{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE TypeFamilies #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Utilities for desugaring This module exports some utility functions of no great interest. -} -- | Utility functions for constructing Core syntax, principally for desugaring module GHC.HsToCore.Utils ( EquationInfo(..), firstPat, shiftEqns, MatchResult (..), CaseAlt(..), cantFailMatchResult, alwaysFailMatchResult, extractMatchResult, combineMatchResults, adjustMatchResultDs, shareFailureHandler, dsHandleMonadicFailure, mkCoLetMatchResult, mkViewMatchResult, mkGuardedMatchResult, matchCanFail, mkEvalMatchResult, mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult, mkCoSynCaseMatchResult, wrapBind, wrapBinds, mkErrorAppDs, mkCoreAppDs, mkCoreAppsDs, mkCastDs, mkFailExpr, seqVar, -- LHs tuples mkLHsPatTup, mkVanillaTuplePat, mkBigLHsVarTupId, mkBigLHsTupId, mkBigLHsVarPatTupId, mkBigLHsPatTupId, mkSelectorBinds, selectSimpleMatchVarL, selectMatchVars, selectMatchVar, mkOptTickBox, mkBinaryTickBox, decideBangHood, isTrueLHsExpr ) where import GHC.Prelude import {-# SOURCE #-} GHC.HsToCore.Match ( matchSimply ) import {-# SOURCE #-} GHC.HsToCore.Expr ( dsLExpr, dsSyntaxExpr ) import GHC.Hs import GHC.Hs.Syn.Type import GHC.Tc.Utils.TcType( tcSplitTyConApp ) import GHC.Core import GHC.HsToCore.Monad import GHC.Core.Utils import GHC.Core.Make import GHC.Types.Id.Make import GHC.Types.Id import GHC.Types.Literal import GHC.Core.TyCon import GHC.Core.DataCon import GHC.Core.PatSyn import GHC.Core.Type import GHC.Core.Coercion import GHC.Builtin.Types import GHC.Types.Basic import GHC.Core.ConLike import GHC.Types.Unique.Set import GHC.Types.Unique.Supply import GHC.Unit.Module import GHC.Builtin.Names import GHC.Types.Name( isInternalName ) import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain import GHC.Types.SrcLoc import GHC.Types.Tickish import GHC.Utils.Misc import GHC.Driver.Session import GHC.Driver.Ppr import GHC.Data.FastString import qualified GHC.LanguageExtensions as LangExt import GHC.Tc.Types.Evidence import Control.Monad ( zipWithM ) import Data.List.NonEmpty (NonEmpty(..)) import Data.Maybe (maybeToList) import qualified Data.List.NonEmpty as NEL {- ************************************************************************ * * \subsection{ Selecting match variables} * * ************************************************************************ We're about to match against some patterns. We want to make some @Ids@ to use as match variables. If a pattern has an @Id@ readily at hand, which should indeed be bound to the pattern as a whole, then use it; otherwise, make one up. The multiplicity argument is chosen as the multiplicity of the variable if it is made up. -} selectSimpleMatchVarL :: Mult -> LPat GhcTc -> DsM Id -- Postcondition: the returned Id has an Internal Name selectSimpleMatchVarL w pat = selectMatchVar w (unLoc pat) -- (selectMatchVars ps tys) chooses variables of type tys -- to use for matching ps against. If the pattern is a variable, -- we try to use that, to save inventing lots of fresh variables. -- -- OLD, but interesting note: -- But even if it is a variable, its type might not match. Consider -- data T a where -- T1 :: Int -> T Int -- T2 :: a -> T a -- -- f :: T a -> a -> Int -- f (T1 i) (x::Int) = x -- f (T2 i) (y::a) = 0 -- Then we must not choose (x::Int) as the matching variable! -- And nowadays we won't, because the (x::Int) will be wrapped in a CoPat selectMatchVars :: [(Mult, Pat GhcTc)] -> DsM [Id] -- Postcondition: the returned Ids have Internal Names selectMatchVars ps = mapM (uncurry selectMatchVar) ps selectMatchVar :: Mult -> Pat GhcTc -> DsM Id -- Postcondition: the returned Id has an Internal Name selectMatchVar w (BangPat _ pat) = selectMatchVar w (unLoc pat) selectMatchVar w (LazyPat _ pat) = selectMatchVar w (unLoc pat) selectMatchVar w (ParPat _ _ pat _) = selectMatchVar w (unLoc pat) selectMatchVar _w (VarPat _ var) = return (localiseId (unLoc var)) -- Note [Localise pattern binders] -- -- Remark: when the pattern is a variable (or -- an @-pattern), then w is the same as the -- multiplicity stored within the variable -- itself. It's easier to pull it from the -- variable, so we ignore the multiplicity. selectMatchVar _w (AsPat _ var _) = assert (isManyDataConTy _w ) (return (unLoc var)) selectMatchVar w other_pat = newSysLocalDs w (hsPatType other_pat) {- Note [Localise pattern binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider module M where [Just a] = e After renaming it looks like module