{- Main functions for .hie file generation -} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE UndecidableSuperClasses #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE TupleSections #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} module GHC.Iface.Ext.Ast ( mkHieFile, mkHieFileWithSource, getCompressedAsts, enrichHie) where import GHC.Utils.Outputable(ppr) import GHC.Prelude import GHC.Types.Avail ( Avails ) import GHC.Data.Bag ( Bag, bagToList ) import GHC.Types.Basic import GHC.Data.BooleanFormula import GHC.Core.Class ( FunDep, className, classSCSelIds ) import GHC.Core.Utils ( exprType ) import GHC.Core.ConLike ( conLikeName, ConLike(RealDataCon) ) import GHC.Core.TyCon ( TyCon, tyConClass_maybe ) import GHC.Core.FVs import GHC.Core.DataCon ( dataConNonlinearType ) import GHC.HsToCore ( deSugarExpr ) import GHC.Types.FieldLabel import GHC.Hs import GHC.Driver.Types import GHC.Unit.Module ( ModuleName, ml_hs_file ) import GHC.Utils.Monad ( concatMapM, liftIO ) import GHC.Types.Id ( isDataConId_maybe ) import GHC.Types.Name ( Name, nameSrcSpan, nameUnique ) import GHC.Types.Name.Env ( NameEnv, emptyNameEnv, extendNameEnv, lookupNameEnv ) import GHC.Types.SrcLoc import GHC.Tc.Utils.Zonk ( hsLitType, hsPatType ) import GHC.Core.Type ( mkVisFunTys, Type ) import GHC.Core.Predicate import GHC.Core.InstEnv import GHC.Builtin.Types ( mkListTy, mkSumTy ) import GHC.Tc.Types import GHC.Tc.Types.Evidence import GHC.Types.Var ( Id, Var, EvId, varName, setVarName, varType, varUnique ) import GHC.Types.Var.Env import GHC.Types.Unique import GHC.Iface.Make ( mkIfaceExports ) import GHC.Utils.Panic import GHC.Data.Maybe import GHC.Data.FastString import GHC.Iface.Ext.Types import GHC.Iface.Ext.Utils import qualified Data.Array as A import qualified Data.ByteString as BS import qualified Data.Map as M import qualified Data.Set as S import Data.Data ( Data, Typeable ) import Data.List ( foldl1' ) import Control.Monad ( forM_ ) import Control.Monad.Trans.State.Strict import Control.Monad.Trans.Reader import Control.Monad.Trans.Class ( lift ) {- Note [Updating HieAst for changes in the GHC AST] When updating the code in this file for changes in the GHC AST, you need to pay attention to the following things: 1) Symbols (Names/Vars/Modules) in the following categories: a) Symbols that appear in the source file that directly correspond to something the user typed b) Symbols that don't appear in the source, but should be in some sense "visible" to a user, particularly via IDE tooling or the like. This includes things like the names introduced by RecordWildcards (We record all the names introduced by a (..) in HIE files), and will include implicit parameters and evidence variables after one of my pending MRs lands. 2) Subtrees that may contain such symbols, or correspond to a SrcSpan in the file. This includes all `Located` things For 1), you need to call `toHie` for one of the following instances instance ToHie (Context (Located Name)) where ... instance ToHie (Context (Located Var)) where ... instance ToHie (IEContext (Located ModuleName)) where ... `Context` is a data type that looks like: data Context a = C ContextInfo a -- Used for names and bindings `ContextInfo` is defined in `GHC.Iface.Ext.Types`, and looks like data ContextInfo = Use -- ^ regular variable | MatchBind | IEThing IEType -- ^ import/export | TyDecl -- | Value binding | ValBind BindType -- ^ whether or not the binding is in an instance Scope -- ^ scope over which the value is bound (Maybe Span) -- ^ span of entire binding ... It is used to annotate symbols in the .hie files with some extra information on the context in which they occur and should be fairly self explanatory. You need to select one that looks appropriate for the symbol usage. In very rare cases, you might need to extend this sum type if none of the cases seem appropriate. So, given a `Located Name` that is just being "used", and not defined at a particular location, you would do the following: toHie $ C Use located_name If you select one that corresponds to a binding site, you will need to provide a `Scope` and a `Span` for your binding. Both of these are basically `SrcSpans`. The `SrcSpan` in the `Scope` is supposed to span over the part of the source where the symbol can be legally allowed to occur. For more details on how to calculate this, see Note [Capturing Scopes and other non local information] in GHC.Iface.Ext.Ast. The binding `Span` is supposed to be the span of the entire binding for the name. For a function definition `foo`: foo x = x + y where y = x^2 The binding `Span` is the span of the entire function definition from `foo x` to `x^2`. For a class definition, this is the span of the entire class, and so on. If this isn't well defined for your bit of syntax (like a variable bound by a lambda), then you can just supply a `Nothing` There is a test that checks that all symbols in the resulting HIE file occur inside their stated `Scope`. This can be turned on by passing the -fvalidate-ide-info flag to ghc along with -fwrite-ide-info to generate the .hie file. You may also want to provide a test in testsuite/test/hiefile that includes a file containing your new construction, and tests that the calculated scope is valid (by using -fvalidate-ide-info) For subtrees in the AST that may contain symbols, the procedure is fairly straightforward. If you are extending the GHC AST, you will need to provide a `ToHie` instance for any new types you may have introduced in the AST. Here are is an extract from the `ToHie` instance for (LHsExpr (GhcPass p)): toHie e@(L mspan oexpr) = concatM $ getTypeNode e : case oexpr of HsVar _ (L _ var) -> [ toHie $ C Use (L mspan var) -- Patch up var location since typechecker removes it ] HsConLikeOut _ con -> [ toHie $ C Use $ L mspan $ conLikeName con ] ... HsApp _ a b -> [ toHie a , toHie b ] If your subtree is `Located` or has a `SrcSpan` available, the output list should contain a HieAst `Node` corresponding to the subtree. You can use either `makeNode` or `getTypeNode` for this purpose, depending on whether it makes sense to assign a `Type` to the subtree. After this, you just need to concatenate the result of calling `toHie` on all subexpressions and appropriately annotated symbols contained in the subtree. The code above from the ToHie instance of `LhsExpr (GhcPass p)` is supposed to work for both the renamed and typechecked source. `getTypeNode` is from the `HasType` class defined in this file, and it has different instances for `GhcTc` and `GhcRn` that allow it to access the type of the expression when given a typechecked AST: class Data a => HasType a where getTypeNode :: a -> HieM [HieAST Type] instance HasType (LHsExpr GhcTc) where getTypeNode e@(L spn e') = ... -- Actually get the type for this expression instance HasType (LHsExpr GhcRn) where getTypeNode (L spn e) = makeNode e spn -- Fallback to a regular `makeNode` without recording the