{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- -- Pretty-printing assembly language -- -- (c) The University of Glasgow 1993-2005 -- ----------------------------------------------------------------------------- {-# OPTIONS_GHC -fno-warn-orphans #-} module GHC.CmmToAsm.SPARC.Ppr ( pprNatCmmDecl, pprBasicBlock, pprData, pprInstr, pprFormat, pprImm, pprDataItem ) where #include "HsVersions.h" import GHC.Prelude import GHC.CmmToAsm.SPARC.Regs import GHC.CmmToAsm.SPARC.Instr import GHC.CmmToAsm.SPARC.Cond import GHC.CmmToAsm.SPARC.Imm import GHC.CmmToAsm.SPARC.AddrMode import GHC.CmmToAsm.SPARC.Base import GHC.CmmToAsm.Instr import GHC.Platform.Reg import GHC.CmmToAsm.Format import GHC.CmmToAsm.Ppr import GHC.CmmToAsm.Config import GHC.Cmm hiding (topInfoTable) import GHC.Cmm.Ppr() -- For Outputable instances import GHC.Cmm.BlockId import GHC.Cmm.CLabel import GHC.Cmm.Dataflow.Label import GHC.Cmm.Dataflow.Collections import GHC.Types.Unique ( pprUniqueAlways ) import GHC.Utils.Outputable import GHC.Platform import GHC.Data.FastString -- ----------------------------------------------------------------------------- -- Printing this stuff out pprNatCmmDecl :: NCGConfig -> NatCmmDecl RawCmmStatics Instr -> SDoc pprNatCmmDecl config (CmmData section dats) = pprSectionAlign config section $$ pprDatas (ncgPlatform config) dats pprNatCmmDecl config proc@(CmmProc top_info lbl _ (ListGraph blocks)) = let platform = ncgPlatform config in case topInfoTable proc of Nothing -> -- special case for code without info table: pprSectionAlign config (Section Text lbl) $$ pprLabel platform lbl $$ -- blocks guaranteed not null, so label needed vcat (map (pprBasicBlock platform top_info) blocks) Just (CmmStaticsRaw info_lbl _) -> (if platformHasSubsectionsViaSymbols platform then pprSectionAlign config dspSection $$ ppr (mkDeadStripPreventer info_lbl) <> char ':' else empty) $$ vcat (map (pprBasicBlock platform top_info) blocks) $$ -- above: Even the first block gets a label, because with branch-chain -- elimination, it might be the target of a goto. (if platformHasSubsectionsViaSymbols platform then -- See Note [Subsections Via Symbols] in X86/Ppr.hs text "\t.long " <+> ppr info_lbl <+> char '-' <+> ppr (mkDeadStripPreventer info_lbl) else empty) dspSection :: Section dspSection = Section Text $ panic "subsections-via-symbols doesn't combine with split-sections" pprBasicBlock :: Platform -> LabelMap RawCmmStatics -> NatBasicBlock Instr -> SDoc pprBasicBlock platform info_env (BasicBlock blockid instrs) = maybe_infotable $$ pprLabel platform (blockLbl blockid) $$ vcat (map pprInstr instrs) where maybe_infotable = case mapLookup blockid info_env of Nothing -> empty Just (CmmStaticsRaw info_lbl info) -> pprAlignForSection Text $$ vcat (map (pprData platform) info) $$ pprLabel platform info_lbl pprDatas :: Platform -> RawCmmStatics -> SDoc -- See note [emit-time elimination of static indirections] in "GHC.Cmm.CLabel". pprDatas _platform (CmmStaticsRaw alias [CmmStaticLit (CmmLabel lbl), CmmStaticLit ind, _, _]) | lbl == mkIndStaticInfoLabel , let labelInd (CmmLabelOff l _) = Just l labelInd (CmmLabel l) = Just l labelInd _ = Nothing , Just ind' <- labelInd ind , alias `mayRedirectTo` ind' = pprGloblDecl