{- Author: George Karachalias Pattern Matching Coverage Checking. -} {-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE LambdaCase #-} module GHC.HsToCore.PmCheck ( -- Checking and printing checkSingle, checkMatches, checkGuardMatches, isMatchContextPmChecked, -- See Note [Type and Term Equality Propagation] addTyCsDs, addScrutTmCs ) where #include "HsVersions.h" import GHC.Prelude import GHC.HsToCore.PmCheck.Types import GHC.HsToCore.PmCheck.Oracle import GHC.HsToCore.PmCheck.Ppr import GHC.Types.Basic (Origin(..), isGenerated) import GHC.Core (CoreExpr, Expr(Var,App)) import GHC.Data.FastString (unpackFS, lengthFS) import GHC.Driver.Session import GHC.Hs import GHC.Tc.Utils.Zonk (shortCutLit) import GHC.Types.Id import GHC.Core.ConLike import GHC.Types.Name import GHC.Tc.Instance.Family import GHC.Builtin.Types import GHC.Types.SrcLoc import GHC.Utils.Misc import GHC.Utils.Outputable import GHC.Core.DataCon import GHC.Core.TyCon import GHC.Types.Var (EvVar) import GHC.Core.Coercion import GHC.Tc.Types.Evidence (HsWrapper(..), isIdHsWrapper) import GHC.Tc.Utils.TcType (evVarPred) import {-# SOURCE #-} GHC.HsToCore.Expr (dsExpr, dsLExpr, dsSyntaxExpr) import {-# SOURCE #-} GHC.HsToCore.Binds (dsHsWrapper) import GHC.HsToCore.Utils (selectMatchVar) import GHC.HsToCore.Match.Literal (dsLit, dsOverLit) import GHC.HsToCore.Monad import GHC.Data.Bag import GHC.Data.IOEnv (unsafeInterleaveM) import GHC.Data.OrdList import GHC.Core.TyCo.Rep import GHC.Core.Type import GHC.HsToCore.Utils (isTrueLHsExpr) import GHC.Data.Maybe import qualified GHC.LanguageExtensions as LangExt import GHC.Utils.Monad (concatMapM) import Control.Monad (when, forM_, zipWithM) import Data.List (elemIndex) import qualified Data.Semigroup as Semi {- This module checks pattern matches for: \begin{enumerate} \item Equations that are redundant \item Equations with inaccessible right-hand-side \item Exhaustiveness \end{enumerate} The algorithm is based on the paper: "GADTs Meet Their Match: Pattern-matching Warnings That Account for GADTs, Guards, and Laziness" https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/gadtpm-acm.pdf %************************************************************************ %* * Pattern Match Check Types %* * %************************************************************************ -} -- | A very simple language for pattern guards. Let bindings, bang patterns, -- and matching variables against flat constructor patterns. data PmGrd = -- | @PmCon x K dicts args@ corresponds to a @K dicts args <- x@ guard. -- The @args@ are bound in this construct, the @x@ is just a use. -- For the arguments' meaning see 'GHC.Hs.Pat.ConPatOut'. PmCon { pm_id :: !Id, pm_con_con :: !PmAltCon, pm_con_tvs :: ![TyVar], pm_con_dicts :: ![EvVar], pm_con_args :: ![Id] } -- | @PmBang x@ corresponds to a @seq x True@ guard. | PmBang { pm_id :: !Id } -- | @PmLet x expr@ corresponds to a @let x = expr@ guard. This actually -- /binds/ @x@. | PmLet { pm_id :: !Id, _pm_let_expr :: !CoreExpr } -- | Should not be user-facing. instance Outputable PmGrd where ppr (PmCon x alt _tvs _con_dicts con_args) = hsep [ppr alt, hsep (map ppr con_args), text "<-", ppr x] ppr (PmBang x) = char '!' <> ppr x ppr (PmLet x expr) = hsep [text "let", ppr x, text "=", ppr expr] type GrdVec = [PmGrd] data Precision = Approximate | Precise deriving (Eq, Show) instance Outputable Precision where ppr = text . show instance Semi.Semigroup Precision where Precise <> Precise = Precise _ <> _ = Approximate instance Monoid Precision where mempty = Precise mappend = (Semi.<>) -- | Means by which we identify a RHS for later pretty-printing in a warning -- message. 'SDoc' for the equation to show, 'Located' for the location. type RhsInfo = Located SDoc -- | A representation of the desugaring to 'PmGrd's of all clauses of a -- function definition/pattern match/etc. data GrdTree = Rhs !RhsInfo | Guard !PmGrd !GrdTree -- ^ @Guard grd t@ will try to match @grd@ and on success continue to match -- @t@. Falls through if either match fails. Models left-to-right semantics -- of pattern matching. | Sequence !GrdTree !GrdTree -- ^ @Sequence l r@ first matches against @l@, and then matches all -- fallen-through values against @r@. Models top-to-bottom semantics of -- pattern matching. | Empty -- ^ A @GrdTree@ that always fails. Most useful for -- Note [Checking EmptyCase]. A neutral element to 'Sequence'. -- | The digest of 'checkGrdTree', representing the annotated pattern-match -- tree. 'redundantAndInaccessibleRhss' can figure out redundant and proper -- inaccessible RHSs from this. data AnnotatedTree = AccessibleRhs !Deltas !RhsInfo -- ^ A RHS deemed accessible. The 'Deltas' is the (non-empty) set of covered -- values. | InaccessibleRhs !RhsInfo -- ^ A RHS deemed inaccessible; it covers no value. | MayDiverge !AnnotatedTree -- ^ Asserts that the tree may force diverging values, so not all of its -- clauses can be redundant. | SequenceAnn !AnnotatedTree !AnnotatedTree -- ^ Mirrors 'Sequence' for preserving the skeleton of a 'GrdTree's. | EmptyAnn -- ^ Mirrors 'Empty' for preserving the skeleton of a 'GrdTree's. pprRhsInfo :: RhsInfo -> SDoc pprRhsInfo (L (RealSrcSpan rss _) _) = ppr (srcSpanStartLine rss) pprRhsInfo (L s _) = ppr s instance Outputable GrdTree where ppr (Rhs info) = text "->" <+> pprRhsInfo info -- Format guards as "| True <- x, let x = 42, !z" ppr g@Guard{} = fsep (prefix (map ppr grds)) <+> ppr t where (t, grds) = collect_grds g collect_grds (Guard grd t) = (grd :) <$> collect_grds t collect_grds t = (t, []) prefix [] = [] prefix (s:sdocs) = char '|' <+> s : map (comma <+>) sdocs -- Format nested Sequences in blocks "{ grds1; grds2; ... }" ppr t@Sequence{} = braces (space <> fsep (punctuate semi (collect_seqs t)) <> space) where collect_seqs (Sequence l r) = collect_seqs l ++ collect_seqs r collect_seqs t = [ppr t] ppr Empty = text "" instance Outputable AnnotatedTree where ppr (AccessibleRhs _ info) = pprRhsInfo info ppr (InaccessibleRhs info) = text "inaccessible" <+> pprRhsInfo info ppr (MayDiverge t) = text "div" <+> ppr t -- Format nested Sequences in blocks "{ grds1; grds2; ... }" ppr t@SequenceAnn{} = braces (space <> fsep (punctuate semi (collect_seqs t)) <> space) where collect_seqs (SequenceAnn l r) = collect_seqs l ++ collect_seqs r collect_seqs t = [ppr t] ppr EmptyAnn = text "" -- | Lift 'addPmCts' over 'Deltas'. addPmCtsDeltas :: Deltas -> PmCts -> DsM Deltas addPmCtsDeltas deltas cts = liftDeltasM (\d -> addPmCts d cts) deltas -- | 'addPmCtsDeltas' a single 'PmCt'. addPmCtDeltas :: Deltas -> PmCt -> DsM Deltas addPmCtDeltas deltas ct = addPmCtsDeltas deltas (unitBag ct) -- | Test if any of the 'Delta's is inhabited. Currently this is pure, because -- we preserve the invariant that there are no uninhabited 'Delta's. But that -- could change in the future, for example by implementing this function in -- terms of @notNull <$> provideEvidence 1 ds@. isInhabited :: Deltas -> DsM Bool isInhabited (MkDeltas ds) = pure (not (null ds)) -- | Pattern-match check result data CheckResult = CheckResult { cr_clauses :: !AnnotatedTree -- ^ Captures redundancy info for each clause in the original program. -- (for -Woverlapping-patterns) , cr_uncov :: !Deltas -- ^ The set of uncovered values falling out at the bottom. -- (for -Wincomplete-patterns) , cr_approx :: !Precision -- ^ A flag saying whether we ran into the 'maxPmCheckModels' limit for the -- purpose of suggesting to crank it up in the warning message } instance Outputable CheckResult where ppr (CheckResult c unc pc) = text "CheckResult" <+> ppr_precision pc <+> braces (fsep [ field "clauses" c <> comma , field "uncov" unc]) where ppr_precision Precise = empty ppr_precision Approximate = text "(Approximate)" field name value = text name <+> equals <+> ppr value {- %************************************************************************ %* * Entry points to the checker: checkSingle and checkMatches %* * %************************************************************************ -} -- | Check a single pattern binding (let) for exhaustiveness. checkSingle :: DynFlags -> DsMatchContext -> Id -> Pat GhcTc -> DsM () checkSingle dflags ctxt@(DsMatchContext kind locn) var p = do tracePm "checkSingle" (vcat [ppr ctxt, ppr var, ppr p]) -- We only ever need to run this in a context where we need exhaustivity -- warnings (so not in pattern guards or comprehensions, for example, because -- they are perfectly fine to fail). -- Omitting checking this flag emits redundancy warnings twice in obscure -- cases like #17646. when (exhaustive dflags kind) $ do -- TODO: This could probably call checkMatches, like checkGuardMatches. missing <- getPmDeltas tracePm "checkSingle: missing" (ppr missing) fam_insts <- dsGetFamInstEnvs grd_tree <- mkGrdTreeRhs (L locn $ ppr p) <$> translatePat fam_insts var p res <- checkGrdTree grd_tree missing dsPmWarn dflags ctxt [var] res -- | Exhaustive for guard matches, is used for guards in pattern bindings and -- in @MultiIf@ expressions. Returns the 'Deltas' covered by the RHSs. checkGuardMatches :: HsMatchContext GhcRn -- ^ Match context, for warning messages -> GRHSs GhcTc (LHsExpr GhcTc) -- ^ The GRHSs to check -> DsM [Deltas] -- ^ Covered 'Deltas' for each RHS, for long -- distance info checkGuardMatches hs_ctx guards@(GRHSs _ grhss _) = do let combinedLoc = foldl1 combineSrcSpans (map getLoc grhss) dsMatchContext = DsMatchContext hs_ctx combinedLoc match = L combinedLoc $ Match { m_ext = noExtField , m_ctxt = hs_ctx , m_pats = [] , m_grhss = guards } checkMatches dsMatchContext [] [match] -- | Check a list of syntactic /match/es (part of case, functions, etc.), each -- with a /pat/ and one or more /grhss/: -- -- @ -- f x y | x == y = 1 -- match on x and y with two guarded RHSs -- | otherwise = 2 -- f _ _ = 3 -- clause with a single, un-guarded RHS -- @ -- -- Returns one 'Deltas' for each GRHS, representing its covered values, or the -- incoming uncovered 'Deltas' (from 'getPmDeltas') if the GRHS is inaccessible. -- Since there is at least one /grhs/ per /match/, the list of 'Deltas' is at -- least as long as the list of matches. checkMatches :: DsMatchContext -- ^ Match context, for warnings messages -> [Id] -- ^ Match variables, i.e. x and y above -> [LMatch GhcTc (LHsExpr GhcTc)] -- ^ List of matches -> DsM [Deltas] -- ^ One covered 'Deltas' per RHS, for long -- distance info. checkMatches ctxt vars matches = do dflags <- getDynFlags tracePm "checkMatches" (hang (vcat [ppr ctxt , ppr vars , text "Matches:"]) 2 (vcat (map ppr matches))) init_deltas <- getPmDeltas missing <- case matches of -- This must be an -XEmptyCase. See Note [Checking EmptyCase] [] | [var] <- vars -> addPmCtDeltas init_deltas (PmNotBotCt var) _ -> pure init_deltas fam_insts <- dsGetFamInstEnvs grd_tree <- mkGrdTreeMany [] <$> mapM (translateMatch fam_insts vars) matches res <- checkGrdTree grd_tree missing dsPmWarn dflags ctxt vars res return (extractRhsDeltas init_deltas (cr_clauses res)) -- | Extract the 'Deltas' reaching the RHSs of the 'AnnotatedTree'. -- For 'AccessibleRhs's, this is stored in the tree node, whereas -- 'InaccessibleRhs's fall back to the supplied original 'Deltas'. -- See @Note [Recovering from unsatisfiable pattern-matching constraints]@. extractRhsDeltas :: Deltas -> AnnotatedTree -> [Deltas] extractRhsDeltas orig_deltas = fromOL . go where go (AccessibleRhs deltas _) = unitOL deltas go (InaccessibleRhs _) = unitOL orig_deltas go (MayDiverge t) = go t go (SequenceAnn l r) = go l Semi.<> go r go EmptyAnn = nilOL {- Note [Checking EmptyCase] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -XEmptyCase is useful for matching on empty data types like 'Void'. For example, the following is a complete match: f :: Void -> () f x = case x of {} Really, -XEmptyCase is the only way to write a program that at the same time is safe (@f _ = error "boom"@ is not because of ⊥), doesn't trigger a warning (@f !