{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-} {-# OPTIONS_GHC -O2 #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 1997-2006 -- -- Character encodings -- -- ----------------------------------------------------------------------------- module GHC.Utils.Encoding ( -- * UTF-8 utf8DecodeCharAddr#, utf8PrevChar, utf8CharStart, utf8DecodeChar, utf8DecodeByteString, utf8UnconsByteString, utf8DecodeShortByteString, utf8DecodeStringLazy, utf8EncodeChar, utf8EncodeString, utf8EncodeShortByteString, utf8EncodedLength, countUTF8Chars, -- * Z-encoding zEncodeString, zDecodeString, -- * Base62-encoding toBase62, toBase62Padded ) where import GHC.Prelude import Foreign import Foreign.ForeignPtr.Unsafe (unsafeForeignPtrToPtr) import Data.Char import qualified Data.Char as Char import Numeric import GHC.IO import GHC.ST import Data.ByteString (ByteString) import qualified Data.ByteString.Internal as BS import Data.ByteString.Short.Internal (ShortByteString(..)) import GHC.Exts -- ----------------------------------------------------------------------------- -- UTF-8 -- We can't write the decoder as efficiently as we'd like without -- resorting to unboxed extensions, unfortunately. I tried to write -- an IO version of this function, but GHC can't eliminate boxed -- results from an IO-returning function. -- -- We assume we can ignore overflow when parsing a multibyte character here. -- To make this safe, we add extra sentinel bytes to unparsed UTF-8 sequences -- before decoding them (see "GHC.Data.StringBuffer"). {-# INLINE utf8DecodeChar# #-} utf8DecodeChar# :: (Int# -> Word#) -> (# Char#, Int# #) utf8DecodeChar# indexWord8# = let !ch0 = word2Int# (indexWord8# 0#) in case () of _ | isTrue# (ch0 <=# 0x7F#) -> (# chr# ch0, 1# #) | isTrue# ((ch0 >=# 0xC0#) `andI#` (ch0 <=# 0xDF#)) -> let !ch1 = word2Int# (indexWord8# 1#) in if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else (# chr# (((ch0 -# 0xC0#) `uncheckedIShiftL#` 6#) +# (ch1 -# 0x80#)), 2# #) | isTrue# ((ch0 >=# 0xE0#) `andI#` (ch0 <=# 0xEF#)) -> let !ch1 = word2Int# (indexWord8# 1#) in if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else let !ch2 = word2Int# (indexWord8# 2#) in if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else (# chr# (((ch0 -# 0xE0#) `uncheckedIShiftL#` 12#) +# ((ch1 -# 0x80#) `uncheckedIShiftL#` 6#) +# (ch2 -# 0x80#)), 3# #) | isTrue# ((ch0 >=# 0xF0#) `andI#` (ch0 <=# 0xF8#)) -> let !ch1 = word2Int# (indexWord8# 1#) in if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else let !ch2 = word2Int# (indexWord8# 2#) in if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else let !ch3 = word2Int# (indexWord8# 3#) in if isTrue# ((ch3 <# 0x80#) `orI#` (ch3 >=# 0xC0#)) then fail 3# else (# chr# (((ch0 -# 0xF0#) `uncheckedIShiftL#` 18#) +# ((ch1 -# 0x80#) `uncheckedIShiftL#` 12#) +# ((ch2 -# 0x80#) `uncheckedIShiftL#` 6#) +# (ch3 -# 0x80#)), 4# #) | otherwise -> fail 1# where -- all invalid sequences end up here: fail :: Int# -> (# Char#, Int# #) fail nBytes# = (# '\0'#, nBytes# #) -- '\xFFFD' would be the usual replacement character, but -- that's a valid symbol in Haskell, so will result in a -- confusing parse error later on. Instead we use '\0' which -- will signal a lexer error immediately. utf8DecodeCharAddr# :: Addr# -> Int# -> (# Char#, Int# #) utf8DecodeCharAddr# a# off# = utf8DecodeChar# (\i# -> indexWord8OffAddr# a# (i# +# off#)) utf8DecodeCharByteArray# :: ByteArray# -> Int# -> (# Char#, Int# #) utf8DecodeCharByteArray# ba# off# = utf8DecodeChar# (\i# -> indexWord8Array# ba# (i# +# off#)) utf8DecodeChar :: Ptr Word8 -> (Char, Int) utf8DecodeChar !