{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- | Typecheck some @Matches@ module GHC.Tc.Gen.Match ( tcMatchesFun , tcGRHS , tcGRHSsPat , tcMatchesCase , tcMatchLambda , TcMatchCtxt(..) , TcStmtChecker , TcExprStmtChecker , TcCmdStmtChecker , tcStmts , tcStmtsAndThen , tcDoStmts , tcBody , tcDoStmt , tcGuardStmt , checkPatCounts ) where import GHC.Prelude import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcInferRho, tcInferRhoNC , tcMonoExpr, tcMonoExprNC, tcExpr , tcCheckMonoExpr, tcCheckMonoExprNC , tcCheckPolyExpr ) import GHC.Tc.Errors.Types import GHC.Tc.Utils.Monad import GHC.Tc.Utils.Env import GHC.Tc.Gen.Pat import GHC.Tc.Gen.Head( tcCheckId ) import GHC.Tc.Utils.TcMType import GHC.Tc.Utils.TcType import GHC.Tc.Gen.Bind import GHC.Tc.Utils.Concrete ( hasFixedRuntimeRep_syntactic ) import GHC.Tc.Utils.Unify import GHC.Tc.Types.Origin import GHC.Tc.Types.Evidence import GHC.Core.Multiplicity import GHC.Core.UsageEnv import GHC.Core.TyCon -- Create chunkified tuple tybes for monad comprehensions import GHC.Core.Make import GHC.Hs import GHC.Builtin.Types import GHC.Builtin.Types.Prim import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Misc import GHC.Driver.Session ( getDynFlags ) import GHC.Types.Error import GHC.Types.Fixity (LexicalFixity(..)) import GHC.Types.Name import GHC.Types.Id import GHC.Types.SrcLoc import Control.Monad import Control.Arrow ( second ) {- ************************************************************************ * * \subsection{tcMatchesFun, tcMatchesCase} * * ************************************************************************ @tcMatchesFun@ typechecks a @[Match]@ list which occurs in a @FunMonoBind@. The second argument is the name of the function, which is used in error messages. It checks that all the equations have the same number of arguments before using @tcMatches@ to do the work. -} tcMatchesFun :: LocatedN Id -- MatchContext Id -> MatchGroup GhcRn (LHsExpr GhcRn) -> ExpRhoType -- Expected type of function -> TcM (HsWrapper, MatchGroup GhcTc (LHsExpr GhcTc)) -- Returns type of body tcMatchesFun fun_id matches exp_ty = do { -- Check that they all have the same no of arguments -- Location is in the monad, set the caller so that -- any inter-equation error messages get some vaguely -- sensible location. Note: we have to do this odd -- ann-grabbing, because we don't always have annotations in -- hand when we call tcMatchesFun... traceTc "tcMatchesFun" (ppr fun_name $$ ppr exp_ty) -- We can't easily call checkPatCounts here because fun_id can be an -- unfilled thunk ; checkArgCounts fun_name matches ; matchExpectedFunTys herald ctxt arity exp_ty $ \ pat_tys rhs_ty -> -- NB: exp_type may be polymorphic, but -- matchExpectedFunTys can cope with that tcScalingUsage Many $ -- toplevel bindings and let bindings are, at the -- moment, always unrestricted. The value being bound -- must, accordingly, be unrestricted. Hence them -- being scaled by Many. When let binders come with a -- multiplicity, then @tcMatchesFun@ will have to take -- a multiplicity argument, and scale accordingly. tcMatches match_ctxt pat_tys rhs_ty matches } where fun_name = idName (unLoc fun_id) arity = matchGroupArity matches herald = ExpectedFunTyMatches (NameThing fun_name) matches ctxt = GenSigCtxt -- Was: FunSigCtxt fun_name True -- But that's wrong for f :: Int -> forall a. blah what = FunRhs { mc_fun = fun_id, mc_fixity = Prefix, mc_strictness = strictness } -- Careful: this fun_id could be an unfilled -- thunk from fixM in tcMonoBinds, so we're -- not allowed to look at it, except for -- idName. -- See Note [fixM for rhs_ty in tcMonoBinds] match_ctxt = MC { mc_what = what, mc_body = tcBody } strictness | [L _ match] <- unLoc $ mg_alts matches , FunRhs{ mc_strictness = SrcStrict } <- m_ctxt match = SrcStrict | otherwise = NoSrcStrict {- @tcMatchesCase@ doesn't do the argument-count check because the parser guarantees that each equation has exactly one argument. -} tcMatchesCase :: (AnnoBody body) => TcMatchCtxt body -- ^ Case context -> Scaled TcSigmaTypeFRR -- ^ Type of scrutinee -> MatchGroup GhcRn (LocatedA (body GhcRn)) -- ^ The case alternatives -> ExpRhoType -- ^ Type of the whole case expression -> TcM (MatchGroup GhcTc (LocatedA (body GhcTc))) -- Translated alternatives -- wrapper goes from MatchGroup's ty to expected ty tcMatchesCase ctxt (Scaled scrut_mult scrut_ty) matches res_ty = tcMatches ctxt [Scaled scrut_mult (mkCheckExpType scrut_ty)] res_ty matches tcMatchLambda :: ExpectedFunTyOrigin -- see Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify -> TcMatchCtxt HsExpr -> MatchGroup GhcRn (LHsExpr GhcRn) -> ExpRhoType -> TcM (HsWrapper, MatchGroup GhcTc (LHsExpr GhcTc)) tcMatchLambda herald match_ctxt match res_ty = do { checkPatCounts (mc_what match_ctxt) match ; matchExpectedFunTys herald GenSigCtxt n_pats res_ty $ \ pat_tys rhs_ty -> do -- checking argument counts since this is also used for \cases tcMatches match_ctxt pat_tys rhs_ty match } where n_pats | isEmptyMatchGroup match = 1 -- must be lambda-case | otherwise = matchGroupArity match -- @tcGRHSsPat@ typechecks @[GRHSs]@ that occur in a @PatMonoBind@. tcGRHSsPat :: GRHSs GhcRn (LHsExpr GhcRn) -> ExpRhoType -> TcM (GRHSs GhcTc (LHsExpr GhcTc)) -- Used for pattern bindings tcGRHSsPat grhss res_ty = tcScalingUsage Many $ -- Like in tcMatchesFun, this scaling happens because all -- let bindings are unrestricted. A difference, here, is -- that when this is not the case, any more, we will have to -- make sure that the pattern is strict, otherwise this will -- desugar to incorrect code. tcGRHSs match_ctxt grhss res_ty where match_ctxt :: TcMatchCtxt HsExpr -- AZ match_ctxt = MC { mc_what = PatBindRhs, mc_body = tcBody } {- ********************************************************************* * * tcMatch * * ********************************************************************* -} data TcMatchCtxt body -- c.f. TcStmtCtxt, also in this module = MC { mc_what :: HsMatchContext GhcTc, -- What kind of thing this is mc_body :: LocatedA (body GhcRn) -- Type checker for a body of -- an alternative -> ExpRhoType -> TcM (LocatedA (body GhcTc)) } type AnnoBody body = ( Outputable (body GhcRn) , Anno (Match GhcRn (LocatedA (body GhcRn))) ~ SrcSpanAnnA , Anno (Match GhcTc (LocatedA (body GhcTc))) ~ SrcSpanAnnA , Anno [LocatedA (Match GhcRn (LocatedA (body GhcRn)))] ~ SrcSpanAnnL , Anno [LocatedA (Match GhcTc (LocatedA (body GhcTc)))] ~ SrcSpanAnnL , Anno (GRHS GhcRn (LocatedA (body GhcRn))) ~ SrcAnn NoEpAnns , Anno (GRHS GhcTc (LocatedA (body GhcTc))) ~ SrcAnn NoEpAnns , Anno (StmtLR GhcRn GhcRn (LocatedA (body GhcRn))) ~ SrcSpanAnnA , Anno (StmtLR GhcTc GhcTc (LocatedA (body GhcTc))) ~ SrcSpanAnnA ) -- | Type-check a MatchGroup. tcMatches :: (AnnoBody body ) => TcMatchCtxt body -> [Scaled ExpSigmaTypeFRR] -- ^ Expected pattern types. -> ExpRhoType -- ^ Expected result-type of the Match. -> MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM (MatchGroup GhcTc (LocatedA (body GhcTc))) tcMatches ctxt pat_tys rhs_ty (MG { mg_alts = L l matches , mg_origin = origin }) | null matches -- Deal with case e of {} -- Since there are no branches, no one else will fill in rhs_ty -- when in inference mode, so we must do it ourselves, -- here, using expTypeToType = do { tcEmitBindingUsage bottomUE ; pat_tys <- mapM scaledExpTypeToType pat_tys ; rhs_ty <- expTypeToType rhs_ty ; return (MG { mg_alts = L l [] , mg_ext = MatchGroupTc pat_tys rhs_ty , mg_origin = origin }) } | otherwise = do { umatches <- mapM (tcCollectingUsage . tcMatch ctxt pat_tys rhs_ty) matches ; let (usages,matches') = unzip umatches ; tcEmitBindingUsage $ supUEs usages ; pat_tys <- mapM readScaledExpType pat_tys ; rhs_ty <- readExpType rhs_ty ; return (MG { mg_alts = L l matches' , mg_ext = MatchGroupTc pat_tys rhs_ty , mg_origin = origin }) } ------------- tcMatch :: (AnnoBody body) => TcMatchCtxt body -> [Scaled ExpSigmaType] -- Expected pattern types -> ExpRhoType -- Expected result-type of the Match. -> LMatch GhcRn (LocatedA (body GhcRn)) -> TcM (LMatch GhcTc (LocatedA (body GhcTc))) tcMatch ctxt pat_tys rhs_ty match = wrapLocMA (tc_match ctxt pat_tys rhs_ty) match where tc_match ctxt pat_tys rhs_ty match@(Match { m_pats = pats, m_grhss = grhss }) = add_match_ctxt match $ do { (pats', grhss') <- tcPats (mc_what ctxt) pats pat_tys $ tcGRHSs ctxt grhss rhs_ty ; return (Match { m_ext = noAnn , m_ctxt = mc_what ctxt, m_pats = pats' , m_grhss = grhss' }) } -- For (\x -> e), tcExpr has already said "In the expression \x->e" -- so we don't want to add "In the lambda abstraction \x->e" add_match_ctxt match thing_inside = case mc_what ctxt of LambdaExpr -> thing_inside _ -> addErrCtxt (pprMatchInCtxt match) thing_inside ------------- tcGRHSs :: AnnoBody body => TcMatchCtxt body -> GRHSs GhcRn (LocatedA (body GhcRn)) -> ExpRhoType -> TcM (GRHSs GhcTc (LocatedA (body GhcTc))) -- Notice that we pass in the full res_ty, so that we get -- good inference from simple things like -- f = \(x::forall a.a->a) -> -- We used to force it to be a monotype when there was more than one guard -- but we don't need to do that any more tcGRHSs ctxt (GRHSs _ grhss binds) res_ty = do { (binds', ugrhss) <- tcLocalBinds binds $ mapM (tcCollectingUsage . wrapLocMA (tcGRHS ctxt res_ty)) grhss ; let (usages, grhss') = unzip ugrhss ; tcEmitBindingUsage $ supUEs usages ; return (GRHSs emptyComments grhss' binds') } ------------- tcGRHS :: TcMatchCtxt body -> ExpRhoType -> GRHS GhcRn (LocatedA (body GhcRn)) -> TcM (GRHS GhcTc (LocatedA (body GhcTc))) tcGRHS ctxt res_ty (GRHS _ guards rhs) = do { (guards', rhs') <- tcStmtsAndThen stmt_ctxt tcGuardStmt guards res_ty $ mc_body ctxt rhs ; return (GRHS noAnn guards' rhs') } where stmt_ctxt = PatGuard (mc_what