arg:args) = do (push_code, sz) <- pushAtom d p arg (final_d, more_push_code) <- push_seq (d + fromIntegral sz) args return (final_d, push_code `appOL` more_push_code) -- v. similar to CgStackery.findMatch, ToDo: merge findPushSeq :: [ArgRep] -> (BCInstr, Int, [ArgRep]) findPushSeq (P: P: P: P: P: P: rest) = (PUSH_APPLY_PPPPPP, 6, rest) findPushSeq (P: P: P: P: P: rest) = (PUSH_APPLY_PPPPP, 5, rest) findPushSeq (P: P: P: P: rest) = (PUSH_APPLY_PPPP, 4, rest) findPushSeq (P: P: P: rest) = (PUSH_APPLY_PPP, 3, rest) findPushSeq (P: P: rest) = (PUSH_APPLY_PP, 2, rest) findPushSeq (P: rest) = (PUSH_APPLY_P, 1, rest) findPushSeq (V: rest) = (PUSH_APPLY_V, 1, rest) findPushSeq (N: rest) = (PUSH_APPLY_N, 1, rest) findPushSeq (F: rest) = (PUSH_APPLY_F, 1, rest) findPushSeq (D: rest) = (PUSH_APPLY_D, 1, rest) findPushSeq (L: rest) = (PUSH_APPLY_L, 1, rest) findPushSeq _ = panic "ByteCodeGen.findPushSeq" -- ----------------------------------------------------------------------------- -- Case expressions doCase :: Word -> Sequel -> BCEnv -> AnnExpr Id DVarSet -> Id -> [AnnAlt Id DVarSet] -> Maybe Id -- Just x <=> is an unboxed tuple case with scrut binder, don't enter the result -> BcM BCInstrList doCase d s p (_,scrut) bndr alts is_unboxed_tuple | typePrimRep (idType bndr) `lengthExceeds` 1 = multiValException | otherwise = do dflags <- getDynFlags let profiling | gopt Opt_ExternalInterpreter dflags = gopt Opt_SccProfilingOn dflags | otherwise = rtsIsProfiled -- Top of stack is the return itbl, as usual. -- underneath it is the pointer to the alt_code BCO. -- When an alt is entered, it assumes the returned value is -- on top of the itbl. ret_frame_sizeW :: Word ret_frame_sizeW = 2 -- The extra frame we push to save/restor the CCCS when profiling save_ccs_sizeW | profiling = 2 | otherwise = 0 -- An unlifted value gets an extra info table pushed on top -- when it is returned. unlifted_itbl_sizeW :: Word unlifted_itbl_sizeW | isAlgCase = 0 | otherwise = 1 -- depth of stack after the return value has been pushed d_bndr = d + ret_frame_sizeW + fromIntegral (idSizeW dflags bndr) -- depth of stack after the extra info table for an unboxed return -- has been pushed, if any. This is the stack depth at the -- continuation. d_alts = d_bndr + unlifted_itbl_sizeW -- Env in which to compile the alts, not including -- any vars bound by the alts themselves d_bndr' = fromIntegral d_bndr - 1 p_alts0 = Map.insert bndr d_bndr' p p_alts = case is_unboxed_tuple of Just ubx_bndr -> Map.insert ubx_bndr d_bndr' p_alts0 Nothing -> p_alts0 bndr_ty = idType bndr isAlgCase = not (isUnliftedType bndr_ty) && isNothing is_unboxed_tuple -- given an alt, return a discr and code for it. codeAlt (DEFAULT, _, (_,rhs)) = do rhs_code <- schemeE d_alts s p_alts rhs return (NoDiscr, rhs_code) codeAlt alt@(_, bndrs, (_,rhs)) -- primitive or nullary constructor alt: no need to UNPACK | null real_bndrs = do rhs_code <- schemeE d_alts s p_alts rhs return (my_discr alt, rhs_code) -- algebraic alt with some binders | otherwise = let (ptrs,nptrs) = partition (isFollowableArg.bcIdArgRep) real_bndrs ptr_sizes = map (fromIntegral . idSizeW dflags) ptrs nptrs_sizes = map (fromIntegral . idSizeW dflags) nptrs bind_sizes = ptr_sizes ++ nptrs_sizes size = sum ptr_sizes + sum nptrs_sizes -- the UNPACK instruction unpacks in reverse order... p' = Map.insertList (zip (reverse (ptrs ++ nptrs)) (mkStackOffsets d_alts (reverse bind_sizes))) p_alts in do MASSERT(isAlgCase) rhs_code <- schemeE (d_alts + size) s p' rhs return (my_discr alt, unitOL (UNPACK (trunc16 size)) `appOL` rhs_code) where real_bndrs = filterOut isTyVar bndrs my_discr (DEFAULT, _, _) = NoDiscr {-shouldn't really happen-} my_discr (DataAlt dc, _, _) | isUnboxedTupleCon dc || isUnboxedSumCon dc = multiValException | otherwise = DiscrP (fromIntegral (dataConTag dc - fIRST_TAG)) my_discr (LitAlt l, _, _) = case l of MachInt i -> DiscrI (fromInteger i) MachWord w -> DiscrW (fromInteger w) MachFloat r -> DiscrF (fromRational r) MachDouble r -> DiscrD (fromRational r) MachChar i -> DiscrI (ord i) _ -> pprPanic "schemeE(AnnCase).my_discr" (ppr l) maybe_ncons | not isAlgCase = Nothing | otherwise = case [dc | (DataAlt dc, _, _) <- alts] of [] -> Nothing (dc:_) -> Just (tyConFamilySize (dataConTyCon dc)) -- the bitmap is relative to stack depth d, i.e. before the -- BCO, info table and return value are pushed on. -- This bit of code is v. similar to buildLivenessMask in CgBindery, -- except that here we build the bitmap from the known bindings of -- things that are pointers, whereas in CgBindery the code builds the -- bitmap from the free slots and unboxed bindings. -- (ToDo: merge?) -- -- NOTE [7/12/2006] bug #1013, testcase ghci/should_run/ghci002. -- The bitmap must cover the portion of the stack up to the sequel only. -- Previously we were building a bitmap for the whole depth (d), but we -- really want a bitmap up to depth (d-s). This affects compilation of -- case-of-case expressions, which is the only time we can be compiling a -- case expression with s /= 0. bitmap_size = trunc16 $ d-s bitmap_size' :: Int bitmap_size' = fromIntegral bitmap_size bitmap = intsToReverseBitmap dflags bitmap_size'{-size-} (sort (filter (< bitmap_size') rel_slots)) where binds = Map.toList p -- NB: unboxed tuple cases bind the scrut binder to the same offset -- as one of the alt binders, so we have to remove any duplicates here: rel_slots = nub $ map fromIntegral $ concat (map spread binds) spread (id, offset) | isFollowableArg (bcIdArgRep id) = [ rel_offset ] | otherwise = [] where rel_offset = trunc16 $ d - fromIntegral offset - 1 alt_stuff <- mapM codeAlt alts alt_final <- mkMultiBranch maybe_ncons alt_stuff let alt_bco_name = getName bndr alt_bco = mkProtoBCO dflags alt_bco_name alt_final (Left alts) 0{-no arity-} bitmap_size bitmap True{-is alts-} -- trace ("case: bndr = " ++ showSDocDebug (ppr bndr) ++ "\ndepth = " ++ show d ++ "\nenv = \n" ++ showSDocDebug (ppBCEnv p) ++ -- "\n bitmap = " ++ show bitmap) $ do scrut_code <- schemeE (d + ret_frame_sizeW + save_ccs_sizeW) (d + ret_frame_sizeW + save_ccs_sizeW) p scrut alt_bco' <- emitBc alt_bco let push_alts | isAlgCase = PUSH_ALTS alt_bco' | otherwise = PUSH_ALTS_UNLIFTED alt_bco' (typeArgRep bndr_ty) return (push_alts `consOL` scrut_code) -- ----------------------------------------------------------------------------- -- Deal with a CCall. -- Taggedly push the args onto the stack R->L, -- deferencing ForeignObj#s and adjusting addrs to point to -- payloads in Ptr/Byte arrays. Then, generate the marshalling -- (machine) code for the ccall, and create bytecodes to call that and -- then return in the right way. generateCCall :: Word -> Sequel -- stack and sequel depths -> BCEnv -> CCallSpec -- where to call -> Id -- of target, for type info -> [AnnExpr' Id DVarSet] -- args (atoms) -> BcM BCInstrList generateCCall d0 s p (CCallSpec target cconv safety) fn args_r_to_l = do dflags <- getDynFlags let -- useful constants addr_sizeW :: Word16 addr_sizeW = fromIntegral (argRepSizeW dflags N) -- Get the args on the stack, with tags and suitably -- dereferenced for the CCall. For each arg, return the -- depth to the first word of the bits for that arg, and the -- ArgRep of what was actually pushed. pargs _ [] = return [] pargs d (a:az) = let arg_ty = unwrapType (exprType (deAnnotate' a)) in case tyConAppTyCon_maybe arg_ty of -- Don't push the FO; instead push the Addr# it -- contains. Just t | t == arrayPrimTyCon || t == mutableArrayPrimTyCon -> do rest <- pargs (d + fromIntegral addr_sizeW) az code <- parg_ArrayishRep (fromIntegral (arrPtrsHdrSize dflags)) d p a return ((code,AddrRep):rest) | t == smallArrayPrimTyCon || t == smallMutableArrayPrimTyCon -> do rest <- pargs (d + fromIntegral addr_sizeW) az code <- parg_ArrayishRep (fromIntegral (smallArrPtrsHdrSize dflags)) d p a return ((code,AddrRep):rest) | t == byteArrayPrimTyCon || t == mutableByteArrayPrimTyCon -> do rest <- pargs (d + fromIntegral addr_sizeW) az code <- parg_ArrayishRep (fromIntegral (arrWordsHdrSize dflags)) d p a return ((code,AddrRep):rest) -- Default case: push taggedly, but otherwise intact. _ -> do (code_a, sz_a) <- pushAtom d p a rest <- pargs (d + fromIntegral sz_a) az return ((code_a, atomPrimRep a) : rest) -- Do magic for Ptr/Byte arrays. Push a ptr to the array on -- the stack but then advance it over the headers, so as to -- point to the payload. parg_ArrayishRep :: Word16 -> Word -> BCEnv -> AnnExpr' Id DVarSet -> BcM BCInstrList parg_ArrayishRep hdrSize d p a = do (push_fo, _) <- pushAtom d p a -- The ptr points at the header. Advance it over the -- header and then pretend this is an Addr#. return (push_fo `snocOL` SWIZZLE 0 hdrSize) code_n_reps <- pargs d0 args_r_to_l let (pushs_arg, a_reps_pushed_r_to_l) = unzip code_n_reps a_reps_sizeW = fromIntegral (sum (map (primRepSizeW dflags) a_reps_pushed_r_to_l)) push_args = concatOL pushs_arg d_after_args = d0 + a_reps_sizeW a_reps_pushed_RAW | null a_reps_pushed_r_to_l || head a_reps_pushed_r_to_l /= VoidRep = panic "ByteCodeGen.generateCCall: missing or invalid World token?" | otherwise = reverse (tail a_reps_pushed_r_to_l) -- Now: a_reps_pushed_RAW are the reps which are actually on the stack. -- push_args is the code to do that. -- d_after_args is the stack depth once the args are on. -- Get the result rep. (returns_void, r_rep) = case maybe_getCCallReturnRep (idType fn) of Nothing -> (True, VoidRep) Just rr -> (False, rr) {- Because the Haskell stack grows down, the a_reps refer to lowest to highest addresses in that order. The args for the call are on the stack. Now push an unboxed Addr# indicating the C function to call. Then push a dummy placeholder for the result. Finally, emit a CCALL insn with an offset pointing to the Addr# just pushed, and a literal field holding the mallocville address of the piece of marshalling code we generate. So, just prior to the CCALL insn, the stack looks like this (growing down, as usual): ... Addr# address_of_C_fn (must be an unboxed type) The interpreter then calls the marshall code mentioned in the CCALL insn, passing it (& ), that is, the addr of the topmost word in the stack. When this returns, the placeholder will have been filled in. The placeholder is slid down to the sequel depth, and we RETURN. This arrangement makes it simple to do f-i-dynamic since the Addr# value is the first arg anyway. The marshalling code is generated specifically for this call site, and so knows exactly the (Haskell) stack offsets of the args, fn address and placeholder. It copies the args to the C stack, calls the stacked addr, and parks the result back in the placeholder. The interpreter calls it as a normal C call, assuming it has a signature void marshall_code ( StgWord* ptr_to_top_of_stack ) -} -- resolve static address maybe_static_target = case target of DynamicTarget -> Nothing StaticTarget _ _ _ False -> panic "generateCCall: unexpected FFI value import" StaticTarget _ target _ True -> Just (MachLabel target mb_size IsFunction) where mb_size | OSMinGW32 <- platformOS (targetPlatform dflags) , StdCallConv <- cconv = Just (fromIntegral a_reps_sizeW * wORD_SIZE dflags) | otherwise = Nothing let is_static = isJust maybe_static_target -- Get the arg reps, zapping the leading Addr# in the dynamic case a_reps -- | trace (showSDoc (ppr a_reps_pushed_RAW)) False = error "???" | is_static = a_reps_pushed_RAW | otherwise = if null a_reps_pushed_RAW then panic "ByteCodeGen.generateCCall: dyn with no args" else tail a_reps_pushed_RAW -- push the Addr# (push_Addr, d_after_Addr) | Just machlabel <- maybe_static_target = (toOL [PUSH_UBX machlabel addr_sizeW], d_after_args + fromIntegral addr_sizeW) | otherwise -- is already on the stack = (nilOL, d_after_args) -- Push the return placeholder. For a call returning nothing, -- this is a V (tag). r_sizeW = fromIntegral (primRepSizeW dflags r_rep) d_after_r = d_after_Addr + fromIntegral r_sizeW push_r = (if returns_void then nilOL else unitOL (PUSH_UBX (mkDummyLiteral r_rep) r_sizeW)) -- generate the marshalling code we're going to call -- Offset of the next stack frame down the stack. The CCALL -- instruction needs to describe the chunk of stack containing -- the ccall args to the GC, so it needs to know how large it -- is. See comment in Interpreter.c with the CCALL instruction. stk_offset = trunc16 $ d_after_r - s conv = case cconv of CCallConv -> FFICCall StdCallConv -> FFIStdCall _ -> panic "ByteCodeGen: unexpected calling convention" -- the only difference in libffi mode is that we prepare a cif -- describing the call type by calling libffi, and we attach the -- address of this to the CCALL instruction. let ffires = primRepToFFIType dflags r_rep ffiargs = map (primRepToFFIType dflags) a_reps hsc_env <- getHscEnv token <- ioToBc $ iservCmd hsc_env (PrepFFI conv ffiargs ffires) recordFFIBc token let -- do the call do_call = unitOL (CCALL stk_offset token (fromIntegral (fromEnum (playInterruptible safety)))) -- slide and return wrapup = mkSLIDE r_sizeW (d_after_r - fromIntegral r_sizeW - s) `snocOL` RETURN_UBX (toArgRep r_rep) --trace (show (arg1_offW, args_offW , (map argRepSizeW a_reps) )) $ return ( push_args `appOL` push_Addr `appOL` push_r `appOL` do_call `appOL` wrapup ) primRepToFFIType :: DynFlags -> PrimRep -> FFIType primRepToFFIType dflags r = case r of VoidRep -> FFIVoid IntRep -> signed_word WordRep -> unsigned_word Int64Rep -> FFISInt64 Word64Rep -> FFIUInt64 AddrRep -> FFIPointer FloatRep -> FFIFloat DoubleRep -> FFIDouble _ -> panic "primRepToFFIType" where (signed_word, unsigned_word) | wORD_SIZE dflags == 4 = (FFISInt32, FFIUInt32) | wORD_SIZE dflags == 8 = (FFISInt64, FFIUInt64) | otherwise = panic "primTyDescChar" -- Make a dummy literal, to be used as a placeholder for FFI return -- values on the stack. mkDummyLiteral :: PrimRep -> Literal mkDummyLiteral pr = case pr of IntRep -> MachInt 0 WordRep -> MachWord 0 AddrRep -> MachNullAddr DoubleRep -> MachDouble 0 FloatRep -> MachFloat 0 Int64Rep -> MachInt64 0 Word64Rep -> MachWord64 0 _ -> pprPanic "mkDummyLiteral" (ppr pr) -- Convert (eg) -- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld -- -> (# GHC.Prim.State# GHC.Prim.RealWorld, GHC.Prim.Int# #) -- -- to Just IntRep -- and check that an unboxed pair is returned wherein the first arg is V'd. -- -- Alternatively, for call-targets returning nothing, convert -- -- GHC.Prim.Char# -> GHC.Prim.State# GHC.Prim.RealWorld -- -> (# GHC.Prim.State# GHC.Prim.RealWorld #) -- -- to Nothing maybe_getCCallReturnRep :: Type -> Maybe PrimRep maybe_getCCallReturnRep fn_ty = let (_a_tys, r_ty) = splitFunTys (dropForAlls fn_ty) r_reps = typePrimRepArgs r_ty blargh :: a -- Used at more than one type blargh = pprPanic "maybe_getCCallReturn: can't handle:" (pprType fn_ty) in case r_reps of [] -> panic "empty typePrimRepArgs" [VoidRep] -> Nothing [rep] | isGcPtrRep rep -> blargh | otherwise -> Just rep -- if it was, it would be impossible to create a -- valid return value placeholder on the stack _ -> blargh maybe_is_tagToEnum_call :: AnnExpr' Id DVarSet -> Maybe (AnnExpr' Id DVarSet, [Name]) -- Detect and extract relevant info for the tagToEnum kludge. maybe_is_tagToEnum_call app | AnnApp (_, AnnApp (_, AnnVar v) (_, AnnType t)) arg <- app , Just TagToEnumOp <- isPrimOpId_maybe v = Just (snd arg, extract_constr_Names t) | otherwise = Nothing where extract_constr_Names ty | rep_ty <- unwrapType ty , Just tyc <- tyConAppTyCon_maybe rep_ty , isDataTyCon tyc = map (getName . dataConWorkId) (tyConDataCons tyc) -- NOTE: use the worker name, not the source name of -- the DataCon. See DataCon.hs for details. | otherwise = pprPanic "maybe_is_tagToEnum_call.extract_constr_Ids" (ppr ty) {- ----------------------------------------------------------------------------- Note [Implementing tagToEnum#] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (implement_tagToId