type If your subtree doesn't have a span available, you can omit the `makeNode` call and just recurse directly in to the subexpressions. -} -- These synonyms match those defined in compiler/GHC.hs type RenamedSource = ( HsGroup GhcRn, [LImportDecl GhcRn] , Maybe [(LIE GhcRn, Avails)] , Maybe LHsDocString ) type TypecheckedSource = LHsBinds GhcTc {- Note [Name Remapping] The Typechecker introduces new names for mono names in AbsBinds. We don't care about the distinction between mono and poly bindings, so we replace all occurrences of the mono name with the poly name. -} type VarMap a = DVarEnv (Var,a) data HieState = HieState { name_remapping :: NameEnv Id , unlocated_ev_binds :: VarMap (S.Set ContextInfo) -- These contain evidence bindings that we don't have a location for -- These are placed at the top level Node in the HieAST after everything -- else has been generated -- This includes things like top level evidence bindings. } addUnlocatedEvBind :: Var -> ContextInfo -> HieM () addUnlocatedEvBind var ci = do let go (a,b) (_,c) = (a,S.union b c) lift $ modify' $ \s -> s { unlocated_ev_binds = extendDVarEnv_C go (unlocated_ev_binds s) var (var,S.singleton ci) } getUnlocatedEvBinds :: FastString -> HieM (NodeIdentifiers Type,[HieAST Type]) getUnlocatedEvBinds file = do binds <- lift $ gets unlocated_ev_binds org <- ask let elts = dVarEnvElts binds mkNodeInfo (n,ci) = (Right (varName n), IdentifierDetails (Just $ varType n) ci) go e@(v,_) (xs,ys) = case nameSrcSpan $ varName v of RealSrcSpan spn _ | srcSpanFile spn == file -> let node = Node (mkSourcedNodeInfo org ni) spn [] ni = NodeInfo mempty [] $ M.fromList [mkNodeInfo e] in (xs,node:ys) _ -> (mkNodeInfo e : xs,ys) (nis,asts) = foldr go ([],[]) elts pure $ (M.fromList nis, asts) initState :: HieState initState = HieState emptyNameEnv emptyDVarEnv class ModifyState a where -- See Note [Name Remapping] addSubstitution :: a -> a -> HieState -> HieState instance ModifyState Name where addSubstitution _ _ hs = hs instance ModifyState Id where addSubstitution mono poly hs = hs{name_remapping = extendNameEnv (name_remapping hs) (varName mono) poly} modifyState :: ModifyState (IdP p) => [ABExport p] -> HieState -> HieState modifyState = foldr go id where go ABE{abe_poly=poly,abe_mono=mono} f = addSubstitution mono poly . f go _ f = f type HieM = ReaderT NodeOrigin (StateT HieState Hsc) -- | Construct an 'HieFile' from the outputs of the typechecker. mkHieFile :: ModSummary -> TcGblEnv -> RenamedSource -> Hsc HieFile mkHieFile ms ts rs = do let src_file = expectJust "mkHieFile" (ml_hs_file $ ms_location ms) src <- liftIO $ BS.readFile src_file mkHieFileWithSource src_file src ms ts rs -- | Construct an 'HieFile' from the outputs of the typechecker but don't -- read the source file again from disk. mkHieFileWithSource :: FilePath -> BS.ByteString -> ModSummary -> TcGblEnv -> RenamedSource -> Hsc HieFile mkHieFileWithSource src_file src ms ts rs = do let tc_binds = tcg_binds ts top_ev_binds = tcg_ev_binds ts insts = tcg_insts ts tcs = tcg_tcs ts (asts', arr) <- getCompressedAsts tc_binds rs top_ev_binds insts tcs return $ HieFile { hie_hs_file = src_file , hie_module = ms_mod ms , hie_types = arr , hie_asts = asts' -- mkIfaceExports sorts the AvailInfos for stability , hie_exports = mkIfaceExports (tcg_exports ts) , hie_hs_src = src } getCompressedAsts :: TypecheckedSource -> RenamedSource -> Bag EvBind -> [ClsInst] -> [TyCon] -> Hsc (HieASTs TypeIndex, A.Array TypeIndex HieTypeFlat) getCompressedAsts ts rs top_ev_binds insts tcs = do asts <- enrichHie ts rs top_ev_binds insts tcs return $ compressTypes asts enrichHie :: TypecheckedSource -> RenamedSource -> Bag EvBind -> [ClsInst] -> [TyCon] -> Hsc (HieASTs Type) enrichHie ts (hsGrp, imports, exports, _) ev_bs insts tcs = flip evalStateT initState $ flip runReaderT SourceInfo $ do tasts <- toHie $ fmap (BC RegularBind ModuleScope) ts rasts <- processGrp hsGrp imps <- toHie $ filter (not . ideclImplicit . unLoc) imports exps <- toHie $ fmap (map $ IEC Export . fst) exports -- Add Instance bindings forM_ insts $ \i -> addUnlocatedEvBind (is_dfun i) (EvidenceVarBind (EvInstBind False (is_cls_nm i)) ModuleScope Nothing) -- Add class parent bindings forM_ tcs $ \tc -> case tyConClass_maybe tc of Nothing -> pure () Just c -> forM_ (classSCSelIds c) $ \v -> addUnlocatedEvBind v (EvidenceVarBind (EvInstBind True (className c)) ModuleScope Nothing) let spanFile file children = case children of [] -> realSrcLocSpan (mkRealSrcLoc file 1 1) _ -> mkRealSrcSpan (realSrcSpanStart $ nodeSpan $ head children) (realSrcSpanEnd $ nodeSpan $ last children) flat_asts = concat [ tasts , rasts , imps , exps ] modulify file xs' = do top_ev_asts <- toHie $ EvBindContext ModuleScope Nothing $ L (RealSrcSpan (realSrcLocSpan $ mkRealSrcLoc file 1 1) Nothing) $ EvBinds ev_bs (uloc_evs,more_ev_asts) <- getUnlocatedEvBinds file let xs = mergeSortAsts $ xs' ++ top_ev_asts ++ more_ev_asts span = spanFile file xs moduleInfo = SourcedNodeInfo $ M.singleton SourceInfo $ (simpleNodeInfo "Module" "Module") {nodeIdentifiers = uloc_evs} moduleNode = Node moduleInfo span [] case mergeSortAsts $ moduleNode : xs of [x] -> return x xs -> panicDoc "enrichHie: mergeSortAsts returned more than one result" (ppr $ map nodeSpan xs) asts' <- sequence $ M.mapWithKey modulify $ M.fromListWith (++) $ map (\x -> (srcSpanFile (nodeSpan x),[x])) flat_asts let asts = HieASTs $ resolveTyVarScopes asts' return asts where processGrp grp = concatM [ toHie $ fmap (RS ModuleScope ) hs_valds grp , toHie $ hs_splcds grp , toHie $ hs_tyclds grp , toHie $ hs_derivds grp , toHie $ hs_fixds grp , toHie $ hs_defds grp , toHie $ hs_fords grp , toHie $ hs_warnds grp , toHie $ hs_annds grp , toHie $ hs_ruleds grp ] getRealSpan :: SrcSpan -> Maybe Span getRealSpan (RealSrcSpan sp _) = Just sp getRealSpan _ = Nothing grhss_span :: GRHSs p body -> SrcSpan grhss_span (GRHSs _ xs bs) = foldl' combineSrcSpans (getLoc bs) (map getLoc xs) grhss_span (XGRHSs _) = panic "XGRHS has no span" bindingsOnly :: [Context Name] -> HieM [HieAST a] bindingsOnly [] = pure [] bindingsOnly (C c n : xs) = do org <- ask rest <- bindingsOnly xs pure $ case nameSrcSpan n of RealSrcSpan span _ -> Node (mkSourcedNodeInfo org nodeinfo) span [] : rest where nodeinfo = NodeInfo S.empty [] (M.singleton (Right n) info) info = mempty{identInfo = S.singleton c} _ -> rest concatM :: Monad m => [m [a]] -> m [a] concatM xs = concat <$> sequence xs {- Note [Capturing Scopes and other non local information] toHie is a local transformation, but scopes of bindings cannot be known locally, hence we have to push the relevant info down into the binding nodes. We use the following types (*Context and *Scoped) to wrap things and carry the required info (Maybe Span) always carries the span of the entire binding, including rhs -} data Context a = C ContextInfo a -- Used for names and bindings data RContext a = RC RecFieldContext a data RFContext a = RFC RecFieldContext (Maybe Span) a -- ^ context for record fields data IEContext a = IEC IEType a -- ^ context for imports/exports data BindContext a = BC BindType Scope a -- ^ context for imports/exports data PatSynFieldContext a = PSC (Maybe Span) a -- ^ context for pattern synonym fields. data SigContext a = SC SigInfo a -- ^ context for type signatures data SigInfo = SI SigType (Maybe Span) data SigType = BindSig | ClassSig | InstSig data EvBindContext a = EvBindContext Scope (Maybe Span) a data RScoped a = RS Scope a -- ^ Scope spans over everything to the right of a, (mostly) not -- including a itself -- (Includes a in a few special cases like recursive do bindings) or -- let/where bindings -- | Pattern scope data PScoped a = PS (Maybe Span) Scope -- ^ use site of the pattern Scope -- ^ pattern to the right of a, not including a a deriving (Typeable, Data) -- Pattern Scope {- Note [TyVar Scopes] Due to -XScopedTypeVariables, type variables can be in scope quite far from their original binding. We resolve the scope of these type variables in a separate pass -} data TScoped a = TS TyVarScope a -- TyVarScope data TVScoped a = TVS TyVarScope Scope a -- TyVarScope -- ^ First scope remains constant -- Second scope is used to build up the scope of a tyvar over -- things to its right, ala RScoped -- | Each element scopes over the elements to the right listScopes :: Scope -> [Located a] -> [RScoped (Located a)] listScopes _ [] = [] listScopes rhsScope [pat] = [RS rhsScope pat] listScopes rhsScope (pat : pats) = RS sc pat : pats' where pats'@((RS scope p):_) = listScopes rhsScope pats sc = combineScopes scope $ mkScope $ getLoc p -- | 'listScopes' specialised to 'PScoped' things patScopes :: Maybe Span -> Scope -> Scope -> [LPat (GhcPass p)] -> [PScoped (LPat (GhcPass p))] patScopes rsp useScope patScope xs = map (\(RS sc a) -> PS rsp useScope sc a) $ listScopes patScope xs -- | 'listScopes' specialised to 'TVScoped' things tvScopes :: TyVarScope -> Scope -> [LHsTyVarBndr flag a] -> [TVScoped (LHsTyVarBndr flag a)] tvScopes tvScope rhsScope xs = map (\(RS sc a)-> TVS tvScope sc a) $ listScopes rhsScope xs {- Note [Scoping Rules for SigPat] Explicitly quantified variables in pattern type signatures are not brought into scope in the rhs, but implicitly quantified variables are (HsWC and HsIB). This is unlike other signatures, where explicitly quantified variables are brought into the RHS Scope For example foo :: forall a. ...; foo = ... -- a is in scope here bar (x :: forall a. a -> a) = ... -- a is not in scope here -- ^ a is in scope here (pattern body) bax (x :: a) = ... -- a is in scope here This case in handled in the instance for HsPatSigType -} class HasLoc a where -- ^ defined so that HsImplicitBndrs and HsWildCardBndrs can -- know what their implicit bindings are scoping over loc :: a -> SrcSpan instance HasLoc thing => HasLoc (TScoped thing) where loc (TS _ a) = loc a instance HasLoc thing => HasLoc (PScoped thing) where loc (PS _ _ _ a) = loc a instance HasLoc (LHsQTyVars GhcRn) where loc (HsQTvs _ vs) = loc vs instance HasLoc thing => HasLoc (HsImplicitBndrs a thing) where loc (HsIB _ a) = loc a loc _ = noSrcSpan instance HasLoc thing => HasLoc (HsWildCardBndrs a thing) where loc (HsWC _ a) = loc a loc _ = noSrcSpan instance HasLoc (Located a) where loc (L l _) = l instance HasLoc a => HasLoc [a] where loc [] = noSrcSpan loc xs = foldl1' combineSrcSpans $ map loc xs instance HasLoc a => HasLoc (FamEqn s a) where loc (FamEqn _ a Nothing b _ c) = foldl1' combineSrcSpans [loc a, loc b, loc c] loc (FamEqn _ a (Just tvs) b _ c) = foldl1' combineSrcSpans [loc a, loc tvs, loc b, loc c] loc _ = noSrcSpan instance (HasLoc tm, HasLoc ty) => HasLoc (HsArg tm ty) where loc (HsValArg tm) = loc tm loc (HsTypeArg _ ty) = loc ty loc (HsArgPar sp) = sp instance HasLoc (HsDataDefn GhcRn) where loc def@(HsDataDefn{}) = loc $ dd_cons def -- Only used for data family instances, so we only need rhs -- Most probably the rest will be unhelpful anyway {- Note [Real DataCon Name] The typechecker substitutes the conLikeWrapId for the name, but we don't want this showing up in the hieFile, so we replace the name in the Id with the original datacon name See also Note [Data Constructor Naming] -} class HasRealDataConName p where getRealDataCon :: XRecordCon p -> Located (IdP p) -> Located (IdP p) instance HasRealDataConName GhcRn where getRealDataCon _ n = n instance HasRealDataConName GhcTc where getRealDataCon RecordConTc{rcon_con_like = con} (L sp var) = L sp (setVarName var (conLikeName con)) -- | The main worker class -- See Note [Updating HieAst for changes in the GHC AST] for more information -- on how to add/modify instances for this. class ToHie a where toHie :: a -> HieM [HieAST Type] -- | Used to collect type info class HasType a where getTypeNode :: a -> HieM [HieAST Type] instance (ToHie a) => ToHie [a] where toHie = concatMapM toHie instance (ToHie a) => ToHie (Bag a) where toHie = toHie . bagToList instance (ToHie a) => ToHie (Maybe a) where toHie = maybe (pure []) toHie instance ToHie (IEContext (Located ModuleName)) where toHie (IEC c (L (RealSrcSpan span _) mname)) = do org <- ask pure $ [Node (mkSourcedNodeInfo org $ NodeInfo S.empty [] idents) span []] where details = mempty{identInfo = S.singleton (IEThing c)} idents = M.singleton (Left mname) details toHie _ = pure [] instance ToHie (Context (Located Var)) where toHie c = case c of C context (L (RealSrcSpan span _) name') | varUnique name' == mkBuiltinUnique 1 -> pure [] -- `mkOneRecordSelector` makes a field var using this unique, which we ignore | otherwise -> do m <- lift $ gets name_remapping org <- ask let name = case lookupNameEnv m (varName name') of Just var -> var Nothing-> name' ty = case isDataConId_maybe name' of Nothing -> varType name' Just dc -> dataConNonlinearType dc pure [Node (mkSourcedNodeInfo org $ NodeInfo S.empty [] $ M.singleton (Right $ varName name) (IdentifierDetails (Just ty) (S.singleton context))) span []] C (EvidenceVarBind i _ sp) (L _ name) -> do addUnlocatedEvBind name (EvidenceVarBind i ModuleScope sp) pure [] _ -> pure [] instance ToHie (Context (Located Name)) where toHie c = case c of C context (L (RealSrcSpan span _) name') | nameUnique name' == mkBuiltinUnique 1 -> pure [] -- `mkOneRecordSelector` makes a field var using this unique, which we ignore | otherwise -> do m <- lift $ gets name_remapping org <- ask let name = case lookupNameEnv m name' of Just var -> varName var Nothing -> name' pure [Node (mkSourcedNodeInfo org $ NodeInfo S.empty [] $ M.singleton (Right name) (IdentifierDetails Nothing (S.singleton context))) span []] _ -> pure [] evVarsOfTermList :: EvTerm -> [EvId] evVarsOfTermList (EvExpr e) = exprSomeFreeVarsList isEvVar e evVarsOfTermList (EvTypeable _ ev) = case ev of EvTypeableTyCon _ e -> concatMap evVarsOfTermList e EvTypeableTyApp e1 e2 -> concatMap evVarsOfTermList [e1,e2] EvTypeableTrFun e1 e2 e3 -> concatMap