ctxt) {- ************************************************************************ * * \subsection{@tcDoStmts@ typechecks a {\em list} of do statements} * * ************************************************************************ -} tcDoStmts :: HsDoFlavour -> LocatedL [LStmt GhcRn (LHsExpr GhcRn)] -> ExpRhoType -> TcM (HsExpr GhcTc) -- Returns a HsDo tcDoStmts ListComp (L l stmts) res_ty = do { res_ty <- expTypeToType res_ty ; (co, elt_ty) <- matchExpectedListTy res_ty ; let list_ty = mkListTy elt_ty ; stmts' <- tcStmts (HsDoStmt ListComp) (tcLcStmt listTyCon) stmts (mkCheckExpType elt_ty) ; return $ mkHsWrapCo co (HsDo list_ty ListComp (L l stmts')) } tcDoStmts doExpr@(DoExpr _) (L l stmts) res_ty = do { stmts' <- tcStmts (HsDoStmt doExpr) tcDoStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty doExpr (L l stmts')) } tcDoStmts mDoExpr@(MDoExpr _) (L l stmts) res_ty = do { stmts' <- tcStmts (HsDoStmt mDoExpr) tcDoStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty mDoExpr (L l stmts')) } tcDoStmts MonadComp (L l stmts) res_ty = do { stmts' <- tcStmts (HsDoStmt MonadComp) tcMcStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty MonadComp (L l stmts')) } tcDoStmts ctxt@GhciStmtCtxt _ _ = pprPanic "tcDoStmts" (pprHsDoFlavour ctxt) tcBody :: LHsExpr GhcRn -> ExpRhoType -> TcM (LHsExpr GhcTc) tcBody body res_ty = do { traceTc "tcBody" (ppr res_ty) ; tcMonoExpr body res_ty } {- ************************************************************************ * * \subsection{tcStmts} * * ************************************************************************ -} type TcExprStmtChecker = TcStmtChecker HsExpr ExpRhoType type TcCmdStmtChecker = TcStmtChecker HsCmd TcRhoType type TcStmtChecker body rho_type = forall thing. HsStmtContext GhcTc -> Stmt GhcRn (LocatedA (body GhcRn)) -> rho_type -- Result type for comprehension -> (rho_type -> TcM thing) -- Checker for what follows the stmt -> TcM (Stmt GhcTc (LocatedA (body GhcTc)), thing) tcStmts :: (AnnoBody body) => HsStmtContext GhcTc -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (LocatedA (body GhcRn))] -> rho_type -> TcM [LStmt GhcTc (LocatedA (body GhcTc))] tcStmts ctxt stmt_chk stmts res_ty = do { (stmts', _) <- tcStmtsAndThen ctxt stmt_chk stmts res_ty $ const (return ()) ; return stmts' } tcStmtsAndThen :: (AnnoBody body) => HsStmtContext GhcTc -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (LocatedA (body GhcRn))] -> rho_type -> (rho_type -> TcM thing) -> TcM ([LStmt GhcTc (LocatedA (body GhcTc))], thing) -- Note the higher-rank type. stmt_chk is applied at different -- types in the equations for tcStmts tcStmtsAndThen _ _ [] res_ty thing_inside = do { thing <- thing_inside res_ty ; return ([], thing) } -- LetStmts are handled uniformly, regardless of context tcStmtsAndThen ctxt stmt_chk (L loc (LetStmt x binds) : stmts) res_ty thing_inside = do { (binds', (stmts',thing)) <- tcLocalBinds binds $ tcStmtsAndThen ctxt stmt_chk stmts res_ty thing_inside ; return (L loc (LetStmt x binds') : stmts', thing) } -- Don't set the error context for an ApplicativeStmt. It ought to be -- possible to do this with a popErrCtxt in the tcStmt case for -- ApplicativeStmt, but it did something strange and broke a test (ado002). tcStmtsAndThen ctxt stmt_chk (L loc stmt : stmts) res_ty thing_inside | ApplicativeStmt{} <- stmt = do { (stmt', (stmts', thing)) <- stmt_chk ctxt stmt res_ty $ \ res_ty' -> tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } -- For the vanilla case, handle the location-setting part | otherwise = do { (stmt', (stmts', thing)) <- setSrcSpanA loc $ addErrCtxt (pprStmtInCtxt ctxt stmt) $ stmt_chk ctxt stmt res_ty $ \ res_ty' -> popErrCtxt $ tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } --------------------------------------------------- -- Pattern guards --------------------------------------------------- tcGuardStmt :: TcExprStmtChecker tcGuardStmt _ (BodyStmt _ guard _ _) res_ty thing_inside = do { guard' <- tcScalingUsage Many $ tcCheckMonoExpr guard boolTy -- Scale the guard to Many (see #19120 and #19193) ; thing <- thing_inside res_ty ; return (BodyStmt boolTy guard' noSyntaxExpr noSyntaxExpr, thing) } tcGuardStmt ctxt (BindStmt _ pat rhs) res_ty thing_inside = do { -- The Many on the next line and the unrestricted on the line after -- are linked. These must be the same multiplicity. Consider -- x <- rhs -> u -- -- The multiplicity of x in u must be the same as the multiplicity at -- which the rhs has been consumed. When solving #18738, we want these -- two multiplicity to still be the same. (rhs', rhs_ty) <- tcScalingUsage Many $ tcInferRhoNC rhs -- Stmt has a context already ; hasFixedRuntimeRep_syntactic FRRBindStmtGuard rhs_ty ; (pat', thing) <- tcCheckPat_O (StmtCtxt ctxt) (lexprCtOrigin rhs) pat (unrestricted rhs_ty) $ thing_inside res_ty ; return (mkTcBindStmt pat' rhs', thing) } tcGuardStmt _ stmt _ _ = pprPanic "tcGuardStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- List comprehensions -- (no rebindable syntax) --------------------------------------------------- -- Dealt with separately, rather than by tcMcStmt, because -- a) We have special desugaring rules for list comprehensions, -- which avoid creating intermediate lists. They in turn -- assume that the bind/return operations are the regular -- polymorphic ones, and in particular don't have any -- coercion matching stuff in them. It's hard to avoid the -- potential for non-trivial coercions in tcMcStmt tcLcStmt :: TyCon -- The list type constructor ([]) -> TcExprStmtChecker tcLcStmt _ _ (LastStmt x body noret _) elt_ty thing_inside = do { body' <- tcMonoExprNC body elt_ty ; thing <- thing_inside (panic "tcLcStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } -- A generator, pat <- rhs tcLcStmt m_tc ctxt (BindStmt _ pat rhs) elt_ty thing_inside = do { pat_ty <- newFlexiTyVarTy liftedTypeKind ; rhs' <- tcCheckMonoExpr rhs (mkTyConApp m_tc [pat_ty]) ; (pat', thing) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $ thing_inside elt_ty ; return (mkTcBindStmt pat' rhs', thing) } -- A boolean guard tcLcStmt _ _ (BodyStmt _ rhs _ _) elt_ty thing_inside = do { rhs' <- tcCheckMonoExpr rhs boolTy ; thing <- thing_inside elt_ty ; return (BodyStmt boolTy rhs' noSyntaxExpr noSyntaxExpr, thing) } -- ParStmt: See notes with tcMcStmt tcLcStmt m_tc ctxt (ParStmt _ bndr_stmts_s _ _) elt_ty thing_inside = do { (pairs', thing) <- loop bndr_stmts_s ; return (ParStmt unitTy pairs' noExpr noSyntaxExpr, thing) } where -- loop :: [([LStmt GhcRn], [GhcRn])] -- -> TcM ([([LStmt GhcTc], [GhcTc])], thing) loop [] = do { thing <- thing_inside elt_ty ; return ([], thing) } -- matching in the branches loop (ParStmtBlock x stmts names _ : pairs) = do { (stmts', (ids, pairs', thing)) <- tcStmtsAndThen ctxt (tcLcStmt m_tc) stmts elt_ty $ \ _elt_ty' -> do { ids <- tcLookupLocalIds names ; (pairs', thing) <- loop pairs ; return (ids, pairs', thing) } ; return ( ParStmtBlock x stmts' ids noSyntaxExpr : pairs', thing ) } tcLcStmt m_tc ctxt (TransStmt { trS_form = form, trS_stmts = stmts , trS_bndrs = bindersMap , trS_by = by, trS_using = using }) elt_ty thing_inside = do { let (bndr_names, n_bndr_names) = unzip bindersMap unused_ty = pprPanic "tcLcStmt: inner ty" (ppr bindersMap) -- The inner 'stmts' lack a LastStmt, so the element type -- passed in to tcStmtsAndThen is never looked at ; (stmts', (bndr_ids, by')) <- tcStmtsAndThen (TransStmtCtxt ctxt) (tcLcStmt m_tc) stmts unused_ty $ \_ -> do { by' <- traverse tcInferRho by ; bndr_ids <- tcLookupLocalIds bndr_names ; return (bndr_ids, by') } ; let m_app ty = mkTyConApp m_tc [ty] --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m (a,b,c) -> m (a,b,c)m (ThenForm) -- :: ((a,b,c)->t) -> m (a,b,c) -> m (m (a,b,c))) (GroupForm) -- n_app :: Type -> Type -- Wraps a 'ty' into '[ty]' for GroupForm ; let n_app = case form of ThenForm -> (\ty -> ty) _ -> m_app by_arrow :: Type -> Type -- Wraps 'ty' to '(a->t) -> ty' if the By is present by_arrow = case by' of Nothing -> \ty -> ty Just (_,e_ty) -> \ty -> (alphaTy `mkVisFunTyMany` e_ty) `mkVisFunTyMany` ty tup_ty = mkBigCoreVarTupTy bndr_ids poly_arg_ty = m_app alphaTy poly_res_ty = m_app (n_app alphaTy) using_poly_ty = mkInfForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTyMany` poly_res_ty ; using' <- tcCheckPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name Many (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [GroupStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids (thing_inside elt_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = fmap fst by', trS_using = final_using , trS_ret = noSyntaxExpr , trS_bind = noSyntaxExpr , trS_fmap = noExpr , trS_ext = unitTy , trS_form = form }, thing) } tcLcStmt _ _ stmt _ _ = pprPanic "tcLcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Monad comprehensions -- (supports rebindable syntax) --------------------------------------------------- tcMcStmt :: TcExprStmtChecker tcMcStmt _ (LastStmt x body noret return_op) res_ty thing_inside = do { (body', return_op') <- tcSyntaxOp MCompOrigin return_op [SynRho] res_ty $ \ [a_ty] [mult]-> tcScalingUsage mult $ tcCheckMonoExprNC body a_ty ; thing <- thing_inside (panic "tcMcStmt: thing_inside") ; return (LastStmt x body' noret return_op', thing) } -- Generators for monad comprehensions ( pat <- rhs ) -- -- [ body | q <- gen ] -> gen :: m a -- q :: a -- tcMcStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside -- (>>=) :: rhs_ty -> (pat_ty -> new_res_ty) -> res_ty = do { ((rhs_ty, rhs', pat_mult, pat', thing, new_res_ty), bind_op') <- tcSyntaxOp MCompOrigin (xbsrn_bindOp xbsrn) [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] [rhs_mult, fun_mult, pat_mult] -> do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs_ty, rhs', pat_mult, pat', thing, new_res_ty) } ; hasFixedRuntimeRep_syntactic (FRRBindStmt MonadComprehension) rhs_ty -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail -> tcMonadFailOp (MCompPatOrigin pat) pat' fail new_res_ty ; let xbstc = XBindStmtTc { xbstc_bindOp = bind_op' , xbstc_boundResultType = new_res_ty , xbstc_boundResultMult = pat_mult , xbstc_failOp = fail_op' } ; return (BindStmt xbstc pat' rhs', thing) } -- Boolean expressions. -- -- [ body | stmts, expr ] -> expr :: m Bool -- tcMcStmt _ (BodyStmt _ rhs then_op guard_op) res_ty thing_inside = do { -- Deal with rebindable syntax: -- guard_op :: test_ty -> rhs_ty -- then_op :: rhs_ty -> new_res_ty -> res_ty -- Where test_ty is, for example, Bool ; ((thing, rhs', rhs_ty, new_res_ty, test_ty, guard_op'), then_op') <- tcSyntaxOp MCompOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] [rhs_mult, fun_mult] -> do { ((rhs', test_ty), guard_op') <- tcScalingUsage rhs_mult $ tcSyntaxOp MCompOrigin guard_op [SynAny] (mkCheckExpType rhs_ty) $ \ [test_ty] [test_mult] -> do rhs' <- tcScalingUsage test_mult $ tcCheckMonoExpr rhs test_ty return $ (rhs', test_ty) ; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty) ; return (thing, rhs', rhs_ty, new_res_ty, test_ty, guard_op') } ; hasFixedRuntimeRep_syntactic FRRBodyStmtGuard test_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt MonadComprehension 1) rhs_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt MonadComprehension 2) new_res_ty ; return (BodyStmt rhs_ty rhs' then_op' guard_op', thing) } -- Grouping statements -- -- [ body | stmts, then group by e using f ] -- -> e :: t -- f :: forall a. (a -> t) -> m a -> m (m a) -- [ body | stmts, then group using f ] -- -> f :: forall a. m a -> m (m a) -- We type [ body | (stmts, group by e using f), ... ] -- f [ (a,b,c) | stmts ] >>= \(a,b,c) -> ...body.... -- -- We type the functions as follows: -- f :: m1 (a,b,c) -> m2 (a,b,c) (ThenForm) -- :: m1 (a,b,c) -> m2 (n (a,b,c)) (GroupForm) -- (>>=) :: m2 (a,b,c) -> ((a,b,c) -> res) -> res (ThenForm) -- :: m2 (n (a,b,c)) -> (n (a,b,c) -> res) -> res (GroupForm) -- tcMcStmt ctxt (TransStmt { trS_stmts = stmts, trS_bndrs = bindersMap , trS_by = by, trS_using = using, trS_form = form , trS_ret = return_op, trS_bind = bind_op , trS_fmap = fmap_op }) res_ty thing_inside = do { m1_ty <- newFlexiTyVarTy typeToTypeKind ; m2_ty <- newFlexiTyVarTy typeToTypeKind ; tup_ty <- newFlexiTyVarTy liftedTypeKind ; by_e_ty <- newFlexiTyVarTy liftedTypeKind -- The type of the 'by' expression (if any) -- n_app :: Type -> Type -- Wraps a 'ty' into '(n ty)' for GroupForm ; n_app <- case form of ThenForm -> return (\ty -> ty) _ -> do { n_ty <- newFlexiTyVarTy typeToTypeKind ; return (n_ty `mkAppTy`) } ; let by_arrow :: Type -> Type -- (by_arrow res) produces ((alpha->e_ty) -> res) ('by' present) -- or res ('by' absent) by_arrow = case by of Nothing -> \res -> res Just {} -> \res -> (alphaTy `mkVisFunTyMany` by_e_ty) `mkVisFunTyMany` res poly_arg_ty = m1_ty `mkAppTy` alphaTy using_arg_ty = m1_ty `mkAppTy` tup_ty poly_res_ty = m2_ty `mkAppTy` n_app alphaTy using_res_ty = m2_ty `mkAppTy` n_app tup_ty using_poly_ty = mkInfForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTyMany` poly_res_ty -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let (bndr_names, n_bndr_names) = unzip bindersMap ; (stmts', (bndr_ids, by', return_op')) <- tcStmtsAndThen (TransStmtCtxt ctxt) tcMcStmt stmts (mkCheckExpType using_arg_ty) $ \res_ty' -> do { by' <- case by of Nothing -> return Nothing Just e -> do { e' <- tcCheckMonoExpr e by_e_ty ; return (Just e') } -- Find the Ids (and hence types) of all old binders ; bndr_ids <- tcLookupLocalIds bndr_names -- 'return' is only used for the binders, so we know its type. -- return :: (a,b,c,..) -> m (a,b,c,..) ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType (mkBigCoreVarTupTy bndr_ids)] res_ty' $ \ _ _ -> return () ; return (bndr_ids, by', return_op') } --------------- Typecheck the 'bind' function ------------- -- (>>=) :: m2 (n (a,b,c)) -> ( n (a,b,c) -> new_res_ty ) -> res_ty ; new_res_ty <- newFlexiTyVarTy liftedTypeKind ; (_, bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType using_res_ty , synKnownType (n_app tup_ty `mkVisFunTyMany` new_res_ty) ] res_ty $ \ _ _ -> return () --------------- Typecheck the 'fmap' function ------------- ; fmap_op' <- case form of ThenForm -> return noExpr _ -> fmap unLoc . tcCheckPolyExpr (noLocA fmap_op) $ mkInfForAllTy alphaTyVar $ mkInfForAllTy betaTyVar $ (alphaTy `mkVisFunTyMany` betaTy) `mkVisFunTyMany` (n_app alphaTy) `mkVisFunTyMany` (n_app betaTy) --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m1 (a,b,c) -> m2 (n (a,b,c)) ; using' <- tcCheckPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' --------------- Building the bindersMap ---------------- ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name