arg names) compiles code which takes an argument 'arg', (call it i), and enters the i'th closure in the supplied list as a consequence. The [Name] is a list of the constructors of this (enumeration) type. The code we generate is this: push arg push bogus-word TESTEQ_I 0 L1 PUSH_G JMP L_Exit L1: TESTEQ_I 1 L2 PUSH_G JMP L_Exit ...etc... Ln: TESTEQ_I n L_fail PUSH_G JMP L_Exit L_fail: CASEFAIL L_exit: SLIDE 1 n ENTER The 'bogus-word' push is because TESTEQ_I expects the top of the stack to have an info-table, and the next word to have the value to be tested. This is very weird, but it's the way it is right now. See Interpreter.c. We don't acutally need an info-table here; we just need to have the argument to be one-from-top on the stack, hence pushing a 1-word null. See Trac #8383. -} implement_tagToId :: Word -> Sequel -> BCEnv -> AnnExpr' Id DVarSet -> [Name] -> BcM BCInstrList -- See Note [Implementing tagToEnum#] implement_tagToId d s p arg names = ASSERT( notNull names ) do (push_arg, arg_words) <- pushAtom d p arg labels <- getLabelsBc (genericLength names) label_fail <- getLabelBc label_exit <- getLabelBc let infos = zip4 labels (tail labels ++ [label_fail]) [0 ..] names steps = map (mkStep label_exit) infos return (push_arg `appOL` unitOL (PUSH_UBX MachNullAddr 1) -- Push bogus word (see Note [Implementing tagToEnum#]) `appOL` concatOL steps `appOL` toOL [ LABEL label_fail, CASEFAIL, LABEL label_exit ] `appOL` mkSLIDE 1 (d - s + fromIntegral arg_words + 1) -- "+1" to account for bogus word -- (see Note [Implementing tagToEnum#]) `appOL` unitOL ENTER) where mkStep l_exit (my_label, next_label, n, name_for_n) = toOL [LABEL my_label, TESTEQ_I n next_label, PUSH_G name_for_n, JMP l_exit] -- ----------------------------------------------------------------------------- -- pushAtom -- Push an atom onto the stack, returning suitable code & number of -- stack words used. -- -- The env p must map each variable to the highest- numbered stack -- slot for it. For example, if the stack has depth 4 and we -- tagged-ly push (v :: Int#) on it, the value will be in stack[4], -- the tag in stack[5], the stack will have depth 6, and p must map v -- to 5 and not to 4. Stack locations are numbered from zero, so a -- depth 6 stack has valid words 0 .. 5. pushAtom :: Word -> BCEnv -> AnnExpr' Id DVarSet -> BcM (BCInstrList, Word16) pushAtom d p e | Just e' <- bcView e = pushAtom d p e' pushAtom _ _ (AnnCoercion {}) -- Coercions are zero-width things, = return (nilOL, 0) -- treated just like a variable V -- See Note [Empty case alternatives] in coreSyn/CoreSyn.hs -- and Note [Bottoming expressions] in coreSyn/CoreUtils.hs: -- The scrutinee of an empty case evaluates to bottom pushAtom d p (AnnCase (_, a) _ _ []) -- trac #12128 = pushAtom d p a pushAtom d p (AnnVar v) | [] <- typePrimRep (idType v) = return (nilOL, 0) | isFCallId v = pprPanic "pushAtom: shouldn't get an FCallId here" (ppr v) | Just primop <- isPrimOpId_maybe v = return (unitOL (PUSH_PRIMOP primop), 1) | Just d_v <- lookupBCEnv_maybe v p -- v is a local variable = do dflags <- getDynFlags let sz :: Word16 sz = fromIntegral (idSizeW dflags v) l = trunc16 $ d - d_v + fromIntegral sz - 2 return (toOL (genericReplicate sz (PUSH_L l)), sz) -- d - d_v the number of words between the TOS -- and the 1st slot of the object -- -- d - d_v - 1 the offset from the TOS of the 1st slot -- -- d - d_v - 1 + sz - 1 the offset from the TOS of the last slot -- of the object. -- -- Having found the last slot, we proceed to copy the right number of -- slots on to the top of the stack. | otherwise -- v must be a global variable = do topStrings <- getTopStrings case lookupVarEnv topStrings v of Just ptr -> pushAtom d p $ AnnLit $ MachWord $ fromIntegral $ ptrToWordPtr $ fromRemotePtr ptr Nothing -> do dflags <- getDynFlags let sz :: Word16 sz = fromIntegral (idSizeW dflags v) MASSERT(sz == 1) return (unitOL (PUSH_G (getName v)), sz) pushAtom _ _ (AnnLit