M where [Just M.a] = e We don't generalise, since it's a pattern binding, monomorphic, etc, so after desugaring we may get something like M.a = case e of (v:_) -> case v of Just M.a -> M.a Notice the "M.a" in the pattern; after all, it was in the original pattern. However, after optimisation those pattern binders can become let-binders, and then end up floated to top level. They have a different *unique* by then (the simplifier is good about maintaining proper scoping), but it's BAD to have two top-level bindings with the External Name M.a, because that turns into two linker symbols for M.a. It's quite rare for this to actually *happen* -- the only case I know of is tc003 compiled with the 'hpc' way -- but that only makes it all the more annoying. To avoid this, we craftily call 'localiseId' in the desugarer, which simply turns the External Name for the Id into an Internal one, but doesn't change the unique. So the desugarer produces this: M.a{r8} = case e of (v:_) -> case v of Just a{r8} -> M.a{r8} The unique is still 'r8', but the binding site in the pattern is now an Internal Name. Now the simplifier's usual mechanisms will propagate that Name to all the occurrence sites, as well as un-shadowing it, so we'll get M.a{r8} = case e of (v:_) -> case v of Just a{s77} -> a{s77} In fact, even GHC.Core.Subst.simplOptExpr will do this, and simpleOptExpr runs on the output of the desugarer, so all is well by the end of the desugaring pass. See also Note [Match Ids] in GHC.HsToCore.Match ************************************************************************ * * * type synonym EquationInfo and access functions for its pieces * * * ************************************************************************ \subsection[EquationInfo-synonym]{@EquationInfo@: a useful synonym} The ``equation info'' used by @match@ is relatively complicated and worthy of a type synonym and a few handy functions. -} firstPat :: EquationInfo -> Pat GhcTc firstPat eqn = assert (notNull (eqn_pats eqn)) $ head (eqn_pats eqn) shiftEqns :: Functor f => f EquationInfo -> f EquationInfo -- Drop the first pattern in each equation shiftEqns = fmap $ \eqn -> eqn { eqn_pats = tail (eqn_pats eqn) } -- Functions on MatchResult CoreExprs matchCanFail :: MatchResult a -> Bool matchCanFail (MR_Fallible {}) = True matchCanFail (MR_Infallible {}) = False alwaysFailMatchResult :: MatchResult CoreExpr alwaysFailMatchResult = MR_Fallible $ \fail -> return fail cantFailMatchResult :: CoreExpr -> MatchResult CoreExpr cantFailMatchResult expr = MR_Infallible $ return expr extractMatchResult :: MatchResult CoreExpr -> CoreExpr -> DsM CoreExpr extractMatchResult match_result failure_expr = runMatchResult failure_expr (shareFailureHandler match_result) combineMatchResults :: MatchResult CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr combineMatchResults match_result1@(MR_Infallible _) _ = match_result1 combineMatchResults match_result1 match_result2 = -- if the first pattern needs a failure handler (i.e. if it is fallible), -- make it let-bind it bind it with `shareFailureHandler`. case shareFailureHandler match_result1 of MR_Infallible _ -> match_result1 MR_Fallible body_fn1 -> MR_Fallible $ \fail_expr -> -- Before actually failing, try the next match arm. body_fn1 =<< runMatchResult fail_expr match_result2 adjustMatchResultDs :: (a -> DsM b) -> MatchResult a -> MatchResult b adjustMatchResultDs encl_fn = \case MR_Infallible body_fn -> MR_Infallible $ encl_fn =<< body_fn MR_Fallible body_fn -> MR_Fallible $ \fail -> encl_fn =<< body_fn fail wrapBinds :: [(Var,Var)] -> CoreExpr -> CoreExpr wrapBinds [] e = e wrapBinds ((new,old):prs) e = wrapBind new old (wrapBinds prs e) wrapBind :: Var -> Var -> CoreExpr -> CoreExpr wrapBind new old body -- NB: this function must deal with term | new==old = body -- variables, type variables or coercion variables | otherwise = Let (NonRec new (varToCoreExpr old)) body seqVar :: Var -> CoreExpr -> CoreExpr seqVar var body = mkDefaultCase (Var var) var body mkCoLetMatchResult :: CoreBind -> MatchResult CoreExpr -> MatchResult CoreExpr mkCoLetMatchResult bind = fmap (mkCoreLet bind) -- (mkViewMatchResult var' viewExpr mr) makes the expression -- let var' = viewExpr in mr mkViewMatchResult :: Id -> CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr mkViewMatchResult var' viewExpr = fmap $ mkCoreLet $ NonRec var' viewExpr mkEvalMatchResult :: Id -> Type -> MatchResult CoreExpr -> MatchResult CoreExpr mkEvalMatchResult var ty = fmap $ \e -> Case (Var var) var ty [Alt DEFAULT [] e] mkGuardedMatchResult :: CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr mkGuardedMatchResult pred_expr mr = MR_Fallible $ \fail -> do body <- runMatchResult fail mr return (mkIfThenElse pred_expr body fail) mkCoPrimCaseMatchResult :: Id -- Scrutinee -> Type -- Type of the case -> [(Literal, MatchResult CoreExpr)] -- Alternatives -> MatchResult CoreExpr -- Literals are all unlifted mkCoPrimCaseMatchResult var ty match_alts = MR_Fallible mk_case where mk_case fail = do alts <- mapM (mk_alt fail) sorted_alts return (Case (Var var) var ty (Alt DEFAULT [] fail : alts)) sorted_alts = sortWith fst match_alts -- Right order for a Case mk_alt fail (lit, mr) = assert (not (litIsLifted lit)) $ do body <- runMatchResult fail mr return (Alt (LitAlt lit) [] body) data CaseAlt a = MkCaseAlt{ alt_pat :: a, alt_bndrs :: [Var], alt_wrapper :: HsWrapper, alt_result :: MatchResult CoreExpr } mkCoAlgCaseMatchResult :: Id -- ^ Scrutinee -> Type -- ^ Type of exp -> NonEmpty (CaseAlt DataCon) -- ^ Alternatives (bndrs *include* tyvars, dicts) -> MatchResult CoreExpr mkCoAlgCaseMatchResult var ty match_alts | isNewtype -- Newtype case; use a let = assert (null match_alts_tail && null (tail arg_ids1)) $ mkCoLetMatchResult (NonRec arg_id1 newtype_rhs) match_result1 | otherwise = mkDataConCase var ty match_alts where isNewtype = isNewTyCon (dataConTyCon (alt_pat alt1)) -- [Interesting: because of GADTs, we can't rely on the type of -- the scrutinised Id to be sufficiently refined to have a TyCon in it] alt1@MkCaseAlt{ alt_bndrs = arg_ids1, alt_result = match_result1 } :| match_alts_tail = match_alts -- Stuff for newtype arg_id1 = assert (notNull arg_ids1) $ head arg_ids1 var_ty = idType var (tc, ty_args) = tcSplitTyConApp var_ty -- Don't look through newtypes -- (not that splitTyConApp does, these days) newtype_rhs = unwrapNewTypeBody tc ty_args (Var var) mkCoSynCaseMatchResult :: Id -> Type -> CaseAlt PatSyn -> MatchResult CoreExpr mkCoSynCaseMatchResult var ty alt = MR_Fallible $ mkPatSynCase var ty alt mkPatSynCase :: Id -> Type -> CaseAlt PatSyn -> CoreExpr -> DsM CoreExpr mkPatSynCase var ty alt fail = do matcher_id <- dsLookupGlobalId matcher_name matcher <- dsLExpr $ mkLHsWrap wrapper $ nlHsTyApp matcher_id [getRuntimeRep ty, ty] cont <- mkCoreLams bndrs <$> runMatchResult fail match_result return $ mkCoreAppsDs (text "patsyn" <+> ppr var) matcher [Var var, ensure_unstrict cont, Lam voidArgId fail] where MkCaseAlt{ alt_pat = psyn, alt_bndrs = bndrs, alt_wrapper = wrapper, alt_result = match_result} = alt (matcher_name, _, needs_void_lam) = patSynMatcher psyn -- See Note [Matchers and builders for pattern synonyms] in GHC.Core.PatSyn -- on these extra Void# arguments ensure_unstrict cont | needs_void_lam = Lam voidArgId cont | otherwise = cont mkDataConCase :: Id -> Type -> NonEmpty (CaseAlt DataCon) -> MatchResult CoreExpr mkDataConCase var ty alts@(alt1 :| _) = liftA2 mk_case mk_default mk_alts -- The liftA2 combines the failability of all the alternatives and the default where con1 = alt_pat alt1 tycon = dataConTyCon con1 data_cons = tyConDataCons tycon sorted_alts :: [ CaseAlt DataCon ] sorted_alts = sortWith (dataConTag . alt_pat) $ NEL.toList alts var_ty = idType var (_, ty_args) = tcSplitTyConApp var_ty -- Don't look through newtypes -- (not that splitTyConApp does, these days) mk_case :: Maybe CoreAlt -> [CoreAlt] -> CoreExpr mk_case def alts = mkWildCase (Var var) (idScaledType var) ty $ maybeToList def ++ alts mk_alts :: MatchResult [CoreAlt] mk_alts = traverse mk_alt sorted_alts mk_alt :: CaseAlt DataCon -> MatchResult CoreAlt mk_alt MkCaseAlt { alt_pat = con , alt_bndrs = args , alt_result = match_result } = flip adjustMatchResultDs match_result $ \body -> do case dataConBoxer con of Nothing -> return (Alt (DataAlt con) args body) Just (DCB boxer) -> do us <- newUniqueSupply let (rep_ids, binds) = initUs_ us (boxer ty_args args) let rep_ids' = map (scaleVarBy (idMult var)) rep_ids -- Upholds the invariant that the binders of a case expression -- must be scaled by the case multiplicity. See Note [Case -- expression invariants] in CoreSyn. return (Alt (DataAlt con) rep_ids' (mkLets binds body)) mk_default :: MatchResult (Maybe CoreAlt) mk_default | exhaustive_case = MR_Infallible $ return Nothing | otherwise = MR_Fallible $ \fail -> return $ Just (Alt DEFAULT [] fail) mentioned_constructors = mkUniqSet $ map alt_pat sorted_alts un_mentioned_constructors = mkUniqSet data_cons `minusUniqSet` mentioned_constructors exhaustive_case = isEmptyUniqSet un_mentioned_constructors {- ************************************************************************ * * \subsection{Desugarer's versions of some Core functions} * * ************************************************************************ -} mkErrorAppDs :: Id -- The error function -> Type -- Type to which it should be applied -> SDoc -- The error message string to pass -> DsM CoreExpr mkErrorAppDs err_id ty msg = do src_loc <- getSrcSpanDs dflags <- getDynFlags let full_msg = showSDoc dflags (hcat [ppr src_loc, vbar, msg]) fail_expr = mkRuntimeErrorApp err_id unitTy full_msg return $ mkWildCase fail_expr (unrestricted unitTy) ty [] -- See Note [Incompleteness and linearity] {- Note [Incompleteness and linearity] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The default branch of an incomplete pattern match is compiled to a call to 'error'. Because of linearity, we wrap it with an empty case. Example: f :: a %1 -> Bool -> a f x True = False Adding 'f x False = error "Non-exhaustive pattern..."' would violate the linearity of x. Instead, we use 'f x False = case error "Non-exhausive pattern..." :: () of {}'. This case expression accounts for linear variables by assigning bottom usage (See Note [Bottom as a usage] in GHC.Core.Multiplicity). This is done in mkErrorAppDs, called from mkFailExpr. We use '()' instead of the original return type ('a' in this case) because there might be representation polymorphism, e.g. in g :: forall (a :: TYPE r). (() -> a) %1 -> Bool -> a g x True = x () adding 'g x False = case error "Non-exhaustive pattern" :: a of {}' would create an illegal representation-polymorphic case binder. This is important for pattern synonym matchers, which often look like this 'g'. Similarly, a hole h :: a %1 -> a h x = _ is desugared to 'case error "Hole" :: () of {}'. Test: LinearHole. Instead of () we could use Data.Void.Void, but that would require moving Void to GHC.Types: partial pattern matching is used in modules that are compiled before Data.Void. We can use () even though it has a constructor, because Note [Case expression invariants] point 4 in GHC.Core is satisfied when the scrutinee is bottoming. You might wonder if this change slows down compilation, but the performance testsuite did not show up any regressions. For uniformity, calls to 'error' in both cases are wrapped even if -XLinearTypes is disabled. -} mkFailExpr :: HsMatchContext GhcRn -> Type -> DsM CoreExpr mkFailExpr ctxt ty = mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt) {- 'mkCoreAppDs' and 'mkCoreAppsDs' handle the special-case desugaring of 'seq'. Note [Desugaring seq] ~~~~~~~~~~~~~~~~~~~~~ There are a few subtleties in the desugaring of `seq`: 1. (as described in #1031) Consider, f x y = x `seq` (y `seq` (# x,y #)) The [Core let/app invariant] means that, other things being equal, because the argument to the outer 'seq' has an unlifted type, we'll use call-by-value thus: f x y = case (y `seq` (# x,y #)) of v -> x `seq` v But that is bad for two reasons: (a) we now evaluate y before x, and (b) we can't bind v to an unboxed pair Seq is very, very special! So we recognise it right here, and desugar to case x of _ -> case y of _ -> (# x,y #) 2. (as described in #2273) Consider let chp = case b of { True -> fst x; False -> 0 } in chp `seq` ...chp... Here the seq is designed to plug the space leak of retaining (snd x) for too long. If we rely on the ordinary inlining of seq, we'll get let chp = case b of { True -> fst x; False -> 0 } case chp of _ { I# -> ...chp... } But since chp is cheap, and the case is an alluring contet, we'll inline chp into the case scrutinee. Now there is only one use of chp, so we'll inline a second copy. Alas, we've now ruined the purpose of the seq, by re-introducing the space leak: case (case b of {True -> fst x; False -> 0}) of I# _ -> ...case b of {True -> fst x; False -> 0}... We can try to avoid doing this by ensuring that the binder-swap in the case happens, so we get this at an early stage: case chp of chp2 { I# -> ...chp2... } But this is fragile. The real culprit is the source program. Perhaps we should have said explicitly let !chp2 = chp in ...chp2... But that's painful. So the code here does a little hack to make seq more robust: a saturated application of 'seq' is turned *directly* into the case expression, thus: x `seq` e2 ==> case x of x -> e2 -- Note shadowing! e1 `seq` e2 ==> case x of _ -> e2 So we desugar our example to: let chp = case b of { True -> fst x; False -> 0 } case chp of chp { I# -> ...chp... } And now all is well. The reason it's a hack is because if you define mySeq=seq, the hack won't work on mySeq. 