evVarsOfTermList [e1,e2,e3] EvTypeableTyLit e -> evVarsOfTermList e evVarsOfTermList (EvFun{}) = [] instance ToHie (EvBindContext (Located TcEvBinds)) where toHie (EvBindContext sc sp (L span (EvBinds bs))) = concatMapM go $ bagToList bs where go evbind = do let evDeps = evVarsOfTermList $ eb_rhs evbind depNames = EvBindDeps $ map varName evDeps concatM $ [ toHie (C (EvidenceVarBind (EvLetBind depNames) (combineScopes sc (mkScope span)) sp) (L span $ eb_lhs evbind)) , toHie $ map (C EvidenceVarUse . L span) $ evDeps ] toHie _ = pure [] instance ToHie (Located HsWrapper) where toHie (L osp wrap) = case wrap of (WpLet bs) -> toHie $ EvBindContext (mkScope osp) (getRealSpan osp) (L osp bs) (WpCompose a b) -> concatM $ [toHie (L osp a), toHie (L osp b)] (WpFun a b _ _) -> concatM $ [toHie (L osp a), toHie (L osp b)] (WpEvLam a) -> toHie $ C (EvidenceVarBind EvWrapperBind (mkScope osp) (getRealSpan osp)) $ L osp a (WpEvApp a) -> concatMapM (toHie . C EvidenceVarUse . L osp) $ evVarsOfTermList a _ -> pure [] instance HiePass p => HasType (LHsBind (GhcPass p)) where getTypeNode (L spn bind) = case hiePass @p of HieRn -> makeNode bind spn HieTc -> case bind of FunBind{fun_id = name} -> makeTypeNode bind spn (varType $ unLoc name) _ -> makeNode bind spn instance HiePass p => HasType (Located (Pat (GhcPass p))) where getTypeNode (L spn pat) = case hiePass @p of HieRn -> makeNode pat spn HieTc -> makeTypeNode pat spn (hsPatType pat) -- | This instance tries to construct 'HieAST' nodes which include the type of -- the expression. It is not yet possible to do this efficiently for all -- expression forms, so we skip filling in the type for those inputs. -- -- 'HsApp', for example, doesn't have any type information available directly on -- the node. Our next recourse would be to desugar it into a 'CoreExpr' then -- query the type of that. Yet both the desugaring call and the type query both -- involve recursive calls to the function and argument! This is particularly -- problematic when you realize that the HIE traversal will eventually visit -- those nodes too and ask for their types again. -- -- Since the above is quite costly, we just skip cases where computing the -- expression's type is going to be expensive. -- -- See #16233 instance HiePass p => HasType (LHsExpr (GhcPass p)) where getTypeNode e@(L spn e') = case hiePass @p of HieRn -> makeNode e' spn HieTc -> -- Some expression forms have their type immediately available let tyOpt = case e' of HsLit _ l -> Just (hsLitType l) HsOverLit _ o -> Just (overLitType o) HsConLikeOut _ (RealDataCon con) -> Just (dataConNonlinearType con) HsLam _ (MG { mg_ext = groupTy }) -> Just (matchGroupType groupTy) HsLamCase _ (MG { mg_ext = groupTy }) -> Just (matchGroupType groupTy) HsCase _ _ (MG { mg_ext = groupTy }) -> Just (mg_res_ty groupTy) ExplicitList ty _ _ -> Just (mkListTy ty) ExplicitSum ty _ _ _ -> Just (mkSumTy ty) HsDo ty _ _ -> Just ty HsMultiIf ty _ -> Just ty _ -> Nothing in case tyOpt of Just t -> makeTypeNode e' spn t Nothing | skipDesugaring e' -> fallback | otherwise -> do hs_env <- lift $ lift $ Hsc $ \e w -> return (e,w) (_,mbe) <- liftIO $ deSugarExpr hs_env e maybe fallback (makeTypeNode e' spn . exprType) mbe where fallback = makeNode e' spn matchGroupType :: MatchGroupTc -> Type matchGroupType (MatchGroupTc args res) = mkVisFunTys args res -- | Skip desugaring of these expressions for performance reasons. -- -- See impact on Haddock output (esp. missing type annotations or links) -- before marking more things here as 'False'. See impact on Haddock -- performance before marking more things as 'True'. skipDesugaring :: HsExpr GhcTc -> Bool skipDesugaring e = case e of HsVar{} -> False HsUnboundVar{} -> False HsConLikeOut{} -> False HsRecFld{} -> False HsOverLabel{} -> False HsIPVar{} -> False XExpr (WrapExpr {}) -> False _ -> True data HiePassEv p where HieRn :: HiePassEv 'Renamed HieTc :: HiePassEv 'Typechecked class ( IsPass p , HiePass (NoGhcTcPass p) , ModifyState (IdGhcP p) , Data (GRHS (GhcPass p) (Located (HsExpr (GhcPass p)))) , Data (HsExpr (GhcPass p)) , Data (HsCmd (GhcPass p)) , Data (AmbiguousFieldOcc (GhcPass p)) , Data (HsCmdTop (GhcPass p)) , Data (GRHS (GhcPass p) (Located (HsCmd (GhcPass p)))) , Data (HsSplice (GhcPass p)) , Data (HsLocalBinds (GhcPass p)) , Data (FieldOcc (GhcPass p)) , Data (HsTupArg (GhcPass p)) , Data (IPBind (GhcPass p)) , ToHie (Context (Located (IdGhcP p))) , ToHie (RFContext (Located (AmbiguousFieldOcc (GhcPass p)))) , ToHie (RFContext (Located (FieldOcc (GhcPass p)))) , ToHie (TScoped (LHsWcType (GhcPass (NoGhcTcPass p)))) , ToHie (TScoped (LHsSigWcType (GhcPass (NoGhcTcPass p)))) , HasRealDataConName (GhcPass p) ) => HiePass p where hiePass :: HiePassEv p instance HiePass 'Renamed where hiePass = HieRn instance HiePass 'Typechecked where hiePass = HieTc instance HiePass p => ToHie (BindContext (LHsBind (GhcPass p))) where toHie (BC context scope b@(L span bind)) = concatM $ getTypeNode b : case bind of FunBind{fun_id = name, fun_matches = matches, fun_ext = wrap} -> [ toHie $ C (ValBind context scope $ getRealSpan span) name , toHie matches , case hiePass @p of HieTc -> toHie $ L span wrap _ -> pure [] ] PatBind{pat_lhs = lhs, pat_rhs = rhs} -> [ toHie $ PS (getRealSpan span) scope NoScope lhs , toHie rhs ] VarBind{var_rhs = expr} -> [ toHie expr ] AbsBinds{ abs_exports = xs, abs_binds = binds , abs_ev_binds = ev_binds , abs_ev_vars = ev_vars } -> [ lift (modify (modifyState xs)) >> -- Note [Name Remapping] (toHie $ fmap (BC context scope) binds) , toHie $ map (L span . abe_wrap) xs , toHie $ map (EvBindContext (mkScope span) (getRealSpan span) . L span) ev_binds , toHie $ map (C (EvidenceVarBind EvSigBind (mkScope span) (getRealSpan span)) . L span) ev_vars ] PatSynBind _ psb -> [ toHie $ L span psb -- PatSynBinds only occur at the top level ] instance ( HiePass p , ToHie (Located body) , Data body ) => ToHie (MatchGroup (GhcPass p) (Located body)) where toHie mg = case mg of MG{ mg_alts = (L span alts) , mg_origin = origin} -> local (setOrigin origin) $ concatM [ locOnly span , toHie alts ] setOrigin :: Origin -> NodeOrigin -> NodeOrigin setOrigin FromSource _ = SourceInfo setOrigin Generated _ = GeneratedInfo instance HiePass p => ToHie (Located (PatSynBind (GhcPass p) (GhcPass p))) where toHie (L sp psb) = concatM $ case psb of PSB{psb_id=var, psb_args=dets, psb_def=pat, psb_dir=dir} -> [ toHie $ C (Decl PatSynDec $ getRealSpan sp) var , toHie $ toBind dets , toHie $ PS Nothing lhsScope patScope pat , toHie dir ] where lhsScope = combineScopes varScope detScope varScope = mkLScope var patScope = mkScope $ getLoc pat detScope = case dets of (PrefixCon args) -> foldr combineScopes NoScope $ map mkLScope args (InfixCon a b) -> combineScopes (mkLScope a) (mkLScope b) (RecCon r) -> foldr go NoScope r go (RecordPatSynField a b) c = combineScopes c $ combineScopes (mkLScope a) (mkLScope b) detSpan = case detScope of LocalScope