_ = error "inaccessible" has inaccessible RHS) and doesn't turn an exception into divergence (@f x = f x@). Semantically, unlike every other case expression, -XEmptyCase is strict in its match var x, which rules out ⊥ as an inhabitant. So we add x /~ ⊥ to the initial Delta and check if there are any values left to match on. -} {- %************************************************************************ %* * Transform source syntax to *our* syntax %* * %************************************************************************ -} -- ----------------------------------------------------------------------- -- * Utilities -- | Smart constructor that eliminates trivial lets mkPmLetVar :: Id -> Id -> GrdVec mkPmLetVar x y | x == y = [] mkPmLetVar x y = [PmLet x (Var y)] -- | ADT constructor pattern => no existentials, no local constraints vanillaConGrd :: Id -> DataCon -> [Id] -> PmGrd vanillaConGrd scrut con arg_ids = PmCon { pm_id = scrut, pm_con_con = PmAltConLike (RealDataCon con) , pm_con_tvs = [], pm_con_dicts = [], pm_con_args = arg_ids } -- | Creates a 'GrdVec' refining a match var of list type to a list, -- where list fields are matched against the incoming tagged 'GrdVec's. -- For example: -- @mkListGrds "a" "[(x, True <- x),(y, !y)]"@ -- to -- @"[(x:b) <- a, True <- x, (y:c) <- b, seq y True, [] <- c]"@ -- where @b@ and @c@ are freshly allocated in @mkListGrds@ and @a@ is the match -- variable. mkListGrds :: Id -> [(Id, GrdVec)] -> DsM GrdVec -- See Note [Order of guards matter] for why we need to intertwine guards -- on list elements. mkListGrds a [] = pure [vanillaConGrd a nilDataCon []] mkListGrds a ((x, head_grds):xs) = do b <- mkPmId (idType a) tail_grds <- mkListGrds b xs pure $ vanillaConGrd a consDataCon [x, b] : head_grds ++ tail_grds -- | Create a 'GrdVec' refining a match variable to a 'PmLit'. mkPmLitGrds :: Id -> PmLit -> DsM GrdVec mkPmLitGrds x (PmLit _ (PmLitString s)) = do -- We translate String literals to list literals for better overlap reasoning. -- It's a little unfortunate we do this here rather than in -- 'GHC.HsToCore.PmCheck.Oracle.trySolve' and -- 'GHC.HsToCore.PmCheck.Oracle.addRefutableAltCon', but it's so much simpler -- here. See Note [Representation of Strings in TmState] in -- GHC.HsToCore.PmCheck.Oracle vars <- traverse mkPmId (take (lengthFS s) (repeat charTy)) let mk_char_lit y c = mkPmLitGrds y (PmLit charTy (PmLitChar c)) char_grdss <- zipWithM mk_char_lit vars (unpackFS s) mkListGrds x (zip vars char_grdss) mkPmLitGrds x lit = do let grd = PmCon { pm_id = x , pm_con_con = PmAltLit lit , pm_con_tvs = [] , pm_con_dicts = [] , pm_con_args = [] } pure [grd] -- ----------------------------------------------------------------------- -- * Transform (Pat Id) into GrdVec -- | @translatePat _ x pat@ transforms @pat@ into a 'GrdVec', where -- the variable representing the match is @x@. translatePat :: FamInstEnvs -> Id -> Pat GhcTc -> DsM GrdVec translatePat fam_insts x pat = case pat of WildPat _ty -> pure [] VarPat _ y -> pure (mkPmLetVar (unLoc y) x) ParPat _ p -> translateLPat fam_insts x p LazyPat _ _ -> pure [] -- like a wildcard BangPat _ p -> -- Add the bang in front of the list, because it will happen before any -- nested stuff. (PmBang x :) <$> translateLPat fam_insts x p -- (x@pat) ==> Translate pat with x as match var and handle impedance -- mismatch with incoming match var AsPat _ (L _ y) p -> (mkPmLetVar y x ++) <$> translateLPat fam_insts y p SigPat _ p _ty -> translateLPat fam_insts x p -- See Note [Translate CoPats] -- Generally the translation is -- pat |> co ===> let y = x |> co, pat <- y where y is a match var of pat XPat (CoPat wrapper p _ty) | isIdHsWrapper wrapper -> translatePat fam_insts x p | WpCast co <- wrapper, isReflexiveCo co -> translatePat fam_insts x p | otherwise -> do (y, grds) <- translatePatV fam_insts p wrap_rhs_y <- dsHsWrapper wrapper pure (PmLet y (wrap_rhs_y (Var x)) : grds) -- (n + k) ===> let b = x >= k, True <- b, let n = x-k NPlusKPat _pat_ty (L _ n) k1 k2 ge minus -> do b <- mkPmId boolTy let grd_b = vanillaConGrd b trueDataCon [] [ke1, ke2] <- traverse dsOverLit [unLoc k1, k2] rhs_b <- dsSyntaxExpr ge [Var x, ke1] rhs_n <- dsSyntaxExpr minus [Var x, ke2] pure [PmLet b rhs_b, grd_b, PmLet n rhs_n] -- (fun -> pat) ===> let y = fun x, pat <- y where y is a match var of pat ViewPat _arg_ty lexpr pat -> do (y, grds) <- translateLPatV fam_insts pat fun <- dsLExpr lexpr pure $ PmLet y (App fun (Var x)) : grds -- list ListPat (ListPatTc _elem_ty Nothing) ps -> translateListPat fam_insts x ps -- overloaded list ListPat (ListPatTc elem_ty (Just (pat_ty, to_list))) pats -> do dflags <- getDynFlags case splitListTyConApp_maybe pat_ty of Just _e_ty | not (xopt LangExt.RebindableSyntax dflags) -- Just translate it as a regular ListPat -> translateListPat fam_insts x pats _ -> do y <- mkPmId (mkListTy elem_ty) grds <- translateListPat fam_insts y pats rhs_y <- dsSyntaxExpr to_list [Var x] pure $ PmLet y rhs_y : grds -- (a) In the presence of RebindableSyntax, we don't know anything about -- `toList`, we should treat `ListPat` as any other view pattern. -- -- (b) In the absence of RebindableSyntax, -- - If the pat_ty is `[a]`, then we treat the overloaded list pattern -- as ordinary list pattern. Although we can give an instance -- `IsList [Int]` (more specific than the default `IsList [a]`), in -- practice, we almost never do that. We assume the `to_list` is -- the `toList` from `instance IsList [a]`. -- -- - Otherwise, we treat the `ListPat` as ordinary view pattern. -- -- See #14547, especially comment#9 and comment#10. ConPat { pat_con = L _ con , pat_args = ps , pat_con_ext = ConPatTc { cpt_arg_tys = arg_tys , cpt_tvs = ex_tvs , cpt_dicts = dicts } } -> do translateConPatOut fam_insts x con arg_tys ex_tvs dicts ps NPat ty (L _ olit) mb_neg _ -> do -- See Note [Literal short cut] in "GHC.HsToCore.Match.Literal" -- We inline the Literal short cut for @ty@ here, because @ty@ is more -- precise than the field of OverLitTc, which is all that dsOverLit (which -- normally does the literal short cut) can look at. Also @ty@ matches the -- type of the scrutinee, so info on both pattern and scrutinee (for which -- short cutting in dsOverLit works properly) is overloaded iff either is. dflags <- getDynFlags let platform = targetPlatform dflags core_expr <- case olit of OverLit{ ol_val = val, ol_ext = OverLitTc rebindable _ } | not rebindable , Just expr <- shortCutLit platform val ty -> dsExpr expr _ -> dsOverLit olit let lit = expectJust "failed to detect OverLit" (coreExprAsPmLit