Many (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [GroupStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWithEqual "tcMcStmt" mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids $ thing_inside (mkCheckExpType new_res_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = by', trS_using = final_using , trS_ret = return_op', trS_bind = bind_op' , trS_ext = n_app tup_ty , trS_fmap = fmap_op', trS_form = form }, thing) } -- A parallel set of comprehensions -- [ (g x, h x) | ... ; let g v = ... -- | ... ; let h v = ... ] -- -- It's possible that g,h are overloaded, so we need to feed the LIE from the -- (g x, h x) up through both lots of bindings (so we get the bindLocalMethods). -- Similarly if we had an existential pattern match: -- -- data T = forall a. Show a => C a -- -- [ (show x, show y) | ... ; C x <- ... -- | ... ; C y <- ... ] -- -- Then we need the LIE from (show x, show y) to be simplified against -- the bindings for x and y. -- -- It's difficult to do this in parallel, so we rely on the renamer to -- ensure that g,h and x,y don't duplicate, and simply grow the environment. -- So the binders of the first parallel group will be in scope in the second -- group. But that's fine; there's no shadowing to worry about. -- -- Note: The `mzip` function will get typechecked via: -- -- ParStmt [st1::t1, st2::t2, st3::t3] -- -- mzip :: m st1 -- -> (m st2 -> m st3 -> m (st2, st3)) -- recursive call -- -> m (st1, (st2, st3)) -- tcMcStmt ctxt (ParStmt _ bndr_stmts_s mzip_op bind_op) res_ty thing_inside = do { m_ty <- newFlexiTyVarTy typeToTypeKind ; let mzip_ty = mkInfForAllTys [alphaTyVar, betaTyVar] $ (m_ty `mkAppTy` alphaTy) `mkVisFunTyMany` (m_ty `mkAppTy` betaTy) `mkVisFunTyMany` (m_ty `mkAppTy` mkBoxedTupleTy [alphaTy, betaTy]) ; mzip_op' <- unLoc `fmap` tcCheckPolyExpr (noLocA mzip_op) mzip_ty -- type dummies since we don't know all binder types yet ; id_tys_s <- (mapM . mapM) (const (newFlexiTyVarTy liftedTypeKind)) [ names | ParStmtBlock _ _ names _ <- bndr_stmts_s ] -- Typecheck bind: ; let tup_tys = [ mkBigCoreTupTy id_tys | id_tys <- id_tys_s ] tuple_ty = mk_tuple_ty tup_tys ; (((blocks', thing), inner_res_ty), bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType (m_ty `mkAppTy` tuple_ty) , SynFun (synKnownType tuple_ty) SynRho ] res_ty $ \ [inner_res_ty] _ -> do { stuff <- loop m_ty (mkCheckExpType inner_res_ty) tup_tys bndr_stmts_s ; return (stuff, inner_res_ty) } ; return (ParStmt inner_res_ty blocks' mzip_op' bind_op', thing) } where mk_tuple_ty tys = foldr1 (\tn tm -> mkBoxedTupleTy [tn, tm]) tys -- loop :: Type -- m_ty -- -> ExpRhoType -- inner_res_ty -- -> [TcType] -- tup_tys -- -> [ParStmtBlock Name] -- -> TcM ([([LStmt GhcTc], [TcId])], thing) loop _ inner_res_ty [] [] = do { thing <- thing_inside inner_res_ty ; return ([], thing) } -- matching in the branches loop m_ty inner_res_ty (tup_ty_in : tup_tys_in) (ParStmtBlock x stmts names return_op : pairs) = do { let m_tup_ty = m_ty `mkAppTy` tup_ty_in ; (stmts', (ids, return_op', pairs', thing)) <- tcStmtsAndThen ctxt tcMcStmt stmts (mkCheckExpType m_tup_ty) $ \m_tup_ty' -> do { ids <- tcLookupLocalIds names ; let tup_ty = mkBigCoreVarTupTy ids ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType tup_ty] m_tup_ty' $ \ _ _ -> return () ; (pairs', thing) <- loop m_ty inner_res_ty tup_tys_in pairs ; return (ids, return_op', pairs', thing) } ; return (ParStmtBlock x stmts' ids return_op' : pairs', thing) } loop _ _ _ _ = panic "tcMcStmt.loop" tcMcStmt _ stmt _ _ = pprPanic "tcMcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Do-notation -- (supports rebindable syntax) --------------------------------------------------- tcDoStmt :: TcExprStmtChecker tcDoStmt _ (LastStmt x body noret _) res_ty thing_inside = do { body' <- tcMonoExprNC body res_ty ; thing <- thing_inside (panic "tcDoStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } tcDoStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside = do { -- Deal with rebindable syntax: -- (>>=) :: rhs_ty ->_rhs_mult (pat_ty ->_pat_mult new_res_ty) ->_fun_mult res_ty -- This level of generality is needed for using do-notation -- in full generality; see #1537 ((rhs_ty, rhs', pat_mult, pat', new_res_ty, thing), bind_op') <- tcSyntaxOp DoOrigin (xbsrn_bindOp xbsrn) [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] [rhs_mult,fun_mult,pat_mult] -> do { rhs' <-tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs_ty, rhs', pat_mult, pat', new_res_ty, thing) } ; hasFixedRuntimeRep_syntactic (FRRBindStmt DoNotation) rhs_ty -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail -> tcMonadFailOp (DoPatOrigin pat) pat' fail new_res_ty ; let xbstc = XBindStmtTc { xbstc_bindOp = bind_op' , xbstc_boundResultType = new_res_ty , xbstc_boundResultMult = pat_mult , xbstc_failOp = fail_op' } ; return (BindStmt xbstc pat' rhs', thing) } tcDoStmt