a -> Just a _ -> Nothing toBind (PrefixCon args) = PrefixCon $ map (C Use) args toBind (InfixCon a b) = InfixCon (C Use a) (C Use b) toBind (RecCon r) = RecCon $ map (PSC detSpan) r instance HiePass p => ToHie (HsPatSynDir (GhcPass p)) where toHie dir = case dir of ExplicitBidirectional mg -> toHie mg _ -> pure [] instance ( HiePass p , Data body , ToHie (Located body) ) => ToHie (LMatch (GhcPass p) (Located body)) where toHie (L span m ) = concatM $ node : case m of Match{m_ctxt=mctx, m_pats = pats, m_grhss = grhss } -> [ toHie mctx , let rhsScope = mkScope $ grhss_span grhss in toHie $ patScopes Nothing rhsScope NoScope pats , toHie grhss ] where node = case hiePass @p of HieTc -> makeNode m span HieRn -> makeNode m span instance HiePass p => ToHie (HsMatchContext (GhcPass p)) where toHie (FunRhs{mc_fun=name}) = toHie $ C MatchBind name toHie (StmtCtxt a) = toHie a toHie _ = pure [] instance HiePass p => ToHie (HsStmtContext (GhcPass p)) where toHie (PatGuard a) = toHie a toHie (ParStmtCtxt a) = toHie a toHie (TransStmtCtxt a) = toHie a toHie _ = pure [] instance HiePass p => ToHie (PScoped (Located (Pat (GhcPass p)))) where toHie (PS rsp scope pscope lpat@(L ospan opat)) = concatM $ getTypeNode lpat : case opat of WildPat _ -> [] VarPat _ lname -> [ toHie $ C (PatternBind scope pscope rsp) lname ] LazyPat _ p -> [ toHie $ PS rsp scope pscope p ] AsPat _ lname pat -> [ toHie $ C (PatternBind scope (combineScopes (mkLScope pat) pscope) rsp) lname , toHie $ PS rsp scope pscope pat ] ParPat _ pat -> [ toHie $ PS rsp scope pscope pat ] BangPat _ pat -> [ toHie $ PS rsp scope pscope pat ] ListPat _ pats -> [ toHie $ patScopes rsp scope pscope pats ] TuplePat _ pats _ -> [ toHie $ patScopes rsp scope pscope pats ] SumPat _ pat _ _ -> [ toHie $ PS rsp scope pscope pat ] ConPat {pat_con = con, pat_args = dets, pat_con_ext = ext} -> case hiePass @p of HieTc -> [ toHie $ C Use $ fmap conLikeName con , toHie $ contextify dets , let ev_binds = cpt_binds ext ev_vars = cpt_dicts ext wrap = cpt_wrap ext evscope = mkScope ospan `combineScopes` scope `combineScopes` pscope in concatM [ toHie $ EvBindContext scope rsp $ L ospan ev_binds , toHie $ L ospan wrap , toHie $ map (C (EvidenceVarBind EvPatternBind evscope rsp) . L ospan) ev_vars ] ] HieRn -> [ toHie $ C Use con , toHie $ contextify dets ] ViewPat _ expr pat -> [ toHie expr , toHie $ PS rsp scope pscope pat ] SplicePat _ sp -> [ toHie $ L ospan sp ] LitPat _ _ -> [] NPat _ _ _ _ -> [] NPlusKPat _ n _ _ _ _ -> [ toHie $ C (PatternBind scope pscope rsp) n ] SigPat _ pat sig -> [ toHie $ PS rsp scope pscope pat , case hiePass @p of HieTc -> let cscope = mkLScope pat in toHie $ TS (ResolvedScopes [cscope, scope, pscope]) sig HieRn -> pure [] ] XPat e -> case hiePass @p of HieTc -> let CoPat wrap pat _ = e in [ toHie $ L ospan wrap , toHie $ PS rsp scope pscope $ (L ospan pat) ] #if __GLASGOW_HASKELL__ < 811 HieRn -> [] #endif where contextify :: a ~ LPat (GhcPass p) => HsConDetails a (HsRecFields (GhcPass p) a) -> HsConDetails (PScoped a) (RContext (HsRecFields (GhcPass p) (PScoped a))) contextify (PrefixCon args) = PrefixCon $ patScopes rsp scope pscope args contextify (InfixCon a b) = InfixCon a' b' where [a', b'] = patScopes rsp scope pscope [a,b] contextify (RecCon r) = RecCon $ RC RecFieldMatch $ contextify_rec r contextify_rec (HsRecFields fds a) = HsRecFields (map go scoped_fds) a where go (RS fscope (L spn (HsRecField lbl pat pun))) = L spn $ HsRecField lbl (PS rsp scope fscope pat) pun scoped_fds = listScopes pscope fds instance ToHie (TScoped (HsPatSigType GhcRn)) where toHie (TS sc (HsPS (HsPSRn wcs tvs) body@(L span _))) = concatM $ [ bindingsOnly $ map (C $ TyVarBind (mkScope span) sc) (wcs++tvs) , toHie body ] -- See Note [Scoping Rules for SigPat] instance ( ToHie (Located body) , HiePass p , Data body ) => ToHie (GRHSs (GhcPass p) (Located body)) where toHie grhs = concatM $ case grhs of GRHSs _ grhss binds -> [ toHie grhss , toHie $ RS (mkScope $ grhss_span grhs) binds ] instance ( ToHie (Located body) , HiePass a , Data body ) => ToHie (LGRHS (GhcPass a) (Located body)) where toHie (L span g) = concatM $ node : case g of GRHS _ guards body -> [ toHie $ listScopes (mkLScope body) guards , toHie body ] where node = case hiePass @a of HieRn -> makeNode g span HieTc -> makeNode g span instance HiePass p => ToHie (LHsExpr (GhcPass p)) where toHie e@(L mspan oexpr) = concatM $ getTypeNode e : case oexpr of HsVar _ (L _ var) -> [ toHie $ C Use (L mspan var) -- Patch up var location since typechecker removes it ] HsUnboundVar _ _ -> [] HsConLikeOut _ con -> [ toHie $ C Use $ L mspan $ conLikeName con ] HsRecFld _ fld -> [ toHie $ RFC RecFieldOcc Nothing (L mspan fld) ] HsOverLabel _ _ _ -> [] HsIPVar _ _ -> [] HsOverLit _ _ -> [] HsLit _ _ -> [] HsLam _ mg -> [ toHie mg ] HsLamCase _ mg -> [ toHie mg ] HsApp _ a b -> [ toHie a , toHie b ] HsAppType _ expr sig -> [ toHie expr , toHie $ TS (ResolvedScopes []) sig ] OpApp _ a b c -> [ toHie a , toHie b , toHie c ] NegApp _ a _ -> [ toHie a ] HsPar _ a -> [ toHie a ] SectionL _ a b -> [ toHie a , toHie b ] SectionR _ a b -> [ toHie a , toHie b ] ExplicitTuple _ args _ -> [ toHie args ] ExplicitSum _ _ _ expr -> [ toHie expr ] HsCase _ expr matches -> [ toHie expr , toHie matches ] HsIf _ a b c -> [ toHie a , toHie b , toHie c ] HsMultiIf _ grhss -> [ toHie grhss ] HsLet _ binds expr -> [ toHie $ RS (mkLScope expr) binds , toHie expr ] HsDo _ _ (L ispan stmts) -> [ locOnly ispan , toHie $ listScopes NoScope stmts ] ExplicitList _ _ exprs -> [ toHie exprs ] RecordCon {rcon_ext = mrealcon, rcon_con_name = name, rcon_flds = binds} -> [ toHie $ C Use (getRealDataCon @(GhcPass p) mrealcon name) -- See Note [Real DataCon Name] , toHie $ RC RecFieldAssign $ binds ] RecordUpd {rupd_expr = expr, rupd_flds = upds}-> [ toHie expr , toHie $ map (RC RecFieldAssign) upds ] ExprWithTySig _ expr sig -> [ toHie expr , toHie $ TS (ResolvedScopes [mkLScope expr]) sig ] ArithSeq _ _ info -> [ toHie info ] HsPragE _ _ expr -> [ toHie expr ] HsProc _ pat cmdtop -> [ toHie $ PS Nothing (mkLScope cmdtop) NoScope pat , toHie cmdtop ] HsStatic _ expr -> [ toHie expr ] HsTick _ _ expr -> [ toHie expr ] HsBinTick _ _ _ expr -> [ toHie expr ] HsBracket _ b -> [ toHie b ] HsRnBracketOut _ b p -> [ toHie b , toHie p ] HsTcBracketOut _ _wrap b p -> [ toHie b , toHie p ] HsSpliceE _ x -> [ toHie $ L mspan x ] XExpr x | GhcTc <- ghcPass @p , WrapExpr (HsWrap w a) <- x -> [ toHie $ L mspan a , toHie (L mspan w) ] | GhcTc <- ghcPass @p , ExpansionExpr (HsExpanded _ b) <- x -> [ toHie (L mspan b) ] | otherwise -> [] instance HiePass p => ToHie (LHsTupArg (GhcPass p)) where toHie (L span arg) = concatM $ makeNode arg span : case arg of Present _ expr -> [ toHie expr ] Missing _ -> [] instance ( ToHie (Located body) , Data body , HiePass p ) => ToHie (RScoped (LStmt (GhcPass p) (Located body))) where toHie (RS scope (L span stmt)) = concatM $ node : case stmt of