core_expr) let lit' = case mb_neg of Just _ -> expectJust "failed to negate lit" (negatePmLit lit) Nothing -> lit mkPmLitGrds x lit' LitPat _ lit -> do core_expr <- dsLit (convertLit lit) let lit = expectJust "failed to detect Lit" (coreExprAsPmLit core_expr) mkPmLitGrds x lit TuplePat _tys pats boxity -> do (vars, grdss) <- mapAndUnzipM (translateLPatV fam_insts) pats let tuple_con = tupleDataCon boxity (length vars) pure $ vanillaConGrd x tuple_con vars : concat grdss SumPat _ty p alt arity -> do (y, grds) <- translateLPatV fam_insts p let sum_con = sumDataCon alt arity -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon pure $ vanillaConGrd x sum_con [y] : grds -- -------------------------------------------------------------------------- -- Not supposed to happen SplicePat {} -> panic "Check.translatePat: SplicePat" -- | 'translatePat', but also select and return a new match var. translatePatV :: FamInstEnvs -> Pat GhcTc -> DsM (Id, GrdVec) translatePatV fam_insts pat = do x <- selectMatchVar Many pat grds <- translatePat fam_insts x pat pure (x, grds) translateLPat :: FamInstEnvs -> Id -> LPat GhcTc -> DsM GrdVec translateLPat fam_insts x = translatePat fam_insts x . unLoc -- | 'translateLPat', but also select and return a new match var. translateLPatV :: FamInstEnvs -> LPat GhcTc -> DsM (Id, GrdVec) translateLPatV fam_insts = translatePatV fam_insts . unLoc -- | @translateListPat _ x [p1, ..., pn]@ is basically -- @translateConPatOut _ x $(mkListConPatOuts [p1, ..., pn]>@ without ever -- constructing the 'ConPatOut's. translateListPat :: FamInstEnvs -> Id -> [LPat GhcTc] -> DsM GrdVec translateListPat fam_insts x pats = do vars_and_grdss <- traverse (translateLPatV fam_insts) pats mkListGrds x vars_and_grdss -- | Translate a constructor pattern translateConPatOut :: FamInstEnvs -> Id -> ConLike -> [Type] -> [TyVar] -> [EvVar] -> HsConPatDetails GhcTc -> DsM GrdVec translateConPatOut fam_insts x con univ_tys ex_tvs dicts = \case PrefixCon ps -> go_field_pats (zip [0..] ps) InfixCon p1 p2 -> go_field_pats (zip [0..] [p1,p2]) RecCon (HsRecFields fs _) -> go_field_pats (rec_field_ps fs) where -- The actual argument types (instantiated) arg_tys = map scaledThing $ conLikeInstOrigArgTys con (univ_tys ++ mkTyVarTys ex_tvs) -- Extract record field patterns tagged by field index from a list of -- LHsRecField rec_field_ps fs = map (tagged_pat . unLoc) fs where tagged_pat f = (lbl_to_index (getName (hsRecFieldId f)), hsRecFieldArg f) -- Unfortunately the label info is empty when the DataCon wasn't defined -- with record field labels, hence we translate to field index. orig_lbls = map flSelector $ conLikeFieldLabels con lbl_to_index lbl = expectJust "lbl_to_index" $ elemIndex lbl orig_lbls go_field_pats tagged_pats = do -- The fields that appear might not be in the correct order. So first -- do a PmCon match, then force according to field strictness and then -- force evaluation of the field patterns in the order given by -- the first field of @tagged_pats@. -- See Note [Field match order for RecCon] -- Translate the mentioned field patterns. We're doing this first to get -- the Ids for pm_con_args. let trans_pat (n, pat) = do (var, pvec) <- translateLPatV fam_insts pat pure ((n, var), pvec) (tagged_vars, arg_grdss) <- mapAndUnzipM trans_pat tagged_pats let get_pat_id n ty = case lookup n tagged_vars of Just var -> pure var Nothing -> mkPmId ty -- 1. the constructor pattern match itself arg_ids <- zipWithM get_pat_id [0..] arg_tys let con_grd = PmCon x (PmAltConLike con) ex_tvs dicts arg_ids -- 2. bang strict fields let arg_is_banged = map isBanged $ conLikeImplBangs con bang_grds = map PmBang $ filterByList arg_is_banged arg_ids -- 3. guards from field selector patterns let arg_grds = concat arg_grdss -- tracePm "ConPatOut" (ppr x $$ ppr con $$ ppr arg_ids) -- -- Store the guards in exactly that order -- 1. 2. 3. pure (con_grd : bang_grds ++ arg_grds) mkGrdTreeRhs :: Located SDoc -> GrdVec -> GrdTree mkGrdTreeRhs sdoc = foldr Guard (Rhs sdoc) mkGrdTreeMany :: GrdVec -> [GrdTree] -> GrdTree mkGrdTreeMany _ [] = Empty mkGrdTreeMany grds trees = foldr Guard (foldr1 Sequence trees) grds -- Translate a single match translateMatch :: FamInstEnvs -> [Id] -> LMatch GhcTc (LHsExpr GhcTc) -> DsM GrdTree translateMatch fam_insts vars (L match_loc (Match { m_pats = pats, m_grhss = grhss })) = do pats' <- concat <$> zipWithM (translateLPat fam_insts) vars pats grhss' <- mapM (translateLGRHS fam_insts match_loc pats) (grhssGRHSs grhss) -- tracePm "translateMatch" (vcat [ppr pats, ppr pats', ppr grhss, ppr grhss']) return (mkGrdTreeMany pats' grhss') -- ----------------------------------------------------------------------- -- * Transform source guards (GuardStmt Id) to simpler PmGrds -- | Translate a guarded right-hand side to a single 'GrdTree' translateLGRHS :: FamInstEnvs -> SrcSpan -> [LPat GhcTc] -> LGRHS GhcTc (LHsExpr GhcTc) -> DsM GrdTree translateLGRHS fam_insts match_loc pats (L _loc (GRHS _ gs _)) = -- _loc apparently points to the match separator that comes after the guards.. mkGrdTreeRhs loc_sdoc <$> concatMapM (translateGuard fam_insts . unLoc) gs where loc_sdoc | null gs = L match_loc (sep (map ppr pats)) | otherwise = L grd_loc (sep (map ppr pats) <+> vbar <+> interpp'SP gs) L grd_loc _ = head gs -- | Translate a guard statement to a 'GrdVec' translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM GrdVec translateGuard fam_insts guard = case guard of BodyStmt _ e _ _ -> translateBoolGuard e LetStmt _ binds -> translateLet (unLoc binds) BindStmt _ p e -> translateBind fam_insts p e LastStmt {} -> panic "translateGuard LastStmt" ParStmt {} -> panic "translateGuard ParStmt" TransStmt {} -> panic "translateGuard TransStmt" RecStmt {} -> panic "translateGuard RecStmt" ApplicativeStmt {} -> panic "translateGuard ApplicativeLastStmt" -- | Translate let-bindings translateLet :: HsLocalBinds GhcTc -> DsM GrdVec translateLet _binds = return [] -- | Translate a pattern guard -- @pat <- e ==> let x = e; @ translateBind :: FamInstEnvs -> LPat GhcTc -> LHsExpr GhcTc -> DsM GrdVec translateBind fam_insts p e = dsLExpr e >>= \case Var y | Nothing <- isDataConId_maybe