ctxt (ApplicativeStmt _ pairs mb_join) res_ty thing_inside = do { let tc_app_stmts ty = tcApplicativeStmts ctxt pairs ty $ thing_inside . mkCheckExpType ; ((pairs', body_ty, thing), mb_join') <- case mb_join of Nothing -> (, Nothing) <$> tc_app_stmts res_ty Just join_op -> second Just <$> (tcSyntaxOp DoOrigin join_op [SynRho] res_ty $ \ [rhs_ty] [rhs_mult] -> tcScalingUsage rhs_mult $ tc_app_stmts (mkCheckExpType rhs_ty)) ; return (ApplicativeStmt body_ty pairs' mb_join', thing) } tcDoStmt _ (BodyStmt _ rhs then_op _) res_ty thing_inside = do { -- Deal with rebindable syntax; -- (>>) :: rhs_ty -> new_res_ty -> res_ty ; ((rhs', rhs_ty, new_res_ty, thing), then_op') <- tcSyntaxOp DoOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] [rhs_mult,fun_mult] -> do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty ; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs', rhs_ty, new_res_ty, thing) } ; hasFixedRuntimeRep_syntactic (FRRBodyStmt DoNotation 1) rhs_ty ; hasFixedRuntimeRep_syntactic (FRRBodyStmt DoNotation 2) new_res_ty ; return (BodyStmt rhs_ty rhs' then_op' noSyntaxExpr, thing) } tcDoStmt ctxt (RecStmt { recS_stmts = L l stmts, recS_later_ids = later_names , recS_rec_ids = rec_names, recS_ret_fn = ret_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op }) res_ty thing_inside = do { let tup_names = rec_names ++ filterOut (`elem` rec_names) later_names ; tup_elt_tys <- newFlexiTyVarTys (length tup_names) liftedTypeKind ; let tup_ids = zipWith (\n t -> mkLocalId n Many t) tup_names tup_elt_tys -- Many because it's a recursive definition tup_ty = mkBigCoreTupTy tup_elt_tys ; tcExtendIdEnv tup_ids $ do { ((stmts', (ret_op', tup_rets)), stmts_ty) <- tcInfer $ \ exp_ty -> tcStmtsAndThen ctxt tcDoStmt stmts exp_ty $ \ inner_res_ty -> do { tup_rets <- zipWithM tcCheckId tup_names (map mkCheckExpType tup_elt_tys) -- Unify the types of the "final" Ids (which may -- be polymorphic) with those of "knot-tied" Ids ; (_, ret_op') <- tcSyntaxOp DoOrigin ret_op [synKnownType tup_ty] inner_res_ty $ \_ _ -> return () ; return (ret_op', tup_rets) } ; ((_, mfix_op'), mfix_res_ty) <- tcInfer $ \ exp_ty -> tcSyntaxOp DoOrigin mfix_op [synKnownType (mkVisFunTyMany tup_ty stmts_ty)] exp_ty $ \ _ _ -> return () ; ((thing, new_res_ty), bind_op') <- tcSyntaxOp DoOrigin bind_op [ synKnownType mfix_res_ty , SynFun (synKnownType tup_ty) SynRho ] res_ty $ \ [new_res_ty] _ -> do { thing <- thing_inside (mkCheckExpType new_res_ty) ; return (thing, new_res_ty) } ; let rec_ids = takeList rec_names tup_ids ; later_ids <- tcLookupLocalIds later_names ; traceTc "tcdo" $ vcat [ppr rec_ids <+> ppr (map idType rec_ids), ppr later_ids <+> ppr (map idType later_ids)] ; return (RecStmt { recS_stmts = L l stmts', recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = ret_op' , recS_mfix_fn = mfix_op', recS_bind_fn = bind_op' , recS_ext = RecStmtTc { recS_bind_ty = new_res_ty , recS_later_rets = [] , recS_rec_rets = tup_rets , recS_ret_ty = stmts_ty} }, thing) }} tcDoStmt _ stmt _ _ = pprPanic "tcDoStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- MonadFail Proposal warnings --------------------------------------------------- -- The idea behind issuing MonadFail warnings is that we add them whenever a -- failable pattern is encountered. However, instead of throwing a type error -- when the constraint cannot be satisfied, we only issue a warning in -- "GHC.Tc.Errors". tcMonadFailOp :: CtOrigin -> LPat GhcTc -> SyntaxExpr GhcRn -- The fail op -> TcType -- Type of the whole do-expression -> TcRn (FailOperator GhcTc) -- Typechecked fail op -- Get a 'fail' operator expression, to use if the pattern match fails. -- This won't be used in cases where we've already determined the pattern -- match can't fail (so the fail op is Nothing), however, it seems that the -- isIrrefutableHsPat test is still required here for some reason I haven't -- yet determined. tcMonadFailOp orig pat fail_op res_ty = do dflags <- getDynFlags if isIrrefutableHsPat dflags pat then return Nothing else Just . snd <$> (tcSyntaxOp orig fail_op [synKnownType stringTy] (mkCheckExpType res_ty) $ \_ _ -> return ()) {- Note [Treat rebindable syntax first] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When typechecking do { bar; ... } :: IO () we want to typecheck 'bar' in the knowledge that it should be an IO thing, pushing info from the context into the RHS. To do this, we check the rebindable syntax first, and push that information into (tcLExprNC rhs). Otherwise the error shows up when checking the rebindable syntax, and the expected/inferred stuff is back to front (see #3613). Note [typechecking ApplicativeStmt] join ((\pat1 ... patn -> body) <$> e1 <*> ... <*> en) fresh type variables: pat_ty_1..pat_ty_n exp_ty_1..exp_ty_n t_1..t_(n-1) body :: body_ty (\pat1 ... patn -> body) :: pat_ty_1 -> ... -> pat_ty_n -> body_ty pat_i :: pat_ty_i