3. (as described in #2409) The isInternalName ensures that we don't turn True `seq` e into case True of True { ... } which stupidly tries to bind the datacon 'True'. -} -- NB: Make sure the argument is not representation-polymorphic mkCoreAppDs :: SDoc -> CoreExpr -> CoreExpr -> CoreExpr mkCoreAppDs _ (Var f `App` Type _r `App` Type ty1 `App` Type ty2 `App` arg1) arg2 | f `hasKey` seqIdKey -- Note [Desugaring seq], points (1) and (2) = Case arg1 case_bndr ty2 [Alt DEFAULT [] arg2] where case_bndr = case arg1 of Var v1 | isInternalName (idName v1) -> v1 -- Note [Desugaring seq], points (2) and (3) _ -> mkWildValBinder Many ty1 mkCoreAppDs _ (Var f `App` Type _r) arg | f `hasKey` noinlineIdKey -- See Note [noinlineId magic] in GHC.Types.Id.Make , (fun, args) <- collectArgs arg , not (null args) = (Var f `App` Type (exprType fun) `App` fun) `mkCoreApps` args mkCoreAppDs s fun arg = mkCoreApp s fun arg -- The rest is done in GHC.Core.Make -- NB: No argument can be representation-polymorphic mkCoreAppsDs :: SDoc -> CoreExpr -> [CoreExpr] -> CoreExpr mkCoreAppsDs s fun args = foldl' (mkCoreAppDs s) fun args mkCastDs :: CoreExpr -> Coercion -> CoreExpr -- We define a desugarer-specific version of GHC.Core.Utils.mkCast, -- because in the immediate output of the desugarer, we can have -- apparently-mis-matched coercions: E.g. -- let a = b -- in (x :: a) |> (co :: b ~ Int) -- Lint know about type-bindings for let and does not complain -- So here we do not make the assertion checks that we make in -- GHC.Core.Utils.mkCast; and we do less peephole optimisation too mkCastDs e co | isReflCo co = e | otherwise = Cast e co {- ************************************************************************ * * Tuples and selector bindings * * ************************************************************************ This is used in various places to do with lazy patterns. For each binder $b$ in the pattern, we create a binding: \begin{verbatim} b = case v of pat' -> b' \end{verbatim} where @pat'@ is @pat@ with each binder @b@ cloned into @b'@. ToDo: making these bindings should really depend on whether there's much work to be done per binding. If the pattern is complex, it should be de-mangled once, into a tuple (and then selected from). Otherwise the demangling can be in-line in the bindings (as here). Boring! Boring! One error message per binder. The above ToDo is even more helpful. Something very similar happens for pattern-bound expressions. Note [mkSelectorBinds] ~~~~~~~~~~~~~~~~~~~~~~ mkSelectorBinds is used to desugar a pattern binding {p = e}, in a binding group: let { ...; p = e; ... } in body where p binds x,y (this list of binders can be empty). There are two cases. ------ Special case (A) ------- For a pattern that is just a variable, let !x = e in body ==> let x = e in x `seq` body So we return the binding, with 'x' as the variable to seq. ------ Special case (B) ------- For a pattern that is essentially just a tuple: * A product type, so cannot fail * Boxed, so that it can be matched lazily * Only one level, so that - generating multiple matches is fine - seq'ing it evaluates the same as matching it Then instead we generate { v = e ; x = case v of p -> x ; y = case v of p -> y } with 'v' as the variable to force ------ General case (C) ------- In the general case we generate these bindings: let { ...; p = e; ... } in body ==> let { t = case e of p -> (x,y) ; x = case t of (x,y) -> x ; y = case t of (x,y) -> y } in t `seq` body Note that we return 't' as the variable to force if the pattern is strict (i.e. with -XStrict or an outermost-bang-pattern) Note that (A) /includes/ the situation where * The pattern binds exactly one variable let !(Just (Just x) = e in body ==> let { t = case e of Just (Just v) -> Solo v ; v = case t of Solo v -> v } in t `seq` body The 'Solo' is a one-tuple; see Note [One-tuples] in GHC.Builtin.Types Note that forcing 't' makes the pattern match happen, but does not force 'v'. * The pattern binds no variables let !(True,False) = e in body ==> let t = case e of (True,False) -> () in t `seq` body ------ Examples ---------- * !(_, (_, a)) = e ==> t = case e of (_, (_, a)) -> Solo a a = case t of Solo a -> a Note that - Forcing 't' will force the pattern to match fully; e.g. will diverge if (snd e) is bottom - But 'a' itself is not forced; it is wrapped in a one-tuple (see Note [One-tuples] in GHC.Builtin.Types) * !