y -- RHS is a variable, so that will allow us to omit the let -> translateLPat fam_insts y p rhs -> do (x, grds) <- translateLPatV fam_insts p pure (PmLet x rhs : grds) -- | Translate a boolean guard -- @e ==> let x = e; True <- x@ translateBoolGuard :: LHsExpr GhcTc -> DsM GrdVec translateBoolGuard e | isJust (isTrueLHsExpr e) = return [] -- The formal thing to do would be to generate (True <- True) -- but it is trivial to solve so instead we give back an empty -- GrdVec for efficiency | otherwise = dsLExpr e >>= \case Var y | Nothing <- isDataConId_maybe y -- Omit the let by matching on y -> pure [vanillaConGrd y trueDataCon []] rhs -> do x <- mkPmId boolTy pure $ [PmLet x rhs, vanillaConGrd x trueDataCon []] {- Note [Field match order for RecCon] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The order for RecCon field patterns actually determines evaluation order of the pattern match. For example: data T = T { a :: !Bool, b :: Char, c :: Int } f :: T -> () f T{ c = 42, b = 'b' } = () Then * @f (T (error "a") (error "b") (error "c"))@ errors out with "a" because of the strict field. * @f (T True (error "b") (error "c"))@ errors out with "c" because it is mentioned frist in the pattern match. This means we can't just desugar the pattern match to the PatVec @[T !_ 'b' 42]@. Instead we have to generate variable matches that have strictness according to the field declarations and afterwards force them in the right order. As a result, we get the PatVec @[T !_ b c, 42 <- c, 'b' <- b]@. Of course, when the labels occur in the order they are defined, we can just use the simpler desugaring. Note [Order of guards matters] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Similar to Note [Field match order for RecCon], the order in which the guards for a pattern match appear matter. Consider a situation similar to T5117: f (0:_) = () f (0:[]) = () The latter clause is clearly redundant. Yet if we translate the second clause as [x:xs' <- xs, [] <- xs', 0 <- x] We will say that the second clause only has an inaccessible RHS. That's because we force the tail of the list before comparing its head! So the correct translation would have been [x:xs' <- xs, 0 <- x, [] <- xs'] And we have to take in the guards on list cells into @mkListGrds@. Note [Countering exponential blowup] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Precise pattern match exhaustiveness checking is necessarily exponential in the size of some input programs. We implement a counter-measure in the form of the -fmax-pmcheck-models flag, limiting the number of Deltas we check against each pattern by a constant. How do we do that? Consider f True True = () f True True = () And imagine we set our limit to 1 for the sake of the example. The first clause will be checked against the initial Delta, {}. Doing so will produce an Uncovered set of size 2, containing the models {x/~True} and {x~True,y/~True}. Also we find the first clause to cover the model {x~True,y~True}. But the Uncovered set we get out of the match is too huge! We somehow have to ensure not to make things worse as they are already, so we continue checking with a singleton Uncovered set of the initial Delta {}. Why is this sound (wrt. notion of the GADTs Meet their Match paper)? Well, it basically amounts to forgetting that we matched against the first clause. The values represented by {} are a superset of those represented by its two refinements {x/~True} and {x~True,y/~True}. This forgetfulness becomes very apparent in the example above: By continuing with {} we don't detect the second clause as redundant, as it again covers the same non-empty subset of {}. So we don't flag everything as redundant anymore, but still will never flag something as redundant that isn't. For exhaustivity, the converse applies: We will report @f@ as non-exhaustive and report @f _ _@ as missing, which is a superset of the actual missing matches. But soundness means we will never fail to report a missing match. This mechanism is implemented in 'throttle'. Guards are an extreme example in this regard, with #11195 being a particularly dreadful example: Since their RHS are often pretty much unique, we split on a variable (the one representing the RHS) that doesn't occur anywhere else in the program, so we don't actually get useful information out of that split! Note [Translate CoPats] ~~~~~~~~~~~~~~~~~~~~~~~ The pattern match checker did not know how to handle coerced patterns `CoPat` efficiently, which gave rise to #11276. The original approach translated `CoPat`s: pat |> co ===> x (pat <- (x |> co)) Why did we do this seemingly unnecessary expansion in the first place? The reason is that the type of @pat |> co@ (which is the type of the value abstraction we match against) might be different than that of @pat@. Data instances such as @Sing (a :: Bool)@ are a good example of this: If we would just drop the coercion, we'd get a type error when matching @pat@ against its value abstraction, with the result being that pmIsSatisfiable decides that every possible data constructor fitting @pat@ is rejected as uninhabitated, leading to a lot of false warnings. But we can check whether the coercion is a hole or if it is just refl, in which case we can drop it. %************************************************************************ %* * Utilities for Pattern Match Checking %* * %************************************************************************ -} -- ---------------------------------------------------------------------------- -- * Basic utilities {- Note [Extensions to GADTs Meet Their Match] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The GADTs Meet Their Match paper presents the formalism that GHC's coverage checker adheres to. Since the paper's publication, there have been some additional features added to the coverage checker which are not described in the paper. This Note serves as a reference for these new features. * Value abstractions are severely simplified to the point where they are just variables. The information about the shape of a variable is encoded in the oracle state 'Delta' instead. * Handling of uninhabited fields like `!Void`. See Note [Strict argument type constraints] in GHC.HsToCore.PmCheck.Oracle. * Efficient handling of literal splitting, large enumerations and accurate redundancy warnings for `COMPLETE` groups through the oracle. Note [Filtering out non-matching COMPLETE sets] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Currently, conlikes in a COMPLETE set are simply grouped by the type constructor heading the return type. This is nice and simple, but it does mean that there are scenarios when a COMPLETE set might be incompatible with the type of a scrutinee. For instance, consider (from #14135): data Foo a = Foo1 a | Foo2 a pattern MyFoo2 :: Int -> Foo Int pattern MyFoo2 i = Foo2 i {-# COMPLETE Foo1, MyFoo2 #-} f :: Foo a -> a f (Foo1 x) = x `f` has an incomplete pattern-match, so when choosing which constructors to report as unmatched in a warning, GHC must choose between the original set of data constructors {Foo1, Foo2} and the COMPLETE set {Foo1, MyFoo2}. But observe that GHC shouldn't even consider the COMPLETE set as a possibility: the return type of MyFoo2, Foo Int, does not match the type of the scrutinee, Foo a, since there's no substitution `s` such that s(Foo Int) = Foo a. To ensure that GHC doesn't pick this COMPLETE set, it checks each pattern synonym constructor's return type matches the type of the scrutinee, and if one doesn't, then we remove the whole COMPLETE set from consideration. One might wonder why GHC only checks /pattern synonym/ constructors, and not /data/ constructors as well. The reason is because that the type of a GADT constructor very well may not match the type of a scrutinee, and that's OK. Consider this example (from #14059): data SBool (z :: Bool) where SFalse :: SBool False STrue :: SBool True pattern STooGoodToBeTrue :: forall (z :: Bool). () => z ~ True => SBool z pattern STooGoodToBeTrue = STrue {-# COMPLETE SFalse, STooGoodToBeTrue #-} wobble :: SBool z -> Bool wobble STooGoodToBeTrue = True In the incomplete pattern match for `wobble`, we /do/ want to warn that SFalse should be matched against, even though its type, SBool False, does not match the scrutinee type, SBool z. SG: Another angle at this is that the implied constraints when we instantiate universal type variables in the return type of a GADT will lead to *provided* thetas, whereas when we instantiate the return type of a pattern synonym that corresponds to a *required* theta. See Note [Pattern synonym result type] in PatSyn. Note how isValidCompleteMatches will successfully filter out pattern Just42 :: Maybe Int pattern Just42 = Just 42 But fail to filter out the equivalent pattern Just'42 :: (a ~ Int) => Maybe a pattern Just'42 = Just 42 Which seems fine as far as tcMatchTy is concerned, but it raises a few eye brows. -} {- %************************************************************************ %* * Heart of the algorithm: checkGrdTree %* * %************************************************************************ -} -- | @throttle limit old new@ returns @old@ if the number of 'Delta's in @new@ -- is exceeding the given @limit@ and the @old@ number of 'Delta's. -- See Note [Countering exponential blowup]. throttle :: Int -> Deltas -> Deltas -> (Precision, Deltas) throttle limit old@(MkDeltas old_ds) new@(MkDeltas new_ds) --- | pprTrace "PmCheck:throttle" (ppr (length old_ds) <+> ppr (length new_ds) <+> ppr limit) False = undefined | length new_ds > max limit (length old_ds) = (Approximate, old) | otherwise = (Precise, new) -- | Matching on a newtype doesn't force anything. -- See Note [Divergence of Newtype matches] in "GHC.HsToCore.PmCheck.Oracle". conMatchForces :: PmAltCon -> Bool conMatchForces (PmAltConLike (RealDataCon dc)) | isNewTyCon (dataConTyCon dc) = False conMatchForces _ = True -- | Makes sure that we only wrap a single 'MayDiverge' around an -- 'AnnotatedTree', purely for esthetic reasons. mayDiverge :: AnnotatedTree -> AnnotatedTree mayDiverge a@(MayDiverge _) = a mayDiverge a = MayDiverge a -- | Computes two things: -- -- * The set of uncovered values not matched by any of the clauses of the -- 'GrdTree'. Note that 'PmCon' guards are the only way in which values -- fall through from one 'Many' branch to the next. -- * An 'AnnotatedTree' that contains divergence and inaccessibility info -- for all clauses. Will be fed to 'redundantAndInaccessibleRhss' for -- presenting redundant and proper innaccessible RHSs to the user. checkGrdTree' :: GrdTree -> Deltas -> DsM CheckResult -- RHS: Check that it covers something and wrap Inaccessible if not checkGrdTree' (Rhs sdoc) deltas = do is_covered <- isInhabited deltas let clauses | is_covered = AccessibleRhs deltas sdoc | otherwise = InaccessibleRhs sdoc pure CheckResult { cr_clauses = clauses , cr_uncov = MkDeltas emptyBag , cr_approx = Precise } -- let x = e: Refine with x ~ e checkGrdTree' (Guard (PmLet x e) tree) deltas = do deltas' <- addPmCtDeltas deltas (PmCoreCt x e) checkGrdTree' tree deltas' -- Bang x: Diverge on x ~ ⊥, refine with x /~ ⊥ checkGrdTree' (Guard (PmBang x) tree) deltas = do has_diverged <- addPmCtDeltas deltas (PmBotCt x) >>= isInhabited deltas' <- addPmCtDeltas deltas (PmNotBotCt x) res <- checkGrdTree' tree deltas' pure res{ cr_clauses = applyWhen has_diverged mayDiverge (cr_clauses res) } -- Con: Diverge on x ~ ⊥, fall through on x /~ K and refine with x ~ K ys -- and type info checkGrdTree' (Guard (PmCon x con tvs dicts args) tree) deltas = do has_diverged <- if conMatchForces con then addPmCtDeltas deltas (PmBotCt x) >>= isInhabited else pure False unc_this <- addPmCtDeltas deltas (PmNotConCt x con) deltas' <- addPmCtsDeltas deltas $ listToBag (PmTyCt . evVarPred <$> dicts) `snocBag` PmConCt x con tvs args CheckResult tree' unc_inner prec <- checkGrdTree' tree deltas' limit <- maxPmCheckModels <$> getDynFlags let (prec', unc') = throttle limit deltas (unc_this Semi.<> unc_inner) pure CheckResult { cr_clauses = applyWhen has_diverged mayDiverge tree' , cr_uncov = unc' , cr_approx = prec Semi.<> prec' } -- Sequence: Thread residual uncovered sets from equation to equation checkGrdTree' (Sequence l r) unc_0 = do CheckResult l' unc_1 prec_l <- checkGrdTree' l unc_0 CheckResult r' unc_2 prec_r <- checkGrdTree' r unc_1 pure CheckResult { cr_clauses = SequenceAnn l' r' , cr_uncov = unc_2 , cr_approx = prec_l Semi.