LastStmt _ body _ _ -> [ toHie body ] BindStmt _ pat body -> [ toHie $ PS (getRealSpan $ getLoc body) scope NoScope pat , toHie body ] ApplicativeStmt _ stmts _ -> [ concatMapM (toHie . RS scope . snd) stmts ] BodyStmt _ body _ _ -> [ toHie body ] LetStmt _ binds -> [ toHie $ RS scope binds ] ParStmt _ parstmts _ _ -> [ concatMapM (\(ParStmtBlock _ stmts _ _) -> toHie $ listScopes NoScope stmts) parstmts ] TransStmt {trS_stmts = stmts, trS_using = using, trS_by = by} -> [ toHie $ listScopes scope stmts , toHie using , toHie by ] RecStmt {recS_stmts = stmts} -> [ toHie $ map (RS $ combineScopes scope (mkScope span)) stmts ] where node = case hiePass @p of HieTc -> makeNode stmt span HieRn -> makeNode stmt span instance HiePass p => ToHie (RScoped (LHsLocalBinds (GhcPass p))) where toHie (RS scope (L sp binds)) = concatM $ makeNode binds sp : case binds of EmptyLocalBinds _ -> [] HsIPBinds _ ipbinds -> case ipbinds of IPBinds evbinds xs -> let sc = combineScopes scope $ mkScope sp in [ case hiePass @p of HieTc -> toHie $ EvBindContext sc (getRealSpan sp) $ L sp evbinds HieRn -> pure [] , toHie $ map (RS sc) xs ] HsValBinds _ valBinds -> [ toHie $ RS (combineScopes scope $ mkScope sp) valBinds ] instance HiePass p => ToHie (RScoped (LIPBind (GhcPass p))) where toHie (RS scope (L sp bind)) = concatM $ makeNode bind sp : case bind of IPBind _ (Left _) expr -> [toHie expr] IPBind _ (Right v) expr -> [ toHie $ C (EvidenceVarBind EvImplicitBind scope (getRealSpan sp)) $ L sp v , toHie expr ] instance HiePass p => ToHie (RScoped (HsValBindsLR (GhcPass p) (GhcPass p))) where toHie (RS sc v) = concatM $ case v of ValBinds _ binds sigs -> [ toHie $ fmap (BC RegularBind sc) binds , toHie $ fmap (SC (SI BindSig Nothing)) sigs ] XValBindsLR x -> [ toHie $ RS sc x ] instance HiePass p => ToHie (RScoped (NHsValBindsLR (GhcPass p))) where toHie (RS sc (NValBinds binds sigs)) = concatM $ [ toHie (concatMap (map (BC RegularBind sc) . bagToList . snd) binds) , toHie $ fmap (SC (SI BindSig Nothing)) sigs ] instance ( ToHie arg , HasLoc arg , Data arg , HiePass p ) => ToHie (RContext (HsRecFields (GhcPass p) arg)) where toHie (RC c (HsRecFields fields _)) = toHie $ map (RC c) fields instance ( ToHie (RFContext (Located label)) , ToHie arg , HasLoc arg , Data arg , Data label ) => ToHie (RContext (LHsRecField' label arg)) where toHie (RC c (L span recfld)) = concatM $ makeNode recfld span : case recfld of HsRecField label expr _ -> [ toHie $ RFC c (getRealSpan $ loc expr) label , toHie expr ] instance ToHie (RFContext (LFieldOcc GhcRn)) where toHie (RFC c rhs (L nspan f)) = concatM $ case f of FieldOcc name _ -> [ toHie $ C (RecField c rhs) (L nspan name) ] instance ToHie (RFContext (LFieldOcc GhcTc)) where toHie (RFC c rhs (L nspan f)) = concatM $ case f of FieldOcc var _ -> [ toHie $ C (RecField c rhs) (L nspan var) ] instance ToHie (RFContext (Located (AmbiguousFieldOcc GhcRn))) where toHie (RFC c rhs (L nspan afo)) = concatM $ case afo of Unambiguous name _ -> [ toHie $ C (RecField c rhs) $ L nspan name ] Ambiguous _name _ -> [ ] instance ToHie (RFContext (Located (AmbiguousFieldOcc GhcTc))) where toHie (RFC c rhs (L nspan afo)) = concatM $ case afo of Unambiguous var _ -> [ toHie $ C (RecField c rhs) (L nspan var) ] Ambiguous var _ -> [ toHie $ C (RecField c rhs) (L nspan var) ] instance HiePass p => ToHie (RScoped (ApplicativeArg (GhcPass p))) where toHie (RS sc (ApplicativeArgOne _ pat expr _)) = concatM [ toHie $ PS Nothing sc NoScope pat , toHie expr ] toHie (RS sc (ApplicativeArgMany _ stmts _ pat _)) = concatM [ toHie $ listScopes NoScope stmts , toHie $ PS Nothing sc NoScope pat ] instance (ToHie arg, ToHie rec) => ToHie (HsConDetails arg rec) where toHie (PrefixCon args) = toHie args toHie (RecCon rec) = toHie rec toHie (InfixCon a b) = concatM [ toHie a, toHie b] instance HiePass p => ToHie (LHsCmdTop (GhcPass p)) where toHie (L span top) = concatM $ makeNode top span : case top of HsCmdTop _ cmd -> [ toHie cmd ] instance HiePass p => ToHie (LHsCmd (GhcPass p)) where toHie (L span cmd) = concatM $ makeNode cmd span : case cmd of HsCmdArrApp _ a b _ _ -> [ toHie a , toHie b ] HsCmdArrForm _ a _ _ cmdtops -> [ toHie a , toHie cmdtops ] HsCmdApp _ a b -> [ toHie a , toHie b ] HsCmdLam _ mg -> [ toHie mg ] HsCmdPar _ a -> [ toHie a ] HsCmdCase _ expr alts -> [ toHie expr , toHie alts ] HsCmdLamCase _ alts -> [ toHie alts ] HsCmdIf _ _ a b c -> [ toHie a , toHie b , toHie c ] HsCmdLet _ binds cmd' -> [ toHie $ RS (mkLScope cmd') binds , toHie cmd' ] HsCmdDo _ (L ispan stmts) -> [ locOnly ispan , toHie $ listScopes NoScope stmts ] XCmd _ -> [] instance ToHie (TyClGroup GhcRn) where toHie TyClGroup{ group_tyclds = classes , group_roles = roles , group_kisigs = sigs , group_instds = instances } = concatM [ toHie classes , toHie sigs , toHie roles , toHie instances ] instance ToHie (LTyClDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of FamDecl {tcdFam = fdecl} -> [ toHie (L span fdecl) ] SynDecl {tcdLName = name, tcdTyVars = vars, tcdRhs = typ} -> [ toHie $ C (Decl SynDec $ getRealSpan span) name , toHie $ TS (ResolvedScopes [mkScope $ getLoc typ]) vars , toHie typ ] DataDecl {tcdLName = name, tcdTyVars = vars, tcdDataDefn = defn} -> [ toHie $ C (Decl DataDec $ getRealSpan span) name , toHie $ TS (ResolvedScopes [quant_scope, rhs_scope]) vars , toHie defn ] where quant_scope = mkLScope $ dd_ctxt defn rhs_scope = sig_sc `combineScopes` con_sc `combineScopes` deriv_sc sig_sc = maybe NoScope mkLScope $ dd_kindSig defn con_sc = foldr combineScopes NoScope $ map mkLScope $ dd_cons defn deriv_sc = mkLScope $ dd_derivs defn ClassDecl { tcdCtxt = context , tcdLName = name , tcdTyVars = vars , tcdFDs = deps , tcdSigs = sigs , tcdMeths = meths , tcdATs = typs , tcdATDefs = deftyps } -> [ toHie $ C (Decl ClassDec $ getRealSpan span) name , toHie context , toHie $ TS (ResolvedScopes [context_scope, rhs_scope]) vars , toHie deps , toHie $ map (SC $ SI ClassSig $ getRealSpan span) sigs , toHie $ fmap (BC InstanceBind ModuleScope) meths , toHie typs , concatMapM (locOnly . getLoc) deftyps , toHie deftyps ] where context_scope = mkLScope context rhs_scope = foldl1' combineScopes $ map mkScope [ loc deps, loc sigs, loc (bagToList meths), loc typs, loc deftyps] instance ToHie (LFamilyDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of FamilyDecl _ info name vars _ sig inj -> [ toHie $ C (Decl FamDec $ getRealSpan span) name , toHie $ TS (ResolvedScopes [rhsSpan]) vars , toHie info , toHie $ RS injSpan sig , toHie inj ] where rhsSpan = sigSpan `combineScopes` injSpan sigSpan = mkScope $ getLoc sig injSpan = maybe NoScope (mkScope . getLoc) inj instance ToHie (FamilyInfo GhcRn) where toHie (ClosedTypeFamily (Just eqns)) = concatM $ [ concatMapM (locOnly . getLoc) eqns , toHie $ map go eqns ] where go (L l ib) = TS (ResolvedScopes [mkScope l]) ib toHie _ = pure [] instance ToHie (RScoped (LFamilyResultSig GhcRn)) where toHie (RS sc (L span