(Just x) = e ==> t = case e of Just x -> Solo x x = case t of Solo x -> x Again, forcing 't' will fail if 'e' yields Nothing. Note that even though this is rather general, the special cases work out well: * One binder, not -XStrict: let Just (Just v) = e in body ==> let t = case e of Just (Just v) -> Solo v v = case t of Solo v -> v in body ==> let v = case (case e of Just (Just v) -> Solo v) of Solo v -> v in body ==> let v = case e of Just (Just v) -> v in body * Non-recursive, -XStrict let p = e in body ==> let { t = case e of p -> (x,y) ; x = case t of (x,y) -> x ; y = case t of (x,y) -> x } in t `seq` body ==> {inline seq, float x,y bindings inwards} let t = case e of p -> (x,y) in case t of t' -> let { x = case t' of (x,y) -> x ; y = case t' of (x,y) -> x } in body ==> {inline t, do case of case} case e of p -> let t = (x,y) in let { x = case t' of (x,y) -> x ; y = case t' of (x,y) -> x } in body ==> {case-cancellation, drop dead code} case e of p -> body * Special case (B) is there to avoid fruitlessly taking the tuple apart and rebuilding it. For example, consider { K x y = e } where K is a product constructor. Then general case (A) does: { t = case e of K x y -> (x,y) ; x = case t of (x,y) -> x ; y = case t of (x,y) -> y } In the lazy case we can't optimise out this fruitless taking apart and rebuilding. Instead (B) builds { v = e ; x = case v of K x y -> x ; y = case v of K x y -> y } which is better. -} -- Remark: pattern selectors only occur in unrestricted patterns so we are free -- to select Many as the multiplicity of every let-expression introduced. mkSelectorBinds :: [[CoreTickish]] -- ^ ticks to add, possibly -> LPat GhcTc -- ^ The pattern -> CoreExpr -- ^ Expression to which the pattern is bound -> DsM (Id,[(Id,CoreExpr)]) -- ^ Id the rhs is bound to, for desugaring strict -- binds (see Note [Desugar Strict binds] in "GHC.HsToCore.Binds") -- and all the desugared binds mkSelectorBinds ticks pat val_expr | L _ (VarPat _ (L _ v)) <- pat' -- Special case (A) = return (v, [(v, val_expr)]) | is_flat_prod_lpat pat' -- Special case (B) = do { let pat_ty = hsLPatType pat' ; val_var <- newSysLocalDs Many pat_ty ; let mk_bind tick bndr_var -- (mk_bind sv bv) generates bv = case sv of { pat -> bv } -- Remember, 'pat' binds 'bv' = do { rhs_expr <- matchSimply (Var val_var) PatBindRhs pat' (Var bndr_var) (Var bndr_var) -- Neat hack -- Neat hack: since 'pat' can't fail, the -- "fail-expr" passed to matchSimply is not -- used. But it /is/ used for its type, and for -- that bndr_var is just the ticket. ; return (bndr_var, mkOptTickBox tick rhs_expr) } ; binds <- zipWithM mk_bind ticks' binders ; return ( val_var, (val_var, val_expr) : binds) } | otherwise -- General case (C) = do { tuple_var <- newSysLocalDs Many tuple_ty ; error_expr <- mkErrorAppDs pAT_ERROR_ID tuple_ty (ppr pat') ; tuple_expr <- matchSimply val_expr PatBindRhs pat local_tuple error_expr ; let mk_tup_bind tick binder = (binder, mkOptTickBox tick $ mkTupleSelector1 local_binders binder tuple_var (Var tuple_var)) tup_binds = zipWith mk_tup_bind ticks' binders ; return (tuple_var, (tuple_var, tuple_expr) : tup_binds) } where pat' = strip_bangs pat -- Strip the bangs before looking for case (A) or (B) -- The incoming pattern may well have a bang on it binders = collectPatBinders CollNoDictBinders pat' ticks' = ticks ++ repeat [] local_binders = map localiseId binders -- See Note [Localise pattern binders] local_tuple = mkBigCoreVarTup1 binders tuple_ty = exprType local_tuple strip_bangs :: LPat (GhcPass p) -> LPat (GhcPass p) -- Remove outermost bangs and parens strip_bangs (L _ (ParPat _ _ p _)) = strip_bangs p strip_bangs (L _ (BangPat _ p)) = strip_bangs p strip_bangs lp = lp is_flat_prod_lpat :: LPat GhcTc -> Bool -- Pattern is equivalent to a flat, boxed, lifted tuple is_flat_prod_lpat = is_flat_prod_pat . unLoc is_flat_prod_pat :: Pat GhcTc -> Bool is_flat_prod_pat (ParPat _ _ p _) = is_flat_prod_lpat p is_flat_prod_pat (TuplePat _ ps Boxed) = all is_triv_lpat ps is_flat_prod_pat (ConPat { pat_con = L _ pcon , pat_args = ps}) | RealDataCon con <- pcon , let tc = dataConTyCon con , Just _ <- tyConSingleDataCon_maybe tc , isLiftedAlgTyCon tc = all is_triv_lpat (hsConPatArgs ps) is_flat_prod_pat _ = False is_triv_lpat :: LPat (GhcPass p) -> Bool is_triv_lpat = is_triv_pat . unLoc is_triv_pat :: Pat (GhcPass p) -> Bool is_triv_pat (VarPat {}) = True is_triv_pat (WildPat{}) = True is_triv_pat (ParPat _ _ p _) = is_triv_lpat p is_triv_pat _ = False {- ********************************************************************* * * Creating big tuples and their types for full Haskell expressions. They work over *Ids*, and create tuples