{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[HsLit]{Abstract syntax: source-language literals} -} {-# LANGUAGE CPP, DeriveDataTypeable #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types] -- in module PlaceHolder {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE TypeFamilies #-} module HsLit where #include "HsVersions.h" import GhcPrelude import {-# SOURCE #-} HsExpr( HsExpr, pprExpr ) import BasicTypes ( IntegralLit(..),FractionalLit(..),negateIntegralLit, negateFractionalLit,SourceText(..),pprWithSourceText ) import Type ( Type ) import Outputable import FastString import HsExtension import Data.ByteString (ByteString) import Data.Data hiding ( Fixity ) {- ************************************************************************ * * \subsection[HsLit]{Literals} * * ************************************************************************ -} -- Note [Literal source text] in BasicTypes for SourceText fields in -- the following -- Note [Trees that grow] in HsExtension for the Xxxxx fields in the following -- | Haskell Literal data HsLit x = HsChar (XHsChar x) {- SourceText -} Char -- ^ Character | HsCharPrim (XHsCharPrim x) {- SourceText -} Char -- ^ Unboxed character | HsString (XHsString x) {- SourceText -} FastString -- ^ String | HsStringPrim (XHsStringPrim x) {- SourceText -} ByteString -- ^ Packed bytes | HsInt (XHsInt x) IntegralLit -- ^ Genuinely an Int; arises from -- @TcGenDeriv@, and from TRANSLATION | HsIntPrim (XHsIntPrim x) {- SourceText -} Integer -- ^ literal @Int#@ | HsWordPrim (XHsWordPrim x) {- SourceText -} Integer -- ^ literal @Word#@ | HsInt64Prim (XHsInt64Prim x) {- SourceText -} Integer -- ^ literal @Int64#@ | HsWord64Prim (XHsWord64Prim x) {- SourceText -} Integer -- ^ literal @Word64#@ | HsInteger (XHsInteger x) {- SourceText -} Integer Type -- ^ Genuinely an integer; arises only -- from TRANSLATION (overloaded -- literals are done with HsOverLit) | HsRat (XHsRat x) FractionalLit Type -- ^ Genuinely a rational; arises only from -- TRANSLATION (overloaded literals are -- done with HsOverLit) | HsFloatPrim (XHsFloatPrim x) FractionalLit -- ^ Unboxed Float | HsDoublePrim (XHsDoublePrim x) FractionalLit -- ^ Unboxed Double deriving instance (DataId x) => Data (HsLit x) instance Eq (HsLit x) where (HsChar _ x1) == (HsChar _ x2) = x1==x2 (HsCharPrim _ x1) == (HsCharPrim _ x2) = x1==x2 (HsString _ x1) == (HsString _ x2) = x1==x2 (HsStringPrim _ x1) == (HsStringPrim _ x2) = x1==x2 (HsInt _ x1) == (HsInt _ x2) = x1==x2 (HsIntPrim _ x1) == (HsIntPrim _ x2) = x1==x2 (HsWordPrim _ x1) == (HsWordPrim _ x2) = x1==x2 (HsInt64Prim _ x1) == (HsInt64Prim _ x2) = x1==x2 (HsWord64Prim _ x1) == (HsWord64Prim _ x2) = x1==x2 (HsInteger _ x1 _) == (HsInteger _ x2 _) = x1==x2 (HsRat _ x1 _) == (HsRat _ x2 _) = x1==x2 (HsFloatPrim _ x1) == (HsFloatPrim _ x2) = x1==x2 (HsDoublePrim _ x1) == (HsDoublePrim _ x2) = x1==x2 _ == _ = False -- | Haskell Overloaded Literal data HsOverLit p = OverLit { ol_val :: OverLitVal, ol_rebindable :: PostRn p Bool, -- Note [ol_rebindable] ol_witness :: HsExpr p, -- Note [Overloaded literal witnesses] ol_type :: PostTc p Type } deriving instance (DataId p) => Data (HsOverLit p) -- Note [Literal source text] in BasicTypes for SourceText fields in -- the following -- | Overloaded Literal Value data OverLitVal = HsIntegral !IntegralLit -- ^ Integer-looking literals; | HsFractional !FractionalLit -- ^ Frac-looking literals | HsIsString !SourceText !FastString -- ^ String-looking literals deriving Data negateOverLitVal :: OverLitVal -> OverLitVal negateOverLitVal (HsIntegral i) = HsIntegral (negateIntegralLit i) negateOverLitVal (HsFractional f) = HsFractional (negateFractionalLit f) negateOverLitVal _ = panic "negateOverLitVal: argument is not a number" overLitType :: HsOverLit p -> PostTc p Type overLitType = ol_type -- | Convert a literal from one index type to another, updating the annotations -- according to the relevant 'Convertable' instance convertLit :: (ConvertIdX a b) => HsLit a -> HsLit b convertLit (HsChar a x) = (HsChar (convert a) x) convertLit (HsCharPrim a x) = (HsCharPrim (convert a) x) convertLit (HsString a x) = (HsString (convert a) x) convertLit (HsStringPrim a x) = (HsStringPrim (convert a) x) convertLit (HsInt a x) = (HsInt (convert a) x) convertLit (HsIntPrim a x) = (HsIntPrim (convert a) x) convertLit (HsWordPrim a x) = (HsWordPrim (convert a) x) convertLit (HsInt64Prim a x) = (HsInt64Prim (convert a) x) convertLit (HsWord64Prim a x) = (HsWord64Prim (convert a) x) convertLit (HsInteger a x b) = (HsInteger (convert a) x b) convertLit (HsRat a x b) = (HsRat (convert a) x b) convertLit (HsFloatPrim a x) = (HsFloatPrim (convert a) x) convertLit (HsDoublePrim a x) = (HsDoublePrim (convert a) x) {- Note [ol_rebindable] ~~~~~~~~~~~~~~~~~~~~ The ol_rebindable field is True if this literal is actually using rebindable syntax. Specifically: False iff ol_witness is the standard one True iff ol_witness is non-standard Equivalently it's True if a) RebindableSyntax is on b) the witness for fromInteger/fromRational/fromString that happens to be in scope isn't the standard one Note [Overloaded literal witnesses] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *Before* type checking, the HsExpr in an HsOverLit is the name of the coercion function, 'fromInteger' or 'fromRational'. *After* type checking, it is a witness for the literal, such as (fromInteger 3) or lit_78 This witness should replace the literal. This dual role is unusual, because we're replacing 'fromInteger' with a call to fromInteger. Reason: it allows commoning up of the fromInteger calls, which wouldn't be possible if the desugarer made the application. The PostTcType in each branch records the type the overload literal is found to have. -} -- Comparison operations are needed when grouping literals -- for compiling pattern-matching (module MatchLit) instance Eq (HsOverLit p) where (OverLit {ol_val = val1}) == (OverLit {ol_val=val2}) = val1 == val2 instance Eq OverLitVal where (HsIntegral i1) == (HsIntegral i2) = i1 == i2 (HsFractional f1) == (HsFractional f2) = f1 == f2 (HsIsString _ s1) == (HsIsString _ s2) = s1 == s2 _ == _ = False instance Ord (HsOverLit p) where compare (OverLit {ol_val=val1}) (OverLit {ol_val=val2}) = val1 `compare` val2 instance Ord OverLitVal where compare (HsIntegral i1) (HsIntegral i2) = i1 `compare` i2 compare (HsIntegral _) (HsFractional _) = LT compare (HsIntegral _) (HsIsString _ _) = LT compare (HsFractional f1) (HsFractional f2) = f1 `compare` f2 compare (HsFractional _) (HsIntegral _) = GT compare (HsFractional _) (HsIsString _ _) = LT compare (HsIsString _ s1) (HsIsString _ s2) = s1 `compare` s2 compare (HsIsString _ _) (HsIntegral _) = GT compare (HsIsString _ _) (HsFractional _) = GT -- Instance specific to GhcPs, need the SourceText instance (SourceTextX x) => Outputable (HsLit x) where ppr (HsChar st c) = pprWithSourceText (getSourceText