lit) = do dflags <- getDynFlags let code rep = let size_host_words = fromIntegral (argRepSizeW dflags rep) in return (unitOL (PUSH_UBX lit size_host_words), size_host_words) case lit of MachLabel _ _ _ -> code N MachWord _ -> code N MachInt _ -> code N MachWord64 _ -> code L MachInt64 _ -> code L MachFloat _ -> code F MachDouble _ -> code D MachChar _ -> code N MachNullAddr -> code N MachStr _ -> code N -- No LitInteger's should be left by the time this is called. -- CorePrep should have converted them all to a real core -- representation. LitInteger {} -> panic "pushAtom: LitInteger" pushAtom _ _ expr = pprPanic "ByteCodeGen.pushAtom" (pprCoreExpr (deAnnotate' expr)) -- ----------------------------------------------------------------------------- -- Given a bunch of alts code and their discrs, do the donkey work -- of making a multiway branch using a switch tree. -- What a load of hassle! mkMultiBranch :: Maybe Int -- # datacons in tycon, if alg alt -- a hint; generates better code -- Nothing is always safe -> [(Discr, BCInstrList)] -> BcM BCInstrList mkMultiBranch maybe_ncons raw_ways = do lbl_default <- getLabelBc let mkTree :: [(Discr, BCInstrList)] -> Discr -> Discr -> BcM BCInstrList mkTree [] _range_lo _range_hi = return (unitOL (JMP lbl_default)) -- shouldn't happen? mkTree [val] range_lo range_hi | range_lo == range_hi = return (snd val) | null defaults -- Note [CASEFAIL] = do lbl <- getLabelBc return (testEQ (fst val) lbl `consOL` (snd val `appOL` (LABEL lbl `consOL` unitOL CASEFAIL))) | otherwise = return (testEQ (fst val) lbl_default `consOL` snd val) -- Note [CASEFAIL] It may be that this case has no default -- branch, but the alternatives are not exhaustive - this -- happens for GADT cases for example, where the types -- prove that certain branches are impossible. We could -- just assume that the other cases won't occur, but if -- this assumption was wrong (because of a bug in GHC) -- then the result would be a segfault. So instead we -- emit an explicit test and a CASEFAIL instruction that -- causes the interpreter to barf() if it is ever -- executed. mkTree vals range_lo range_hi = let n = length vals `div` 2 vals_lo = take n vals vals_hi = drop n vals v_mid = fst (head vals_hi) in do label_geq <- getLabelBc code_lo <- mkTree vals_lo range_lo (dec v_mid) code_hi <- mkTree vals_hi v_mid range_hi return (testLT v_mid label_geq `consOL` (code_lo `appOL` unitOL (LABEL label_geq) `appOL` code_hi)) the_default = case defaults of [] -> nilOL [(_, def)] -> LABEL lbl_default `consOL` def _ -> panic "mkMultiBranch/the_default" instrs <- mkTree notd_ways init_lo init_hi return (instrs `appOL` the_default) where (defaults, not_defaults) = partition (isNoDiscr.fst) raw_ways notd_ways = sortBy (comparing fst) not_defaults testLT (DiscrI i) fail_label = TESTLT_I i fail_label testLT (DiscrW i) fail_label = TESTLT_W i fail_label testLT (DiscrF i) fail_label = TESTLT_F i fail_label testLT (DiscrD i) fail_label = TESTLT_D i fail_label testLT (DiscrP i) fail_label = TESTLT_P i fail_label testLT NoDiscr _ = panic "mkMultiBranch NoDiscr" testEQ (DiscrI i) fail_label = TESTEQ_I i fail_label testEQ (DiscrW i) fail_label = TESTEQ_W i fail_label testEQ (DiscrF i) fail_label = TESTEQ_F i fail_label testEQ (DiscrD i) fail_label = TESTEQ_D i fail_label testEQ (DiscrP i) fail_label = TESTEQ_P i fail_label testEQ NoDiscr _ = panic "mkMultiBranch NoDiscr" -- None of these will be needed if there are no non-default alts (init_lo, init_hi) | null notd_ways = panic "mkMultiBranch: awesome foursome" | otherwise = case fst (head notd_ways) of DiscrI _ -> ( DiscrI minBound, DiscrI maxBound ) DiscrW _ -> ( DiscrW minBound, DiscrW maxBound ) DiscrF _ -> ( DiscrF minF, DiscrF maxF ) DiscrD _ -> ( DiscrD minD, DiscrD maxD ) DiscrP _ -> ( DiscrP algMinBound, DiscrP algMaxBound ) NoDiscr -> panic "mkMultiBranch NoDiscr" (algMinBound, algMaxBound) = case maybe_ncons of -- XXX What happens when n == 0? Just n -> (0, fromIntegral n - 1) Nothing -> (minBound, maxBound) isNoDiscr NoDiscr = True isNoDiscr _ = False dec (DiscrI i) = DiscrI (i-1) dec (DiscrW w) = DiscrW (w-1) dec (DiscrP i) = DiscrP (i-1) dec other = other -- not really right, but if you -- do cases on floating values, you'll get what you deserve -- same snotty comment applies to the following minF, maxF :: Float minD, maxD :: Double minF = -1.0e37 maxF = 1.0e37 minD = -1.0e308 maxD = 1.0e308 -- ----------------------------------------------------------------------------- -- Supporting junk for the compilation schemes -- Describes case alts data Discr = DiscrI Int | DiscrW Word | DiscrF Float | DiscrD Double | DiscrP Word16 | NoDiscr deriving (Eq, Ord) instance Outputable Discr where ppr (DiscrI i) = int i ppr (DiscrW w) = text (show w) ppr (DiscrF f) = text (show f) ppr (DiscrD d) = text (show d) ppr (DiscrP i) = ppr i ppr NoDiscr = text "DEF" lookupBCEnv_maybe :: Id -> BCEnv -> Maybe Word lookupBCEnv_maybe = Map.lookup idSizeW :: DynFlags -> Id -> Int idSizeW dflags = argRepSizeW dflags . bcIdArgRep bcIdArgRep :: Id -> ArgRep bcIdArgRep = toArgRep . bcIdPrimRep bcIdPrimRep :: Id -> PrimRep bcIdPrimRep id | [rep] <- typePrimRepArgs (idType id) = rep | otherwise = pprPanic "bcIdPrimRep" (ppr id <+> dcolon <+> ppr (idType id)) isFollowableArg :: ArgRep -> Bool isFollowableArg P = True isFollowableArg _ = False isVoidArg :: ArgRep -> Bool isVoidArg V = True isVoidArg _ = False -- See bug #1257 multiValException :: a multiValException = throwGhcException (ProgramError ("Error: bytecode compiler can't handle unboxed tuples and sums.\n"++ " Possibly due to foreign import/export decls in source.\n"++ " Workaround: use -fobject-code, or compile this module to .o separately.")) -- | Indicate if the calling convention is supported isSupportedCConv :: CCallSpec -> Bool isSupportedCConv (CCallSpec _ cconv _) = case cconv of CCallConv -> True -- we explicitly pattern match on every StdCallConv -> True -- convention to ensure that a warning PrimCallConv -> False -- is triggered when a new one is added JavaScriptCallConv -> False CApiConv -> False -- See bug #10462 unsupportedCConvException :: a unsupportedCConvException = throwGhcException (ProgramError ("Error: bytecode compiler can't handle some foreign calling conventions\n"++ " Workaround: use -fobject-code, or compile this module to .o separately.")) mkSLIDE :: Word16 -> Word -> OrdList BCInstr mkSLIDE n d -- if the amount to slide doesn't fit in a word, -- generate multiple slide instructions | d > fromIntegral limit = SLIDE n limit `consOL` mkSLIDE n (d - fromIntegral limit) | d == 0 = nilOL | otherwise = if d == 0 then nilOL else unitOL (SLIDE n $ fromIntegral d) where limit :: Word16 limit = maxBound splitApp :: AnnExpr' Var ann -> (AnnExpr' Var ann, [AnnExpr' Var ann]) -- The arguments are returned in *right-to-left* order splitApp e | Just e' <- bcView e = splitApp e' splitApp (AnnApp (_,f) (_,a)) = case splitApp f of (f', as) -> (f', a:as) splitApp e = (e, []) bcView :: AnnExpr' Var ann -> Maybe (AnnExpr' Var ann) -- The "bytecode view" of a term discards -- a) type abstractions -- b) type applications -- c) casts -- d) ticks (but not breakpoints) -- Type lambdas *can* occur in random expressions, -- whereas value lambdas cannot; that is why they are nuked here bcView (AnnCast (_,e) _) = Just e bcView (AnnLam v (_,e)) | isTyVar v = Just e bcView (AnnApp (_,e) (_, AnnType _)) = Just e bcView (AnnTick Breakpoint{} _) = Nothing bcView (AnnTick _other_tick (_,e)) = Just e bcView _ = Nothing isVAtom :: AnnExpr' Var ann -> Bool isVAtom e | Just e' <- bcView e = isVAtom e' isVAtom (AnnVar v) = isVoidArg (bcIdArgRep v) isVAtom (AnnCoercion {}) = True isVAtom _ = False atomPrimRep :: AnnExpr' Id ann -> PrimRep atomPrimRep e | Just e' <- bcView e = atomPrimRep e' atomPrimRep (AnnVar v) = bcIdPrimRep v atomPrimRep (AnnLit l) = typePrimRep1 (literalType l) -- Trac #12128: -- A case expression can be an atom