replete with their types, which is whey they are not in GHC.Hs.Utils. * * ********************************************************************* -} mkLHsPatTup :: [LPat GhcTc] -> LPat GhcTc mkLHsPatTup [] = noLocA $ mkVanillaTuplePat [] Boxed mkLHsPatTup [lpat] = lpat mkLHsPatTup lpats = L (getLoc (head lpats)) $ mkVanillaTuplePat lpats Boxed mkVanillaTuplePat :: [LPat GhcTc] -> Boxity -> Pat GhcTc -- A vanilla tuple pattern simply gets its type from its sub-patterns mkVanillaTuplePat pats box = TuplePat (map hsLPatType pats) pats box -- The Big equivalents for the source tuple expressions mkBigLHsVarTupId :: [Id] -> LHsExpr GhcTc mkBigLHsVarTupId ids = mkBigLHsTupId (map nlHsVar ids) mkBigLHsTupId :: [LHsExpr GhcTc] -> LHsExpr GhcTc mkBigLHsTupId = mkChunkified (\e -> mkLHsTupleExpr e noExtField) -- The Big equivalents for the source tuple patterns mkBigLHsVarPatTupId :: [Id] -> LPat GhcTc mkBigLHsVarPatTupId bs = mkBigLHsPatTupId (map nlVarPat bs) mkBigLHsPatTupId :: [LPat GhcTc] -> LPat GhcTc mkBigLHsPatTupId = mkChunkified mkLHsPatTup {- ************************************************************************ * * Code for pattern-matching and other failures * * ************************************************************************ Generally, we handle pattern matching failure like this: let-bind a fail-variable, and use that variable if the thing fails: \begin{verbatim} let fail.33 = error "Help" in case x of p1 -> ... p2 -> fail.33 p3 -> fail.33 p4 -> ... \end{verbatim} Then \begin{itemize} \item If the case can't fail, then there'll be no mention of @fail.33@, and the simplifier will later discard it. \item If it can fail in only one way, then the simplifier will inline it. \item Only if it is used more than once will the let-binding remain. \end{itemize} There's a problem when the result of the case expression is of unboxed type. Then the type of @fail.33@ is unboxed too, and there is every chance that someone will change the let into a case: \begin{verbatim} case error "Help" of fail.33 -> case .... \end{verbatim} which is of course utterly wrong. Rather than drop the condition that only boxed types can be let-bound, we just turn the fail into a function for the primitive case: \begin{verbatim} let fail.33 :: Void -> Int# fail.33 = \_ -> error "Help" in case x of p1 -> ... p2 -> fail.33 void p3 -> fail.33 void p4 -> ... \end{verbatim} Now @fail.33@ is a function, so it can be let-bound. We would *like* to use join points here; in fact, these "fail variables" are paradigmatic join points! Sadly, this breaks pattern synonyms, which desugar as CPS functions - i.e. they take "join points" as parameters. It's not impossible to imagine extending our type system to allow passing join points around (very carefully), but we certainly don't support it now. 99.99% of the time, the fail variables wind up as join points in short order anyway, and the Void# doesn't do much harm. -} mkFailurePair :: CoreExpr -- Result type of the whole case expression -> DsM (CoreBind, -- Binds the newly-created fail variable -- to \ _ -> expression CoreExpr) -- Fail variable applied to realWorld# -- See Note [Failure thunks and CPR] mkFailurePair expr = do { fail_fun_var <- newFailLocalDs Many (unboxedUnitTy `mkVisFunTyMany` ty) ; fail_fun_arg <- newSysLocalDs Many unboxedUnitTy ; let real_arg = setOneShotLambda fail_fun_arg ; return (NonRec fail_fun_var (Lam real_arg expr), App (Var fail_fun_var) (Var voidPrimId)) } where ty = exprType expr -- Uses '@mkFailurePair@' to bind the failure case. Infallible matches have -- neither a failure arg or failure "hole", so nothing is let-bound, and no -- extraneous Core is produced. shareFailureHandler :: MatchResult CoreExpr -> MatchResult CoreExpr shareFailureHandler = \case mr@(MR_Infallible _) -> mr MR_Fallible match_fn -> MR_Fallible $ \fail_expr -> do (fail_bind, shared_failure_handler) <- mkFailurePair fail_expr body <- match_fn shared_failure_handler -- Never unboxed, per the above, so always OK for `let` not `case`. return $ Let fail_bind body {- Note [Failure thunks and CPR] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (This note predates join points as formal entities (hence the quotation marks). We can't use actual join points here (see above); if we did, this would also solve the CPR problem, since join points don't get CPR'd. See Note [Don't CPR join points] in GHC.Core.Opt.WorkWrap.) When we make a failure point we ensure that it does not look like a thunk. Example: let fail = \rw -> error "urk" in case x of [] -> fail realWorld# (y:ys) -> case