sig)) = concatM $ makeNode sig span : case sig of NoSig _ -> [] KindSig _ k -> [ toHie k ] TyVarSig _ bndr -> [ toHie $ TVS (ResolvedScopes [sc]) NoScope bndr ] instance ToHie (Located (FunDep (Located Name))) where toHie (L span fd@(lhs, rhs)) = concatM $ [ makeNode fd span , toHie $ map (C Use) lhs , toHie $ map (C Use) rhs ] instance (ToHie rhs, HasLoc rhs) => ToHie (TScoped (FamEqn GhcRn rhs)) where toHie (TS _ f) = toHie f instance (ToHie rhs, HasLoc rhs) => ToHie (FamEqn GhcRn rhs) where toHie fe@(FamEqn _ var tybndrs pats _ rhs) = concatM $ [ toHie $ C (Decl InstDec $ getRealSpan $ loc fe) var , toHie $ fmap (tvScopes (ResolvedScopes []) scope) tybndrs , toHie pats , toHie rhs ] where scope = combineScopes patsScope rhsScope patsScope = mkScope (loc pats) rhsScope = mkScope (loc rhs) instance ToHie (LInjectivityAnn GhcRn) where toHie (L span ann) = concatM $ makeNode ann span : case ann of InjectivityAnn lhs rhs -> [ toHie $ C Use lhs , toHie $ map (C Use) rhs ] instance ToHie (HsDataDefn GhcRn) where toHie (HsDataDefn _ _ ctx _ mkind cons derivs) = concatM [ toHie ctx , toHie mkind , toHie cons , toHie derivs ] instance ToHie (HsDeriving GhcRn) where toHie (L span clauses) = concatM [ locOnly span , toHie clauses ] instance ToHie (LHsDerivingClause GhcRn) where toHie (L span cl) = concatM $ makeNode cl span : case cl of HsDerivingClause _ strat (L ispan tys) -> [ toHie strat , locOnly ispan , toHie $ map (TS (ResolvedScopes [])) tys ] instance ToHie (Located (DerivStrategy GhcRn)) where toHie (L span strat) = concatM $ makeNode strat span : case strat of StockStrategy -> [] AnyclassStrategy -> [] NewtypeStrategy -> [] ViaStrategy s -> [ toHie $ TS (ResolvedScopes []) s ] instance ToHie (Located OverlapMode) where toHie (L span _) = locOnly span instance ToHie a => ToHie (HsScaled GhcRn a) where toHie (HsScaled w t) = concatM [toHie (arrowToHsType w), toHie t] instance ToHie (LConDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of ConDeclGADT { con_names = names, con_qvars = exp_vars, con_g_ext = imp_vars , con_mb_cxt = ctx, con_args = args, con_res_ty = typ } -> [ toHie $ map (C (Decl ConDec $ getRealSpan span)) names , concatM $ [ bindingsOnly bindings , toHie $ tvScopes resScope NoScope exp_vars ] , toHie ctx , toHie args , toHie typ ] where rhsScope = combineScopes argsScope tyScope ctxScope = maybe NoScope mkLScope ctx argsScope = condecl_scope args tyScope = mkLScope typ resScope = ResolvedScopes [ctxScope, rhsScope] bindings = map (C $ TyVarBind (mkScope (loc exp_vars)) resScope) imp_vars ConDeclH98 { con_name = name, con_ex_tvs = qvars , con_mb_cxt = ctx, con_args = dets } -> [ toHie $ C (Decl ConDec $ getRealSpan span) name , toHie $ tvScopes (ResolvedScopes []) rhsScope qvars , toHie ctx , toHie dets ] where rhsScope = combineScopes ctxScope argsScope ctxScope = maybe NoScope mkLScope ctx argsScope = condecl_scope dets where condecl_scope :: HsConDeclDetails p -> Scope condecl_scope args = case args of PrefixCon xs -> foldr combineScopes NoScope $ map (mkLScope . hsScaledThing) xs InfixCon a b -> combineScopes (mkLScope (hsScaledThing a)) (mkLScope (hsScaledThing b)) RecCon x -> mkLScope x instance ToHie (Located [LConDeclField GhcRn]) where toHie (L span decls) = concatM $ [ locOnly span , toHie decls ] instance ( HasLoc thing , ToHie (TScoped thing) ) => ToHie (TScoped (HsImplicitBndrs GhcRn thing)) where toHie (TS sc (HsIB ibrn a)) = concatM $ [ bindingsOnly $ map (C $ TyVarBind (mkScope span) sc) ibrn , toHie $ TS sc a ] where span = loc a instance ( HasLoc thing , ToHie (TScoped thing) ) => ToHie (TScoped (HsWildCardBndrs GhcRn thing)) where toHie (TS sc (HsWC names a)) = concatM $ [ bindingsOnly $ map (C $ TyVarBind (mkScope span) sc) names , toHie $ TS sc a ] where span = loc a instance ToHie (LStandaloneKindSig GhcRn) where toHie (L sp sig) = concatM [makeNode sig sp, toHie sig] instance ToHie (StandaloneKindSig GhcRn) where toHie sig = concatM $ case sig of StandaloneKindSig _ name typ -> [ toHie $ C TyDecl name , toHie $ TS (ResolvedScopes []) typ ] instance HiePass p => ToHie (SigContext (LSig (GhcPass p))) where toHie (SC (SI styp msp) (L sp sig)) = case hiePass @p of HieTc -> pure [] HieRn -> concatM $ makeNode sig sp : case sig of TypeSig _ names typ -> [ toHie $ map (C TyDecl) names , toHie $ TS (UnresolvedScope (map unLoc names) Nothing) typ ] PatSynSig _ names typ -> [ toHie $ map (C TyDecl) names , toHie $ TS (UnresolvedScope (map unLoc names) Nothing) typ ] ClassOpSig _ _ names typ -> [ case styp of ClassSig -> toHie $ map (C $ ClassTyDecl $ getRealSpan sp) names _ -> toHie $ map (C $ TyDecl) names , toHie $ TS (UnresolvedScope (map unLoc names) msp) typ ] IdSig _ _ -> [] FixSig _ fsig -> [ toHie $ L sp fsig ] InlineSig _ name _ -> [ toHie $ (C Use) name ] SpecSig _ name typs _ -> [ toHie $ (C Use) name , toHie $ map (TS (ResolvedScopes [])) typs ] SpecInstSig _ _ typ -> [ toHie $ TS (ResolvedScopes []) typ ] MinimalSig _ _ form -> [ toHie form ] SCCFunSig _ _ name mtxt -> [ toHie $ (C Use) name , maybe (pure []) (locOnly . getLoc) mtxt ] CompleteMatchSig _ _ (L ispan names) typ -> [ locOnly ispan , toHie $ map (C Use) names , toHie $ fmap (C Use) typ ] instance ToHie (LHsType GhcRn) where toHie x = toHie $ TS (ResolvedScopes []) x instance ToHie (TScoped (LHsType GhcRn)) where toHie (TS tsc (L span t)) = concatM $ makeNode t span : case t of HsForAllTy _ tele body -> let scope = mkScope $ getLoc body in [ case tele of HsForAllVis { hsf_vis_bndrs = bndrs } -> toHie $ tvScopes tsc scope bndrs HsForAllInvis { hsf_invis_bndrs = bndrs } -> toHie $ tvScopes tsc scope bndrs , toHie body ] HsQualTy _ ctx body -> [ toHie ctx , toHie body ] HsTyVar _ _ var -> [ toHie $ C Use var ] HsAppTy _ a b -> [ toHie a , toHie b ] HsAppKindTy _ ty ki -> [ toHie ty , toHie $ TS (ResolvedScopes []) ki ] HsFunTy _ w a b -> [ toHie (arrowToHsType w) , toHie a , toHie b ] HsListTy _ a -> [ toHie a ] HsTupleTy _ _ tys -> [ toHie tys ] HsSumTy _ tys -> [ toHie tys ] HsOpTy _ a op b -> [ toHie a , toHie $ C Use op , toHie b ] HsParTy _ a -> [ toHie a ] HsIParamTy _ ip ty -> [ toHie ip , toHie ty ] HsKindSig _ a b -> [ toHie a , toHie b ] HsSpliceTy _ a -> [ toHie $ L span a ] HsDocTy _ a _ -> [ toHie a ] HsBangTy _ _ ty -> [ toHie ty ] HsRecTy _ fields -> [ toHie fields ] HsExplicitListTy _ _ tys -> [ toHie tys ] HsExplicitTupleTy _ tys -> [ toHie tys ] HsTyLit _ _ -> [] HsWildCardTy _ -> [] HsStarTy _ _ -> [] XHsType _ -> [] instance (ToHie tm, ToHie ty) => ToHie (HsArg tm ty) where toHie (HsValArg tm) = toHie tm toHie (HsTypeArg _ ty) = toHie ty toHie (HsArgPar sp) = locOnly sp instance Data flag => ToHie (TVScoped (LHsTyVarBndr flag GhcRn)) where toHie (TVS tsc sc (L span bndr)) = concatM $ makeNode bndr span : case bndr of UserTyVar _ _ var -> [ toHie $ C (TyVarBind sc tsc) var ] KindedTyVar _ _ var kind -> [ toHie $ C (TyVarBind sc tsc) var , toHie kind ] instance ToHie (TScoped (LHsQTyVars GhcRn)) where toHie (TS sc (HsQTvs implicits vars)) = concatM $ [ bindingsOnly bindings , toHie $ tvScopes sc NoScope vars ] where varLoc = loc vars bindings = map (C $ TyVarBind (mkScope varLoc) sc) implicits instance ToHie (LHsContext GhcRn) where toHie (L span tys) = concatM $ [ locOnly span , toHie tys ] instance ToHie (LConDeclField GhcRn) where toHie (L span field) = concatM $ makeNode field span : case field of ConDeclField _ fields typ _ -> [ toHie $ map (RFC RecFieldDecl (getRealSpan $ loc typ)) fields , toHie typ ] instance ToHie (LHsExpr a) => ToHie (ArithSeqInfo a) where toHie (From expr) = toHie expr toHie (FromThen a b) = concatM $ [ toHie a , toHie b ] toHie (FromTo a b) = concatM $ [ toHie a , toHie b ] toHie (FromThenTo a b c) = concatM $ [ toHie a , toHie b , toHie c ] instance ToHie (LSpliceDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of SpliceDecl _ splice _ -> [ toHie splice ] instance ToHie (HsBracket a) where toHie _ = pure [] instance ToHie PendingRnSplice where toHie _ = pure [] instance ToHie PendingTcSplice where toHie _ = pure [] instance ToHie (LBooleanFormula (Located Name)) where toHie (L span form) = concatM $ makeNode form span : case form of Var a -> [ toHie $ C Use a ] And forms -> [ toHie forms ] Or forms -> [ toHie forms ] Parens f -> [ toHie f ] instance ToHie (Located HsIPName) where toHie (L span e) = makeNode e span instance HiePass p => ToHie (Located (HsSplice (GhcPass p))) where toHie (L span sp) = concatM $ makeNode sp span : case sp of HsTypedSplice _ _ _ expr -> [ toHie expr ] HsUntypedSplice _ _ _ expr -> [ toHie expr ] HsQuasiQuote _ _ _ ispan _ -> [ locOnly ispan ] HsSpliced _ _ _ -> [] XSplice x -> case ghcPass @p of #if __GLASGOW_HASKELL__ < 811 GhcPs -> noExtCon x GhcRn -> noExtCon x #endif GhcTc -> case x of HsSplicedT _ -> [] instance ToHie (LRoleAnnotDecl GhcRn) where toHie (L span annot) = concatM $ makeNode annot span : case annot of RoleAnnotDecl _ var roles -> [ toHie $ C Use var , concatMapM (locOnly . getLoc) roles ] instance ToHie (LInstDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of ClsInstD _ d -> [ toHie $ L span d ] DataFamInstD _ d -> [ toHie $ L span d ] TyFamInstD _ d -> [ toHie $ L span d ] instance ToHie (LClsInstDecl GhcRn) where toHie (L span decl) = concatM [ toHie $ TS (ResolvedScopes [mkScope span]) $ cid_poly_ty decl , toHie $ fmap (BC InstanceBind ModuleScope) $ cid_binds decl , toHie $ map (SC $ SI InstSig $ getRealSpan span) $ cid_sigs decl , concatMapM (locOnly . getLoc) $ cid_tyfam_insts decl , toHie $ cid_tyfam_insts decl , concatMapM (locOnly . getLoc) $ cid_datafam_insts decl , toHie $ cid_datafam_insts decl , toHie $ cid_overlap_mode decl ] instance ToHie (LDataFamInstDecl GhcRn) where toHie (L sp (DataFamInstDecl d)) = toHie $ TS (ResolvedScopes [mkScope sp]) d instance ToHie (LTyFamInstDecl GhcRn) where toHie (L sp (TyFamInstDecl d)) = toHie $ TS (ResolvedScopes [mkScope sp]) d instance ToHie (Context a) => ToHie (PatSynFieldContext (RecordPatSynField a)) where toHie (PSC sp (RecordPatSynField a b)) = concatM $ [ toHie $ C (RecField RecFieldDecl sp) a , toHie $ C Use b ] instance ToHie (LDerivDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of DerivDecl _ typ strat overlap -> [ toHie $ TS (ResolvedScopes []) typ , toHie strat , toHie overlap ] instance ToHie (LFixitySig GhcRn) where toHie (L span sig) = concatM $ makeNode sig span : case sig of FixitySig _ vars _ -> [ toHie $ map (C Use) vars ] instance ToHie (LDefaultDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of DefaultDecl _ typs -> [ toHie typs ] instance ToHie (LForeignDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of ForeignImport {fd_name = name, fd_sig_ty = sig, fd_fi = fi} -> [ toHie $ C (ValBind RegularBind ModuleScope $ getRealSpan span) name , toHie $ TS (ResolvedScopes []) sig , toHie fi ] ForeignExport {fd_name = name, fd_sig_ty = sig, fd_fe = fe} -> [ toHie $ C Use name , toHie $ TS (ResolvedScopes []) sig , toHie fe ] instance ToHie ForeignImport where toHie (CImport (L a _) (L b _) _ _ (L c _)) = concatM $ [ locOnly a , locOnly b , locOnly c ] instance ToHie ForeignExport where toHie (CExport (L a _) (L b _)) = concatM $ [ locOnly a , locOnly b ] instance ToHie (LWarnDecls GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of Warnings _ _ warnings -> [ toHie warnings ] instance ToHie (LWarnDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of Warning _ vars _ -> [ toHie $ map (C Use) vars ] instance ToHie (LAnnDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of HsAnnotation _ _ prov expr -> [ toHie prov , toHie expr ] instance ToHie (Context (Located a)) => ToHie (AnnProvenance a) where toHie (ValueAnnProvenance a) = toHie $ C Use a toHie (TypeAnnProvenance a) = toHie $ C Use a toHie ModuleAnnProvenance = pure [] instance ToHie (LRuleDecls GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of HsRules _ _ rules -> [ toHie rules ] instance ToHie (LRuleDecl GhcRn) where toHie (L span r@(HsRule _ rname _ tybndrs bndrs exprA exprB)) = concatM [ makeNode r span , locOnly $ getLoc rname , toHie $ fmap (tvScopes (ResolvedScopes []) scope) tybndrs , toHie $ map (RS $ mkScope span) bndrs , toHie exprA , toHie exprB ] where scope = bndrs_sc `combineScopes` exprA_sc `combineScopes` exprB_sc bndrs_sc = maybe NoScope mkLScope (listToMaybe bndrs) exprA_sc = mkLScope exprA exprB_sc = mkLScope exprB instance ToHie (RScoped (LRuleBndr GhcRn)) where toHie (RS sc (L span bndr)) = concatM $ makeNode bndr span : case bndr of RuleBndr _ var -> [ toHie $ C (ValBind RegularBind sc Nothing) var ] RuleBndrSig _ var typ -> [ toHie $ C (ValBind RegularBind sc Nothing) var , toHie $ TS (ResolvedScopes [sc]) typ ] instance ToHie (LImportDecl GhcRn) where toHie (L span decl) = concatM $ makeNode decl span : case decl of ImportDecl { ideclName = name, ideclAs = as, ideclHiding = hidden } -> [ toHie $ IEC Import name , toHie $ fmap (IEC ImportAs) as , maybe (pure []) goIE hidden ] where goIE (hiding, (L sp liens)) = concatM $ [ locOnly sp , toHie $ map (IEC c) liens ] where c = if hiding then ImportHiding else Import instance ToHie (IEContext (LIE GhcRn)) where toHie (IEC c (L span ie)) = concatM $ makeNode ie span : case ie of IEVar _ n -> [ toHie $ IEC c n ] IEThingAbs _ n -> [ toHie $ IEC c n ] IEThingAll _ n -> [ toHie $ IEC c n ] IEThingWith _ n _ ns flds -> [ toHie $ IEC c n , toHie $ map (IEC c) ns , toHie $ map (IEC c) flds ] IEModuleContents _ n -> [ toHie $ IEC c n ] IEGroup _ _ _ -> [] IEDoc _ _ -> [] IEDocNamed _ _ -> [] instance ToHie (IEContext (LIEWrappedName Name)) where toHie (IEC c (L span iewn)) = concatM $ makeNode iewn span : case iewn of IEName n -> [ toHie $ C (IEThing c) n ] IEPattern p -> [ toHie $ C (IEThing c) p ] IEType n -> [ toHie $ C (IEThing c) n ] instance ToHie (IEContext (Located (FieldLbl Name))) where toHie (IEC c (L span lbl)) = concatM $ makeNode lbl span : case lbl of FieldLabel _ _ n -> [ toHie $ C (IEThing c) $ L span n ]