because empty cases evaluate to bottom. -- See Note [Empty case alternatives] in coreSyn/CoreSyn.hs atomPrimRep (AnnCase _ _ ty _) = ASSERT(typePrimRep ty == [LiftedRep]) LiftedRep atomPrimRep (AnnCoercion {}) = VoidRep atomPrimRep other = pprPanic "atomPrimRep" (ppr (deAnnotate' other)) atomRep :: AnnExpr' Id ann -> ArgRep atomRep e = toArgRep (atomPrimRep e) isPtrAtom :: AnnExpr' Id ann -> Bool isPtrAtom e = isFollowableArg (atomRep e) -- Let szsw be the sizes in words of some items pushed onto the stack, -- which has initial depth d'. Return the values which the stack environment -- should map these items to. mkStackOffsets :: Word -> [Word] -> [Word] mkStackOffsets original_depth szsw = map (subtract 1) (tail (scanl (+) original_depth szsw)) typeArgRep :: Type -> ArgRep typeArgRep = toArgRep . typePrimRep1 -- ----------------------------------------------------------------------------- -- The bytecode generator's monad data BcM_State = BcM_State { bcm_hsc_env :: HscEnv , uniqSupply :: UniqSupply -- for generating fresh variable names , thisModule :: Module -- current module (for breakpoints) , nextlabel :: Word16 -- for generating local labels , ffis :: [FFIInfo] -- ffi info blocks, to free later -- Should be free()d when it is GCd , modBreaks :: Maybe ModBreaks -- info about breakpoints , breakInfo :: IntMap CgBreakInfo , topStrings :: IdEnv (RemotePtr ()) -- top-level string literals -- See Note [generating code for top-level string literal bindings]. } newtype BcM r = BcM (BcM_State -> IO (BcM_State, r)) ioToBc :: IO a -> BcM a ioToBc io = BcM $ \st -> do x <- io return (st, x) runBc :: HscEnv -> UniqSupply -> Module -> Maybe ModBreaks -> IdEnv (RemotePtr ()) -> BcM r -> IO (BcM_State, r) runBc hsc_env us this_mod modBreaks topStrings (BcM m) = m (BcM_State hsc_env us this_mod 0 [] modBreaks IntMap.empty topStrings) thenBc :: BcM a -> (a -> BcM b) -> BcM b thenBc (BcM expr) cont = BcM $ \st0 -> do (st1, q) <- expr st0 let BcM k = cont q (st2, r) <- k st1 return (st2, r) thenBc_ :: BcM a -> BcM b -> BcM b thenBc_ (BcM expr) (BcM cont) = BcM $ \st0 -> do (st1, _) <- expr st0 (st2, r) <- cont st1 return (st2, r) returnBc :: a -> BcM a returnBc result = BcM $ \st -> (return (st, result)) instance Functor BcM where fmap = liftM instance Applicative BcM where pure = returnBc (<*>) = ap (*>) = thenBc_ instance Monad BcM where (>>=) = thenBc (>>) = (*>) instance HasDynFlags BcM where getDynFlags = BcM $ \st -> return (st, hsc_dflags (bcm_hsc_env st)) getHscEnv :: BcM HscEnv getHscEnv = BcM $ \st -> return (st, bcm_hsc_env st) emitBc :: ([FFIInfo] -> ProtoBCO Name) -> BcM (ProtoBCO Name) emitBc bco = BcM $ \st -> return (st{ffis=[]}, bco (ffis st)) recordFFIBc :: RemotePtr C_ffi_cif -> BcM () recordFFIBc a = BcM $ \st -> return (st{ffis = FFIInfo a : ffis st}, ()) getLabelBc :: BcM Word16 getLabelBc = BcM $ \st -> do let nl = nextlabel st when (nl == maxBound) $ panic "getLabelBc: Ran out of labels" return (st{nextlabel = nl + 1}, nl) getLabelsBc :: Word16 -> BcM [Word16] getLabelsBc n = BcM $ \st -> let ctr = nextlabel st in return (st{nextlabel = ctr+n}, [ctr .. ctr+n-1]) getCCArray :: BcM (Array BreakIndex (RemotePtr CostCentre)) getCCArray = BcM $ \st -> let breaks = expectJust "ByteCodeGen.getCCArray" $ modBreaks st in return (st, modBreaks_ccs breaks) newBreakInfo :: BreakIndex -> CgBreakInfo -> BcM () newBreakInfo ix info = BcM $ \st -> return (st{breakInfo = IntMap.insert ix info (breakInfo st)}, ()) newUnique :: BcM Unique newUnique = BcM $ \st -> case takeUniqFromSupply (uniqSupply st) of (uniq, us) -> let newState = st { uniqSupply = us } in return (newState, uniq) getCurrentModule :: BcM Module getCurrentModule = BcM $ \st -> return (st, thisModule st) getTopStrings :: BcM (IdEnv (RemotePtr ())) getTopStrings = BcM $ \st -> return (st, topStrings st) newId :: Type -> BcM Id newId ty = do uniq <- newUnique return $ mkSysLocal tickFS uniq ty tickFS :: FastString tickFS = fsLit "ticked"