alias $$ text ".equiv" <+> ppr alias <> comma <> ppr (CmmLabel ind') pprDatas platform (CmmStaticsRaw lbl dats) = vcat (pprLabel platform lbl : map (pprData platform) dats) pprData :: Platform -> CmmStatic -> SDoc pprData platform d = case d of CmmString str -> pprString str CmmFileEmbed path -> pprFileEmbed path CmmUninitialised bytes -> text ".skip " <> int bytes CmmStaticLit lit -> pprDataItem platform lit pprGloblDecl :: CLabel -> SDoc pprGloblDecl lbl | not (externallyVisibleCLabel lbl) = empty | otherwise = text ".global " <> ppr lbl pprTypeAndSizeDecl :: Platform -> CLabel -> SDoc pprTypeAndSizeDecl platform lbl = if platformOS platform == OSLinux && externallyVisibleCLabel lbl then text ".type " <> ppr lbl <> ptext (sLit ", @object") else empty pprLabel :: Platform -> CLabel -> SDoc pprLabel platform lbl = pprGloblDecl lbl $$ pprTypeAndSizeDecl platform lbl $$ (ppr lbl <> char ':') -- ----------------------------------------------------------------------------- -- pprInstr: print an 'Instr' instance Outputable Instr where ppr instr = pprInstr instr -- | Pretty print a register. pprReg :: Reg -> SDoc pprReg reg = case reg of RegVirtual vr -> case vr of VirtualRegI u -> text "%vI_" <> pprUniqueAlways u VirtualRegHi u -> text "%vHi_" <> pprUniqueAlways u VirtualRegF u -> text "%vF_" <> pprUniqueAlways u VirtualRegD u -> text "%vD_" <> pprUniqueAlways u RegReal rr -> case rr of RealRegSingle r1 -> pprReg_ofRegNo r1 RealRegPair r1 r2 -> text "(" <> pprReg_ofRegNo r1 <> vbar <> pprReg_ofRegNo r2 <> text ")" -- | Pretty print a register name, based on this register number. -- The definition has been unfolded so we get a jump-table in the -- object code. This function is called quite a lot when emitting -- the asm file.. -- pprReg_ofRegNo :: Int -> SDoc pprReg_ofRegNo i = ptext (case i of { 0 -> sLit "%g0"; 1 -> sLit "%g1"; 2 -> sLit "%g2"; 3 -> sLit "%g3"; 4 -> sLit "%g4"; 5 -> sLit "%g5"; 6 -> sLit "%g6"; 7 -> sLit "%g7"; 8 -> sLit "%o0"; 9 -> sLit "%o1"; 10 -> sLit "%o2"; 11 -> sLit "%o3"; 12 -> sLit "%o4"; 13 -> sLit "%o5"; 14 -> sLit "%o6"; 15 -> sLit "%o7"; 16 -> sLit "%l0"; 17 -> sLit "%l1"; 18 -> sLit "%l2"; 19 -> sLit "%l3"; 20 -> sLit "%l4"; 21 -> sLit "%l5"; 22 -> sLit "%l6"; 23 -> sLit "%l7"; 24 -> sLit "%i0"; 25 -> sLit "%i1"; 26 -> sLit "%i2"; 27 -> sLit "%i3"; 28 -> sLit "%i4"; 29 -> sLit "%i5"; 30 -> sLit "%i6"; 31 -> sLit "%i7"; 32 -> sLit "%f0"; 33 -> sLit "%f1"; 34 -> sLit "%f2"; 35 -> sLit "%f3"; 36 -> sLit "%f4"; 37 -> sLit "%f5"; 38 -> sLit "%f6"; 39 -> sLit "%f7"; 40 -> sLit "%f8"; 41 -> sLit "%f9"; 42 -> sLit "%f10"; 43 -> sLit "%f11"; 44 -> sLit "%f12"; 45 -> sLit "%f13"; 46 -> sLit "%f14"; 47 -> sLit "%f15"; 48 -> sLit "%f16"; 49 -> sLit "%f17"; 50 -> sLit "%f18"; 51 -> sLit "%f19"; 52 -> sLit "%f20"; 53 -> sLit "%f21"; 54 -> sLit "%f22"; 55 -> sLit "%f23"; 56 -> sLit "%f24"; 57 -> sLit "%f25"; 58 -> sLit "%f26"; 59 -> sLit "%f27"; 60 -> sLit "%f28"; 61 -> sLit "%f29"; 62 -> sLit "%f30"; 63 -> sLit "%f31"; _ -> sLit "very naughty sparc register" }) -- | Pretty print a format for an instruction suffix. pprFormat :: Format -> SDoc pprFormat x = ptext (case x of II8 -> sLit "ub" II16 -> sLit "uh" II32 -> sLit "" II64 -> sLit "d" FF32 -> sLit "" FF64 -> sLit "d") -- | Pretty print a format for an instruction suffix. -- eg LD is 32bit on sparc, but LDD is 64 bit. pprStFormat :: Format -> SDoc pprStFormat x = ptext (case x of II8 -> sLit "b" II16 -> sLit "h" II32 -> sLit "" II64 -> sLit "x" FF32 -> sLit "" FF64 -> sLit "d") -- | Pretty print a condition code. pprCond :: Cond -> SDoc pprCond c = ptext (case c of ALWAYS -> sLit "" NEVER -> sLit "n" GEU -> sLit "geu" LU -> sLit "lu" EQQ -> sLit "e" GTT -> sLit "g" GE -> sLit "ge" GU -> sLit "gu" LTT -> sLit "l" LE -> sLit "le" LEU -> sLit "leu" NE -> sLit "ne" NEG -> sLit "neg" POS -> sLit "pos" VC -> sLit "vc" VS -> sLit "vs") -- | Pretty print an address mode. pprAddr :: AddrMode -> SDoc pprAddr am = case am of AddrRegReg r1 (RegReal (RealRegSingle 0)) -> pprReg r1 AddrRegReg r1 r2 -> hcat [ pprReg r1, char '+', pprReg r2 ] AddrRegImm r1 (ImmInt i) | i == 0 -> pprReg r1 | not (fits13Bits i) -> largeOffsetError i | otherwise -> hcat [ pprReg r1, pp_sign, int i ] where pp_sign = if i > 0 then char '+' else empty AddrRegImm r1 (ImmInteger i) | i == 0 -> pprReg r1 | not (fits13Bits i) -> largeOffsetError i | otherwise -> hcat [ pprReg r1, pp_sign, integer i ] where pp_sign = if i > 0 then char '+' else empty AddrRegImm r1 imm -> hcat [ pprReg r1, char '+', pprImm imm ] -- | Pretty print an immediate value. pprImm :: Imm -> SDoc pprImm imm = case imm of ImmInt i -> int i ImmInteger i -> integer i ImmCLbl l -> ppr l ImmIndex l i -> ppr l <> char '+' <> int i ImmLit s -> s ImmConstantSum a b -> pprImm a <> char '+' <> pprImm b ImmConstantDiff a b -> pprImm a <> char '-' <> lparen <> pprImm b <> rparen LO i -> hcat [ text "%lo(", pprImm i, rparen ] HI i -> hcat [ text "%hi(", pprImm i, rparen ] -- these should have been converted to bytes and placed -- in the data section. ImmFloat _ -> text "naughty float immediate" ImmDouble _ -> text "naughty double immediate" -- | Pretty print a section \/ segment header. -- On SPARC all the data sections must be at least 8 byte aligned -- incase we store doubles in them. -- pprSectionAlign :: NCGConfig -> Section -> SDoc pprSectionAlign config sec@(Section seg _) = pprSectionHeader config sec $$ pprAlignForSection seg -- | Print appropriate alignment for the given section type. pprAlignForSection :: SectionType -> SDoc pprAlignForSection seg = ptext (case seg of Text -> sLit ".align 4" Data -> sLit ".align 8" ReadOnlyData -> sLit ".align 8" RelocatableReadOnlyData -> sLit ".align 8" UninitialisedData -> sLit ".align 8" ReadOnlyData16 -> sLit ".align 16" -- TODO: This is copied from the ReadOnlyData case, but it can likely be -- made more efficient. CString -> sLit ".align 8" OtherSection _ -> panic "PprMach.pprSectionHeader: unknown section") -- | Pretty print a data item. pprDataItem :: Platform -> CmmLit -> SDoc pprDataItem platform lit = vcat (ppr_item (cmmTypeFormat $ cmmLitType platform lit) lit) where imm = litToImm lit ppr_item II8 _ = [text "\t.byte\t" <> pprImm imm] ppr_item II32 _ = [text "\t.long\t" <> pprImm imm] ppr_item FF32 (CmmFloat r _) = let bs = floatToBytes (fromRational r) in map (\b -> text "\t.byte\t" <> pprImm (ImmInt b)) bs ppr_item FF64 (CmmFloat r _) = let bs = doubleToBytes (fromRational r) in map (\b -> text "\t.byte\t" <> pprImm (ImmInt b)) bs ppr_item II16 _ = [text "\t.short\t" <> pprImm imm] ppr_item II64 _ = [text "\t.quad\t" <> pprImm imm] ppr_item _ _ = panic "SPARC.Ppr.pprDataItem: no match" -- | Pretty print an instruction. pprInstr :: Instr -> SDoc -- nuke comments. pprInstr (COMMENT _) = empty pprInstr (DELTA d) = pprInstr (COMMENT (mkFastString ("\tdelta = " ++ show d))) -- Newblocks and LData should have been slurped out before producing the .s file. pprInstr (NEWBLOCK _) = panic "X86.Ppr.pprInstr: NEWBLOCK" pprInstr (LDATA _ _) = panic "PprMach.pprInstr: LDATA" -- 64 bit FP loads are expanded into individual instructions in CodeGen.Expand pprInstr (LD FF64 _ reg) | RegReal (RealRegSingle{}) <- reg = panic "SPARC.Ppr: not emitting potentially misaligned LD FF64 instr" pprInstr (LD format addr reg) = hcat [ text "\tld", pprFormat format, char '\t', lbrack, pprAddr addr, pp_rbracket_comma, pprReg reg ] -- 64 bit FP stores are expanded into individual instructions in CodeGen.Expand pprInstr (ST FF64 reg _) | RegReal (RealRegSingle{}) <- reg = panic "SPARC.Ppr: not emitting potentially misaligned ST FF64 instr" -- no distinction is made between signed and unsigned bytes on stores for the -- Sparc opcodes (at least I cannot see any, and gas is nagging me --SOF), -- so we call a special-purpose pprFormat for ST.. pprInstr (ST format reg addr) = hcat [ text "\tst", pprStFormat format, char '\t', pprReg reg, pp_comma_lbracket, pprAddr addr, rbrack ] pprInstr (ADD x cc reg1 ri reg2) | not x && not cc && riZero ri = hcat [ text "\tmov\t", pprReg reg1, comma, pprReg reg2 ] | otherwise = pprRegRIReg (if x then sLit "addx" else sLit "add") cc reg1 ri reg2 pprInstr (SUB x cc reg1 ri reg2) | not x && cc && reg2 == g0 = hcat [ text "\tcmp\t", pprReg reg1, comma, pprRI ri ] | not x && not cc && riZero ri = hcat [ text "\tmov\t", pprReg reg1, comma, pprReg reg2 ] | otherwise = pprRegRIReg (if x then sLit "subx" else sLit "sub") cc reg1 ri reg2 pprInstr (AND b reg1 ri reg2) = pprRegRIReg (sLit "and") b reg1 ri reg2 pprInstr (ANDN b reg1 ri reg2) = pprRegRIReg (sLit "andn") b reg1 ri reg2 pprInstr (OR b reg1 ri reg2) | not b && reg1 == g0 = let doit = hcat [ text "\tmov\t", pprRI ri, comma, pprReg reg2 ] in case ri of RIReg rrr | rrr == reg2 -> empty _ -> doit | otherwise = pprRegRIReg (sLit "or") b reg1 ri reg2 pprInstr (ORN b reg1 ri reg2) = pprRegRIReg (sLit "orn") b reg1 ri reg2 pprInstr (XOR b reg1 ri reg2) = pprRegRIReg (sLit "xor") b reg1 ri reg2 pprInstr (XNOR b reg1 ri reg2) = pprRegRIReg (sLit "xnor") b reg1 ri reg2 pprInstr (SLL reg1 ri reg2) = pprRegRIReg (sLit "sll") False reg1 ri reg2 pprInstr (SRL reg1 ri reg2) = pprRegRIReg (sLit "srl") False reg1 ri reg2 pprInstr (SRA reg1 ri reg2) = pprRegRIReg (sLit "sra") False reg1 ri reg2 pprInstr (RDY rd) = text "\trd\t%y," <> pprReg rd pprInstr (WRY reg1 reg2) = text "\twr\t" <> pprReg reg1 <> char ',' <> pprReg reg2 <> char ',' <> text "%y" pprInstr (SMUL b reg1 ri reg2) = pprRegRIReg (sLit "smul") b reg1 ri reg2 pprInstr (UMUL b reg1 ri reg2) = pprRegRIReg (sLit "umul") b reg1 ri reg2 pprInstr (SDIV b reg1 ri reg2) = pprRegRIReg (sLit "sdiv") b reg1 ri reg2 pprInstr (UDIV b reg1 ri reg2) = pprRegRIReg (sLit "udiv") b reg1 ri reg2 pprInstr (SETHI imm reg) = hcat [ text "\tsethi\t", pprImm imm, comma, pprReg reg ] pprInstr NOP = text "\tnop" pprInstr (FABS format reg1 reg2) = pprFormatRegReg (sLit "fabs") format reg1 reg2 pprInstr (FADD format reg1 reg2 reg3) = pprFormatRegRegReg (sLit "fadd") format reg1 reg2 reg3 pprInstr (FCMP e format reg1 reg2) = pprFormatRegReg (if e then sLit "fcmpe" else sLit "fcmp") format reg1 reg2 pprInstr (FDIV format reg1 reg2 reg3) = pprFormatRegRegReg (sLit "fdiv") format reg1 reg2 reg3 pprInstr (FMOV format reg1 reg2) = pprFormatRegReg (sLit "fmov") format reg1 reg2 pprInstr (FMUL format reg1 reg2 reg3) = pprFormatRegRegReg (sLit "fmul") format reg1 reg2 reg3 pprInstr (FNEG format reg1 reg2) = pprFormatRegReg (sLit "fneg") format reg1 reg2 pprInstr (FSQRT format reg1 reg2) = pprFormatRegReg (sLit "fsqrt") format reg1 reg2 pprInstr (FSUB format reg1 reg2 reg3) = pprFormatRegRegReg (sLit "fsub") format reg1 reg2 reg3 pprInstr (FxTOy format1 format2 reg1 reg2) = hcat [ text "\tf", ptext (case format1 of II32 -> sLit "ito" FF32 -> sLit "sto" FF64 -> sLit "dto" _ -> panic "SPARC.Ppr.pprInstr.FxToY: no match"), ptext (case format2 of II32 -> sLit "i\t" II64 -> sLit "x\t" FF32 -> sLit "s\t" FF64 -> sLit "d\t" _ -> panic "SPARC.Ppr.pprInstr.FxToY: no match"), pprReg reg1, comma, pprReg reg2 ] pprInstr (BI cond b blockid) = hcat [ text "\tb", pprCond cond, if b then pp_comma_a else empty, char '\t', ppr (blockLbl blockid) ] pprInstr (BF cond b blockid) = hcat [ text "\tfb", pprCond cond, if b then pp_comma_a else empty, char '\t', ppr (blockLbl blockid) ] pprInstr (JMP addr) = text "\tjmp\t" <> pprAddr addr pprInstr (JMP_TBL op _ _) = pprInstr (JMP op) pprInstr (CALL (Left imm) n _) = hcat [ text "\tcall\t", pprImm imm, comma, int n ] pprInstr (CALL (Right reg) n _) = hcat [ text "\tcall\t", pprReg reg, comma, int n ] -- | Pretty print a RI pprRI :: RI -> SDoc pprRI (RIReg r) = pprReg r pprRI (RIImm r) = pprImm r -- | Pretty print a two reg instruction. pprFormatRegReg :: PtrString -> Format -> Reg -> Reg -> SDoc pprFormatRegReg name format reg1 reg2 = hcat [ char '\t', ptext name, (case format of FF32 -> text "s\t" FF64 -> text "d\t" _ -> panic "SPARC.Ppr.pprFormatRegReg: no match"), pprReg reg1, comma, pprReg reg2 ] -- | Pretty print a three reg instruction. pprFormatRegRegReg :: PtrString -> Format -> Reg -> Reg -> Reg -> SDoc pprFormatRegRegReg name format reg1 reg2 reg3 = hcat [ char '\t', ptext name, (case format of FF32 -> text "s\t" FF64 -> text "d\t" _ -> panic "SPARC.Ppr.pprFormatRegReg: no match"), pprReg reg1, comma, pprReg reg2, comma, pprReg reg3 ] -- | Pretty print an instruction of two regs and a ri. pprRegRIReg :: PtrString -> Bool -> Reg -> RI -> Reg -> SDoc pprRegRIReg name b reg1 ri reg2 = hcat [ char '\t', ptext name, if b then text "cc\t" else char '\t', pprReg reg1, comma, pprRI ri, comma, pprReg reg2 ] {- pprRIReg :: PtrString -> Bool -> RI -> Reg -> SDoc pprRIReg name b ri reg1 = hcat [ char '\t', ptext name, if b then text "cc\t" else char '\t', pprRI ri, comma, pprReg reg1 ] -} {- pp_ld_lbracket :: SDoc pp_ld_lbracket = text "\tld\t[" -} pp_rbracket_comma :: SDoc pp_rbracket_comma = text "]," pp_comma_lbracket :: SDoc pp_comma_lbracket = text ",[" pp_comma_a :: SDoc pp_comma_a = text ",a"