(Ptr a#) = case utf8DecodeCharAddr# a# 0# of (# c#, nBytes# #) -> ( C# c#, I# nBytes# ) -- UTF-8 is cleverly designed so that we can always figure out where -- the start of the current character is, given any position in a -- stream. This function finds the start of the previous character, -- assuming there *is* a previous character. utf8PrevChar :: Ptr Word8 -> IO (Ptr Word8) utf8PrevChar p = utf8CharStart (p `plusPtr` (-1)) utf8CharStart :: Ptr Word8 -> IO (Ptr Word8) utf8CharStart p = go p where go p = do w <- peek p if w >= 0x80 && w < 0xC0 then go (p `plusPtr` (-1)) else return p {-# INLINE utf8DecodeLazy# #-} utf8DecodeLazy# :: (IO ()) -> (Int# -> (# Char#, Int# #)) -> Int# -> IO [Char] utf8DecodeLazy# retain decodeChar# len# = unpack 0# where unpack i# | isTrue# (i# >=# len#) = retain >> return [] | otherwise = case decodeChar# i# of (# c#, nBytes# #) -> do rest <- unsafeDupableInterleaveIO $ unpack (i# +# nBytes#) return (C# c# : rest) utf8DecodeByteString :: ByteString -> [Char] utf8DecodeByteString (BS.PS fptr offset len) = utf8DecodeStringLazy fptr offset len utf8UnconsByteString :: ByteString -> Maybe (Char, ByteString) utf8UnconsByteString (BS.PS _ _ 0) = Nothing utf8UnconsByteString (BS.PS fptr offset len) = unsafeDupablePerformIO $ withForeignPtr fptr $ \ptr -> do let (c,n) = utf8DecodeChar (ptr `plusPtr` offset) return $ Just (c, BS.PS fptr (offset + n) (len - n)) utf8DecodeStringLazy :: ForeignPtr Word8 -> Int -> Int -> [Char] utf8DecodeStringLazy fp offset (I# len#) = unsafeDupablePerformIO $ do let !(Ptr a#) = unsafeForeignPtrToPtr fp `plusPtr` offset utf8DecodeLazy# (touchForeignPtr fp) (utf8DecodeCharAddr# a#) len# -- Note that since utf8DecodeLazy# returns a thunk the lifetime of the -- ForeignPtr actually needs to be longer than the lexical lifetime -- withForeignPtr would provide here. That's why we use touchForeignPtr to -- keep the fp alive until the last character has actually been decoded. utf8DecodeShortByteString :: ShortByteString -> [Char] utf8DecodeShortByteString (SBS ba#) = unsafeDupablePerformIO $ let len# = sizeofByteArray# ba# in utf8DecodeLazy# (return ()) (utf8DecodeCharByteArray# ba#) len# countUTF8Chars :: ShortByteString -> IO Int countUTF8Chars (SBS ba) = go 0# 0# where len# = sizeofByteArray# ba go i# n# | isTrue# (i# >=# len#) = return (I# n#) | otherwise = do case utf8DecodeCharByteArray# ba i# of (# _, nBytes# #) -> go (i# +# nBytes#) (n# +# 1#) {-# INLINE utf8EncodeChar #-} utf8EncodeChar :: (Int# -> Word# -> State# s -> State# s) -> Char -> ST s Int utf8EncodeChar write# c = let x = ord c in case () of _ | x > 0 && x <= 0x007f -> do write 0 x return 1 -- NB. '\0' is encoded as '\xC0\x80', not '\0'. This is so that we -- can have 0-terminated UTF-8 strings (see GHC.Base.unpackCStringUtf8). | x <= 0x07ff -> do write 0 (0xC0 .|. ((x `shiftR` 6) .&. 0x1F)) write 1 (0x80 .|. (x .&. 0x3F)) return 2 | x <= 0xffff -> do write 0 (0xE0 .|. (x `shiftR` 12) .&. 0x0F) write 1 (0x80 .|. (x `shiftR` 6) .&. 0x3F) write 2 (0x80 .|. (x .&. 0x3F)) return 3 | otherwise -> do write 0 (0xF0 .|. (x `shiftR` 18)) write 1 (0x80 .|. ((x `shiftR` 12) .&. 0x3F)) write 2 (0x80 .|. ((x `shiftR` 6) .&. 0x3F)) write 3 (0x80 .|. (x .&. 0x3F)) return 4 where {-# INLINE write #-} write (I# off#) (I# c#) = ST $ \s -> case write# off# (int2Word# c#) s of s -> (# s, () #) utf8EncodeString :: Ptr Word8 -> String -> IO () utf8EncodeString (Ptr a#) str = go a# str where go !