<> prec_r } -- Empty: Fall through for all values checkGrdTree' Empty unc = do pure CheckResult { cr_clauses = EmptyAnn , cr_uncov = unc , cr_approx = Precise } -- | Print diagnostic info and actually call 'checkGrdTree''. checkGrdTree :: GrdTree -> Deltas -> DsM CheckResult checkGrdTree guards deltas = do tracePm "checkGrdTree {" $ vcat [ ppr guards , ppr deltas ] res <- checkGrdTree' guards deltas tracePm "checkGrdTree }:" (ppr res) -- braces are easier to match by tooling return res -- ---------------------------------------------------------------------------- -- * Propagation of term constraints inwards when checking nested matches {- Note [Type and Term Equality Propagation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When checking a match it would be great to have all type and term information available so we can get more precise results. For this reason we have functions `addDictsDs' and `addTmVarCsDs' in GHC.HsToCore.Monad that store in the environment type and term constraints (respectively) as we go deeper. The type constraints we propagate inwards are collected by `collectEvVarsPats' in GHC.Hs.Pat. This handles bug #4139 ( see example https://gitlab.haskell.org/ghc/ghc/snippets/672 ) where this is needed. For term equalities we do less, we just generate equalities for HsCase. For example we accurately give 2 redundancy warnings for the marked cases: f :: [a] -> Bool f x = case x of [] -> case x of -- brings (x ~ []) in scope [] -> True (_:_) -> False -- can't happen (_:_) -> case x of -- brings (x ~ (_:_)) in scope (_:_) -> True [] -> False -- can't happen Functions `addScrutTmCs' is responsible for generating these constraints. -} -- | Locally update 'dsl_deltas' with the given action, but defer evaluation -- with 'unsafeInterleaveM' in order not to do unnecessary work. locallyExtendPmDelta :: (Deltas -> DsM Deltas) -> DsM a -> DsM a locallyExtendPmDelta ext k = do deltas <- getPmDeltas deltas' <- unsafeInterleaveM $ do deltas' <- ext deltas inh <- isInhabited deltas' -- If adding a constraint would lead to a contradiction, don't add it. -- See @Note [Recovering from unsatisfiable pattern-matching constraints]@ -- for why this is done. if inh then pure deltas' else pure deltas updPmDeltas deltas' k -- | Add in-scope type constraints if the coverage checker might run and then -- run the given action. addTyCsDs :: Origin -> Bag EvVar -> DsM a -> DsM a addTyCsDs origin ev_vars m = do dflags <- getDynFlags applyWhen (needToRunPmCheck dflags origin) (locallyExtendPmDelta (\deltas -> addPmCtsDeltas deltas (PmTyCt . evVarPred <$> ev_vars))) m -- | Add equalities for the scrutinee to the local 'DsM' environment when -- checking a case expression: -- case e of x { matches } -- When checking matches we record that (x ~ e) where x is the initial -- uncovered. All matches will have to satisfy this equality. addScrutTmCs :: Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a addScrutTmCs Nothing _ k = k addScrutTmCs (Just scr) [x] k = do scr_e <- dsLExpr scr locallyExtendPmDelta (\deltas -> addPmCtsDeltas deltas (unitBag (PmCoreCt x scr_e))) k addScrutTmCs _ _ _ = panic "addScrutTmCs: HsCase with more than one case binder" {- %************************************************************************ %* * Pretty printing of exhaustiveness/redundancy check warnings %* * %************************************************************************ -} -- | Check whether any part of pattern match checking is enabled for this -- 'HsMatchContext' (does not matter whether it is the redundancy check or the -- exhaustiveness check). isMatchContextPmChecked :: DynFlags -> Origin -> HsMatchContext id -> Bool isMatchContextPmChecked dflags origin kind | isGenerated origin = False | otherwise = wopt Opt_WarnOverlappingPatterns dflags || exhaustive dflags kind -- | Return True when any of the pattern match warnings ('allPmCheckWarnings') -- are enabled, in which case we need to run the pattern match checker. needToRunPmCheck :: DynFlags -> Origin -> Bool needToRunPmCheck dflags origin | isGenerated origin = False | otherwise = notNull (filter (`wopt` dflags) allPmCheckWarnings) redundantAndInaccessibleRhss :: AnnotatedTree -> ([RhsInfo], [RhsInfo]) redundantAndInaccessibleRhss tree = (fromOL ol_red, fromOL ol_inacc) where (_ol_acc, ol_inacc, ol_red) = go tree -- | Collects RHSs which are -- 1. accessible -- 2. proper inaccessible (so we can't delete them) -- 3. hypothetically redundant (so not only inaccessible RHS, but we can -- even safely delete the equation without altering semantics) -- See Note [Determining inaccessible clauses] go :: AnnotatedTree -> (OrdList RhsInfo, OrdList RhsInfo, OrdList RhsInfo) go (AccessibleRhs _ info) = (unitOL info, nilOL, nilOL) go (InaccessibleRhs info) = (nilOL, nilOL, unitOL info) -- presumably redundant go (MayDiverge t) = case go t of -- See Note [Determining inaccessible clauses] (acc, inacc, red) | isNilOL acc && isNilOL inacc -> (nilOL, red, nilOL) res -> res go (SequenceAnn l r) = go l Semi.<> go r go EmptyAnn = (nilOL, nilOL, nilOL) {- Note [Determining inaccessible clauses] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f _ True = () f () True = () f _ _ = () Is f's second clause redundant? The perhaps surprising answer is, no, it isn't! @f (error "boom") False@ will force the error with clause 2, but will return () if it was deleted, so clearly not redundant. Yet for now combination of arguments we can ever reach clause 2's RHS, so we say it has inaccessible RHS (as opposed to being completely redundant). We detect an inaccessible RHS simply by pretending it's redundant, until we see that it's part of a sub-tree in the pattern match that forces some argument (which corresponds to wrapping the 'AnnotatedTree' in 'MayDiverge'). Then we turn all supposedly redundant RHSs into inaccessible ones. But as it turns out (@g@ from #17465) this is too conservative: g () | False = () | otherwise = () g's first clause has an inaccessible RHS, but it's also safe to delete. So it's