ys of [] -> fail realWorld# (z:zs) -> (y,z) Reason: we know that a failure point is always a "join point" and is entered at most once. Adding a dummy 'realWorld' token argument makes it clear that sharing is not an issue. And that in turn makes it more CPR-friendly. This matters a lot: if you don't get it right, you lose the tail call property. For example, see #3403. -} dsHandleMonadicFailure :: HsDoFlavour -> LPat GhcTc -> MatchResult CoreExpr -> FailOperator GhcTc -> DsM CoreExpr -- In a do expression, pattern-match failure just calls -- the monadic 'fail' rather than throwing an exception dsHandleMonadicFailure ctx pat match m_fail_op = case shareFailureHandler match of MR_Infallible body -> body MR_Fallible body -> do fail_op <- case m_fail_op of -- Note that (non-monadic) list comprehension, pattern guards, etc could -- have fallible bindings without an explicit failure op, but this is -- handled elsewhere. See Note [Failing pattern matches in Stmts] the -- breakdown of regular and special binds. Nothing -> pprPanic "missing fail op" $ text "Pattern match:" <+> ppr pat <+> text "is failable, and fail_expr was left unset" Just fail_op -> pure fail_op dflags <- getDynFlags fail_msg <- mkStringExpr (mk_fail_msg dflags ctx pat) fail_expr <- dsSyntaxExpr fail_op [fail_msg] body fail_expr mk_fail_msg :: DynFlags -> HsDoFlavour -> LocatedA e -> String mk_fail_msg dflags ctx pat = showPpr dflags $ text "Pattern match failure in" <+> pprHsDoFlavour ctx <+> text "at" <+> ppr (getLocA pat) {- ********************************************************************* * * Ticks * * ********************************************************************* -} mkOptTickBox :: [CoreTickish] -> CoreExpr -> CoreExpr mkOptTickBox = flip (foldr Tick) mkBinaryTickBox :: Int -> Int -> CoreExpr -> DsM CoreExpr mkBinaryTickBox ixT ixF e = do uq <- newUnique this_mod <- getModule let bndr1 = mkSysLocal (fsLit "t1") uq One boolTy -- It's always sufficient to pattern-match on a boolean with -- multiplicity 'One'. let falseBox = Tick (HpcTick this_mod ixF) (Var falseDataConId) trueBox = Tick (HpcTick this_mod ixT) (Var trueDataConId) -- return $ Case e bndr1 boolTy [ Alt (DataAlt falseDataCon) [] falseBox , Alt (DataAlt trueDataCon) [] trueBox ] -- ******************************************************************* {- Note [decideBangHood] ~~~~~~~~~~~~~~~~~~~~~~~~ With -XStrict we may make /outermost/ patterns more strict. E.g. let (Just x) = e in ... ==> let !(Just x) = e in ... and f x = e ==> f !x = e This adjustment is done by decideBangHood, * Just before constructing an EqnInfo, in GHC.HsToCore.Match (matchWrapper and matchSinglePat) * When desugaring a pattern-binding in GHC.HsToCore.Binds.dsHsBind Note that it is /not/ done recursively. See the -XStrict spec in the user manual. Specifically: ~pat => pat -- when -XStrict (even if pat = ~pat') !pat => !pat -- always pat => !pat -- when -XStrict pat => pat -- otherwise -} -- | Use -XStrict to add a ! or remove a ~ -- See Note [decideBangHood] decideBangHood :: DynFlags -> LPat GhcTc -- ^ Original pattern -> LPat GhcTc -- Pattern with bang if necessary decideBangHood dflags lpat | not (xopt LangExt.Strict dflags) = lpat | otherwise -- -XStrict = go lpat where go lp@(L l p) = case p of ParPat x lpar p rpar -> L l (ParPat x lpar (go p) rpar) LazyPat _ lp' -> lp' BangPat _ _ -> lp _ -> L l (BangPat noExtField lp) isTrueLHsExpr :: LHsExpr GhcTc -> Maybe (CoreExpr -> DsM CoreExpr) -- Returns Just {..} if we're sure that the expression is True -- I.e. * 'True' datacon -- * 'otherwise' Id -- * Trivial wappings of these -- The arguments to Just are any HsTicks that we have found, -- because we still want to tick then, even it they are always evaluated. isTrueLHsExpr (L _ (HsVar _ (L _ v))) | v `hasKey` otherwiseIdKey || v `hasKey` getUnique trueDataConId = Just return -- trueDataConId doesn't have the same unique as trueDataCon isTrueLHsExpr (L _ (XExpr (ConLikeTc con _ _))) | con `hasKey` getUnique trueDataCon = Just return isTrueLHsExpr (L _ (XExpr (HsTick tickish e))) | Just ticks <- isTrueLHsExpr e = Just (\x -> do wrapped <- ticks x return (Tick tickish wrapped)) -- This encodes that the result is constant True for Hpc tick purposes; -- which is specifically what isTrueLHsExpr is trying to find out. isTrueLHsExpr (L _ (XExpr (HsBinTick ixT _ e))) | Just ticks <- isTrueLHsExpr e = Just (\x -> do e <- ticks x this_mod <- getModule return (Tick (HpcTick this_mod ixT) e)) isTrueLHsExpr (L _ (HsPar _ _ e _)) = isTrueLHsExpr e isTrueLHsExpr _ = Nothing