_ [] = return () go a# (c:cs) = do I# off# <- stToIO $ utf8EncodeChar (writeWord8OffAddr# a#) c go (a# `plusAddr#` off#) cs utf8EncodeShortByteString :: String -> IO ShortByteString utf8EncodeShortByteString str = IO $ \s -> case utf8EncodedLength str of { I# len# -> case newByteArray# len# s of { (# s, mba# #) -> case go mba# 0# str of { ST f_go -> case f_go s of { (# s, () #) -> case unsafeFreezeByteArray# mba# s of { (# s, ba# #) -> (# s, SBS ba# #) }}}}} where go _ _ [] = return () go mba# i# (c:cs) = do I# off# <- utf8EncodeChar (\j# -> writeWord8Array# mba# (i# +# j#)) c go mba# (i# +# off#) cs utf8EncodedLength :: String -> Int utf8EncodedLength str = go 0 str where go !n [] = n go n (c:cs) | ord c > 0 && ord c <= 0x007f = go (n+1) cs | ord c <= 0x07ff = go (n+2) cs | ord c <= 0xffff = go (n+3) cs | otherwise = go (n+4) cs -- ----------------------------------------------------------------------------- -- The Z-encoding {- This is the main name-encoding and decoding function. It encodes any string into a string that is acceptable as a C name. This is done right before we emit a symbol name into the compiled C or asm code. Z-encoding of strings is cached in the FastString interface, so we never encode the same string more than once. The basic encoding scheme is this. * Tuples (,,,) are coded as Z3T * Alphabetic characters (upper and lower) and digits all translate to themselves; except 'Z', which translates to 'ZZ' and 'z', which translates to 'zz' We need both so that we can preserve the variable/tycon distinction * Most other printable characters translate to 'zx' or 'Zx' for some alphabetic character x * The others translate as 'znnnU' where 'nnn' is the decimal number of the character Before After -------------------------- Trak Trak foo_wib foozuwib > zg >1 zg1 foo# foozh foo## foozhzh foo##1 foozhzh1 fooZ fooZZ :+ ZCzp () Z0T 0-tuple (,,,,) Z5T 5-tuple (# #) Z1H unboxed 1-tuple (note the space) (#,,,,#) Z5H unboxed 5-tuple (NB: There is no Z1T nor Z0H.) -} type UserString = String -- As the user typed it type EncodedString = String -- Encoded form zEncodeString :: UserString -> EncodedString zEncodeString cs = case maybe_tuple cs of Just n -> n -- Tuples go to Z2T etc Nothing -> go cs where go [] = [] go (c:cs) = encode_digit_ch c ++ go' cs go' [] = [] go' (c:cs) = encode_ch c ++ go' cs unencodedChar :: Char -> Bool -- True for chars that don't need encoding unencodedChar 'Z' = False unencodedChar 'z' = False unencodedChar c = c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c >= '0' && c <= '9' -- If a digit is at the start of a symbol then we need to encode it. -- Otherwise package names like 9pH-0.1 give linker errors. encode_digit_ch :: Char -> EncodedString encode_digit_ch c | c >= '0' && c <= '9' = encode_as_unicode_char c encode_digit_ch c | otherwise = encode_ch c encode_ch :: Char -> EncodedString encode_ch c | unencodedChar c = [c] -- Common case first -- Constructors encode_ch '(' = "ZL" -- Needed for things like (,), and (->) encode_ch ')' = "ZR" -- For symmetry with ( encode_ch '[' = "ZM" encode_ch ']' = "ZN" encode_ch ':' = "ZC" encode_ch 'Z' = "ZZ" -- Variables encode_ch 'z' = "zz" encode_ch '&' = "za" encode_ch '|' = "zb" encode_ch '^' = "zc" encode_ch '$' = "zd" encode_ch '=' = "ze" encode_ch '>' = "zg" encode_ch '#' = "zh" encode_ch '.' = "zi" encode_ch '<' = "zl" encode_ch '-' = "zm" encode_ch '!' = "zn" encode_ch '+' = "zp" encode_ch '\'' = "zq" encode_ch '\\' = "zr" encode_ch '/' = "zs" encode_ch '*' = "zt" encode_ch '_' = "zu" encode_ch '%' = "zv" encode_ch c = encode_as_unicode_char c encode_as_unicode_char :: Char -> EncodedString encode_as_unicode_char c = 'z' : if isDigit (head hex_str) then hex_str else '0':hex_str where hex_str = showHex (ord c) "U" -- ToDo: we could improve the encoding here in various ways. -- eg. strings of unicode characters come out as 'z1234Uz5678U', we -- could remove the 'U' in the middle (the 'z' works as a separator). zDecodeString :: EncodedString -> UserString zDecodeString [] = [] zDecodeString ('Z' : d : rest) | isDigit d = decode_tuple d rest | otherwise = decode_upper d : zDecodeString rest zDecodeString ('z' : d : rest) | isDigit d = decode_num_esc d rest | otherwise = decode_lower d : zDecodeString rest zDecodeString (c : rest) = c : zDecodeString rest decode_upper, decode_lower :: Char -> Char decode_upper 'L' = '(' decode_upper 'R' = ')' decode_upper 'M' = '[' decode_upper 'N' = ']' decode_upper 'C' = ':' decode_upper 'Z' = 'Z' decode_upper ch = {-pprTrace "decode_upper" (char ch)-} ch decode_lower 'z' = 'z' decode_lower 'a' = '&' decode_lower 'b' = '|' decode_lower 'c' = '^' decode_lower 'd' = '$' decode_lower 'e' = '=' decode_lower 'g' = '>' decode_lower 'h' = '#' decode_lower 'i' = '.' decode_lower 'l' = '<' decode_lower 'm' = '-' decode_lower 'n' = '!' decode_lower 'p' = '+' decode_lower 'q' = '\'' decode_lower 'r' = '\\' decode_lower 's' = '/' decode_lower 't' = '*' decode_lower 'u' = '_' decode_lower 'v' = '%' decode_lower ch = {-pprTrace "decode_lower" (char ch)-} ch -- Characters not having a specific code are coded as z224U (in hex) decode_num_esc :: Char -> EncodedString -> UserString decode_num_esc d rest = go (digitToInt d) rest where go n (c : rest) | isHexDigit c = go (16*n + digitToInt c) rest go n ('U' : rest) = chr n : zDecodeString rest go n other = error ("decode_num_esc: " ++ show n ++ ' ':other) decode_tuple :: Char -> EncodedString -> UserString decode_tuple d rest = go (digitToInt d) rest where -- NB. recurse back to zDecodeString after decoding the tuple, because -- the tuple might be embedded in a longer name. go n (c : rest) | isDigit c = go (10*n + digitToInt c) rest go 0 ('T':rest) = "()" ++ zDecodeString rest go n ('T':rest) = '(' : replicate (n-1) ',' ++ ")" ++ zDecodeString rest go 1 ('H':rest) = "(# #)" ++ zDecodeString rest go n ('H':rest) = '(' : '#' : replicate (n-1) ',' ++ "#)" ++ zDecodeString rest go n other = error ("decode_tuple: " ++ show n ++ ' ':other) {- Tuples are encoded as Z3T or Z3H for 3-tuples or unboxed 3-tuples respectively. No other encoding starts Z * "(# #)" is the tycon for an unboxed 1-tuple (not 0-tuple) There are no unboxed 0-tuples. * "()" is the tycon for a boxed 0-tuple. There are no boxed 1-tuples. -} maybe_tuple :: UserString -> Maybe EncodedString maybe_tuple "(# #)" = Just("Z1H") maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of (n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H") _ -> Nothing maybe_tuple "()" = Just("Z0T") maybe_tuple ('(' : cs) = case count_commas (0::Int) cs of (n, ')' : _) -> Just ('Z' : shows (n+1) "T") _ -> Nothing maybe_tuple _ = Nothing count_commas :: Int -> String -> (Int, String) count_commas n (',' : cs) = count_commas (n+1) cs count_commas n cs = (n,cs) {- ************************************************************************ * * Base 62 * * ************************************************************************ Note [Base 62 encoding 128-bit integers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Instead of base-62 encoding a single 128-bit integer (ceil(21.49) characters), we'll base-62 a pair of 64-bit integers (2 * ceil(10.75) characters). Luckily for us, it's the same number of characters! -} -------------------------------------------------------------------------- -- Base 62 -- The base-62 code is based off of 'locators' -- ((c) Operational Dynamics Consulting, BSD3 licensed) -- | Size of a 64-bit word when written as a base-62 string word64Base62Len :: Int word64Base62Len = 11 -- | Converts a 64-bit word into a base-62 string toBase62Padded :: Word64 -> String toBase62Padded w = pad ++ str where pad = replicate len '0' len = word64Base62Len - length str -- 11 == ceil(64 / lg 62) str = toBase62 w toBase62 :: Word64 -> String toBase62 w = showIntAtBase 62 represent w "" where represent :: Int -> Char represent x | x < 10 = Char.chr (48 + x) | x < 36 = Char.chr (65 + x - 10) | x < 62 = Char.chr (97 + x - 36) | otherwise = error "represent (base 62): impossible!"