redundant, really! But by just turning all redundant child clauses into inaccessible ones, we report the first clause as inaccessible. Clearly, it is enough if we say that we only degrade if *not all* of the child clauses are redundant. As long as there is at least one clause which we announce not to be redundant, the guard prefix responsible for the 'MayDiverge' will survive. Hence we check for that in 'redundantAndInaccessibleRhss'. -} -- | Issue all the warnings (coverage, exhaustiveness, inaccessibility) dsPmWarn :: DynFlags -> DsMatchContext -> [Id] -> CheckResult -> DsM () dsPmWarn dflags ctx@(DsMatchContext kind loc) vars result = when (flag_i || flag_u) $ do unc_examples <- getNFirstUncovered vars (maxPatterns + 1) uncovered let exists_r = flag_i && notNull redundant exists_i = flag_i && notNull inaccessible exists_u = flag_u && notNull unc_examples approx = precision == Approximate when (approx && (exists_u || exists_i)) $ putSrcSpanDs loc (warnDs NoReason approx_msg) when exists_r $ forM_ redundant $ \(L l q) -> do putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns) (pprEqn q "is redundant")) when exists_i $ forM_ inaccessible $ \(L l q) -> do putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns) (pprEqn q "has inaccessible right hand side")) when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $ pprEqns vars unc_examples where CheckResult { cr_clauses = clauses , cr_uncov = uncovered , cr_approx = precision } = result (redundant, inaccessible) = redundantAndInaccessibleRhss clauses flag_i = overlapping dflags kind flag_u = exhaustive dflags kind flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind) maxPatterns = maxUncoveredPatterns dflags -- Print a single clause (for redundant/with-inaccessible-rhs) pprEqn q txt = pprContext True ctx (text txt) $ \f -> f (q <+> matchSeparator kind <+> text "...") -- Print several clauses (for uncovered clauses) pprEqns vars deltas = pprContext False ctx (text "are non-exhaustive") $ \_ -> case vars of -- See #11245 [] -> text "Guards do not cover entire pattern space" _ -> let us = map (\delta -> pprUncovered delta vars) deltas in hang (text "Patterns not matched:") 4 (vcat (take maxPatterns us) $$ dots maxPatterns us) approx_msg = vcat [ hang (text "Pattern match checker ran into -fmax-pmcheck-models=" <> int (maxPmCheckModels dflags) <> text " limit, so") 2 ( bullet <+> text "Redundant clauses might not be reported at all" $$ bullet <+> text "Redundant clauses might be reported as inaccessible" $$ bullet <+> text "Patterns reported as unmatched might actually be matched") , text "Increase the limit or resolve the warnings to suppress this message." ] getNFirstUncovered :: [Id] -> Int -> Deltas -> DsM [Delta] getNFirstUncovered vars n (MkDeltas deltas) = go n (bagToList deltas) where go 0 _ = pure [] go _ [] = pure [] go n (delta:deltas) = do front <- provideEvidence vars n delta back <- go (n - length front) deltas pure (front ++ back) {- Note [Inaccessible warnings for record updates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#12957) data T a where T1 :: { x :: Int } -> T Bool T2 :: { x :: Int } -> T a T3 :: T a f :: T Char -> T a f r = r { x = 3 } The desugarer will (conservatively generate a case for T1 even though it's impossible: f r = case r of T1 x -> T1 3 -- Inaccessible branch T2 x -> T2 3 _ -> error "Missing" We don't want to warn about the inaccessible branch because the programmer didn't put it there! So we filter out the warning here. The same can happen for long distance term constraints instead of type constraints (#17783): data T = A { x :: Int } | B { x :: Int } f r@A{} = r { x = 3 } f _ = B 0 Here, the long distance info from the FunRhs match (@r ~ A x@) will make the clause matching on @B@ of the desugaring to @case@ redundant. It's generated code that we don't want to warn about. -} dots :: Int -> [a] -> SDoc dots maxPatterns qs | qs `lengthExceeds` maxPatterns = text "..." | otherwise = empty -- | All warning flags that need to run the pattern match checker. allPmCheckWarnings :: [WarningFlag] allPmCheckWarnings = [ Opt_WarnIncompletePatterns , Opt_WarnIncompleteUniPatterns , Opt_WarnIncompletePatternsRecUpd , Opt_WarnOverlappingPatterns ] -- | Check whether the redundancy checker should run (redundancy only) overlapping :: DynFlags -> HsMatchContext id -> Bool -- See Note [Inaccessible warnings for record updates] overlapping _ RecUpd = False overlapping dflags _ = wopt Opt_WarnOverlappingPatterns dflags -- | Check whether the exhaustiveness checker should run (exhaustiveness only) exhaustive :: DynFlags -> HsMatchContext id -> Bool exhaustive dflags = maybe False (`wopt` dflags) . exhaustiveWarningFlag -- | Denotes whether an exhaustiveness check is supported, and if so, -- via which 'WarningFlag' it's controlled. -- Returns 'Nothing' if check is not supported. exhaustiveWarningFlag :: HsMatchContext id -> Maybe WarningFlag exhaustiveWarningFlag (FunRhs {}) = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag CaseAlt = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag IfAlt = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag LambdaExpr = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag PatBindRhs = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag PatBindGuards = Just Opt_WarnIncompletePatterns exhaustiveWarningFlag ProcExpr = Just Opt_WarnIncompleteUniPatterns exhaustiveWarningFlag RecUpd = Just Opt_WarnIncompletePatternsRecUpd exhaustiveWarningFlag ThPatSplice = Nothing exhaustiveWarningFlag PatSyn = Nothing exhaustiveWarningFlag ThPatQuote = Nothing exhaustiveWarningFlag (StmtCtxt {}) = Nothing -- Don't warn about incomplete patterns -- in list comprehensions, pattern guards -- etc. They are often *supposed* to be -- incomplete -- True <==> singular pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun = vcat [text txt <+> msg, sep [ text "In" <+> ppr_match <> char ':' , nest 4 (rest_of_msg_fun pref)]] where txt | singular = "Pattern match" | otherwise = "Pattern match(es)" (ppr_match, pref) = case kind of FunRhs { mc_fun = L _ fun } -> (pprMatchContext kind, \ pp -> ppr fun <+> pp) _ -> (pprMatchContext kind, \ pp -> pp)