st) (pprHsChar c) ppr (HsCharPrim st c) = pp_st_suffix (getSourceText st) primCharSuffix (pprPrimChar c) ppr (HsString st s) = pprWithSourceText (getSourceText st) (pprHsString s) ppr (HsStringPrim st s) = pprWithSourceText (getSourceText st) (pprHsBytes s) ppr (HsInt _ i) = pprWithSourceText (il_text i) (integer (il_value i)) ppr (HsInteger st i _) = pprWithSourceText (getSourceText st) (integer i) ppr (HsRat _ f _) = ppr f ppr (HsFloatPrim _ f) = ppr f <> primFloatSuffix ppr (HsDoublePrim _ d) = ppr d <> primDoubleSuffix ppr (HsIntPrim st i) = pprWithSourceText (getSourceText st) (pprPrimInt i) ppr (HsWordPrim st w) = pprWithSourceText (getSourceText st) (pprPrimWord w) ppr (HsInt64Prim st i) = pp_st_suffix (getSourceText st) primInt64Suffix (pprPrimInt64 i) ppr (HsWord64Prim st w) = pp_st_suffix (getSourceText st) primWord64Suffix (pprPrimWord64 w) pp_st_suffix :: SourceText -> SDoc -> SDoc -> SDoc pp_st_suffix NoSourceText _ doc = doc pp_st_suffix (SourceText st) suffix _ = text st <> suffix -- in debug mode, print the expression that it's resolved to, too instance (SourceTextX p, OutputableBndrId p) => Outputable (HsOverLit p) where ppr (OverLit {ol_val=val, ol_witness=witness}) = ppr val <+> (whenPprDebug (parens (pprExpr witness))) instance Outputable OverLitVal where ppr (HsIntegral i) = pprWithSourceText (il_text i) (integer (il_value i)) ppr (HsFractional f) = ppr f ppr (HsIsString st s) = pprWithSourceText st (pprHsString s) -- | pmPprHsLit pretty prints literals and is used when pretty printing pattern -- match warnings. All are printed the same (i.e., without hashes if they are -- primitive and not wrapped in constructors if they are boxed). This happens -- mainly for too reasons: -- * We do not want to expose their internal representation -- * The warnings become too messy pmPprHsLit :: (SourceTextX x) => HsLit x -> SDoc pmPprHsLit (HsChar _ c) = pprHsChar c pmPprHsLit (HsCharPrim _ c) = pprHsChar c pmPprHsLit (HsString st s) = pprWithSourceText (getSourceText st) (pprHsString s) pmPprHsLit (HsStringPrim _ s) = pprHsBytes s pmPprHsLit (HsInt _ i) = integer (il_value i) pmPprHsLit (HsIntPrim _ i) = integer i pmPprHsLit (HsWordPrim _ w) = integer w pmPprHsLit (HsInt64Prim _ i) = integer i pmPprHsLit (HsWord64Prim _ w) = integer w pmPprHsLit (HsInteger _ i _) = integer i pmPprHsLit (HsRat _ f _) = ppr f pmPprHsLit (HsFloatPrim _ f) = ppr f pmPprHsLit (HsDoublePrim _ d) = ppr d -- | Returns 'True' for compound literals that will need parentheses. isCompoundHsLit :: HsLit x -> Bool isCompoundHsLit (HsChar {}) = False isCompoundHsLit (HsCharPrim {}) = False isCompoundHsLit (HsString {}) = False isCompoundHsLit (HsStringPrim {}) = False isCompoundHsLit (HsInt _ x) = il_neg x isCompoundHsLit (HsIntPrim _ x) = x < 0 isCompoundHsLit (HsWordPrim _ x) = x < 0 isCompoundHsLit (HsInt64Prim _ x) = x < 0 isCompoundHsLit (HsWord64Prim _ x) = x < 0 isCompoundHsLit (HsInteger _ x _) = x < 0 isCompoundHsLit (HsRat _ x _) = fl_neg x isCompoundHsLit (HsFloatPrim _ x) = fl_neg x isCompoundHsLit (HsDoublePrim _ x) = fl_neg x -- | Returns 'True' for compound overloaded literals that will need -- parentheses when used in an argument position. isCompoundHsOverLit :: HsOverLit x -> Bool isCompoundHsOverLit (OverLit { ol_val = olv }) = compound_ol_val olv where compound_ol_val :: OverLitVal -> Bool compound_ol_val (HsIntegral x) = il_neg x compound_ol_val (HsFractional x) = fl_neg x compound_ol_val (HsIsString {}) = False