e_i :: exp_ty_i <$> :: (pat_ty_1 -> ... -> pat_ty_n -> body_ty) -> exp_ty_1 -> t_1 <*>_i :: t_(i-1) -> exp_ty_i -> t_i join :: tn -> res_ty -} tcApplicativeStmts :: HsStmtContext GhcTc -> [(SyntaxExpr GhcRn, ApplicativeArg GhcRn)] -> ExpRhoType -- rhs_ty -> (TcRhoType -> TcM t) -- thing_inside -> TcM ([(SyntaxExpr GhcTc, ApplicativeArg GhcTc)], Type, t) tcApplicativeStmts ctxt pairs rhs_ty thing_inside = do { body_ty <- newFlexiTyVarTy liftedTypeKind ; let arity = length pairs ; ts <- replicateM (arity-1) $ newInferExpType ; exp_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; pat_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; let fun_ty = mkVisFunTysMany pat_tys body_ty -- NB. do the <$>,<*> operators first, we don't want type errors here -- i.e. goOps before goArgs -- See Note [Treat rebindable syntax first] ; let (ops, args) = unzip pairs ; ops' <- goOps fun_ty (zip3 ops (ts ++ [rhs_ty]) exp_tys) -- Typecheck each ApplicativeArg separately -- See Note [ApplicativeDo and constraints] ; args' <- mapM (goArg body_ty) (zip3 args pat_tys exp_tys) -- Bring into scope all the things bound by the args, -- and typecheck the thing_inside -- See Note [ApplicativeDo and constraints] ; res <- tcExtendIdEnv (concatMap get_arg_bndrs args') $ thing_inside body_ty ; return (zip ops' args', body_ty, res) } where goOps _ [] = return [] goOps t_left ((op,t_i,exp_ty) : ops) = do { (_, op') <- tcSyntaxOp DoOrigin op [synKnownType t_left, synKnownType exp_ty] t_i $ \ _ _ -> return () ; t_i <- readExpType t_i ; ops' <- goOps t_i ops ; return (op' : ops') } goArg :: Type -> (ApplicativeArg GhcRn, Type, Type) -> TcM (ApplicativeArg GhcTc) goArg body_ty (ApplicativeArgOne { xarg_app_arg_one = fail_op , app_arg_pattern = pat , arg_expr = rhs , .. }, pat_ty, exp_ty) = setSrcSpan (combineSrcSpans (getLocA pat) (getLocA rhs)) $ addErrCtxt (pprStmtInCtxt ctxt (mkRnBindStmt pat rhs)) $ do { rhs' <- tcCheckMonoExprNC rhs exp_ty ; (pat', _) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $ return () ; fail_op' <- fmap join . forM fail_op $ \fail -> tcMonadFailOp (DoPatOrigin pat) pat' fail body_ty ; return (ApplicativeArgOne { xarg_app_arg_one = fail_op' , app_arg_pattern = pat' , arg_expr = rhs' , .. } ) } goArg _body_ty (ApplicativeArgMany x stmts ret pat ctxt, pat_ty, exp_ty) = do { (stmts', (ret',pat')) <- tcStmtsAndThen (HsDoStmt ctxt) tcDoStmt stmts (mkCheckExpType exp_ty) $ \res_ty -> do { ret' <- tcExpr ret res_ty ; (pat', _) <- tcCheckPat (StmtCtxt (HsDoStmt ctxt)) pat (unrestricted pat_ty) $ return () ; return (ret', pat') } ; return (ApplicativeArgMany x stmts' ret' pat' ctxt) } get_arg_bndrs :: ApplicativeArg GhcTc -> [Id] get_arg_bndrs (ApplicativeArgOne { app_arg_pattern = pat }) = collectPatBinders CollNoDictBinders pat get_arg_bndrs (ApplicativeArgMany { bv_pattern = pat }) = collectPatBinders CollNoDictBinders pat {- Note [ApplicativeDo and constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An applicative-do is supposed to take place in parallel, so constraints bound in one arm can't possibly be available in another (#13242). Our current rule is this (more details and discussion on the ticket). Consider ...stmts... ApplicativeStmts [arg1, arg2, ... argN] ...more stmts... where argi :: ApplicativeArg. Each 'argi' itself contains one or more Stmts. Now, we say that: * Constraints required by the argi can be solved from constraint bound by ...stmts... * Constraints and existentials bound by the argi are not available to solve constraints required either by argj (where i /= j), or by ...more stmts.... * Within the stmts of each 'argi' individually, however, constraints bound by earlier stmts can be used to solve later ones. To achieve this, we just typecheck each 'argi' separately, bring all the variables they bind into scope, and typecheck the thing_inside. ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ @checkArgCounts@ takes a @[RenamedMatch]@ and decides whether the same number of args are used in each equation. -} checkArgCounts :: AnnoBody body => Name -> MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM () checkArgCounts = check_match_pats . (text "Equations for" <+>) . quotes . ppr -- @checkPatCounts@ takes a @[RenamedMatch]@ and decides whether the same -- number of patterns are used in each alternative checkPatCounts :: AnnoBody body => HsMatchContext GhcTc -> MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM () checkPatCounts = check_match_pats . pprMatchContextNouns check_match_pats :: AnnoBody body => SDoc -> MatchGroup GhcRn (LocatedA (body GhcRn)) -> TcM () check_match_pats _ (MG { mg_alts = L _ [] }) = return () check_match_pats err_msg (MG { mg_alts = L _ (match1:matches) }) | null bad_matches = return () | otherwise = failWithTc $ TcRnUnknownMessage $ mkPlainError noHints $ (vcat [ err_msg <+> text "have different numbers of arguments" , nest 2 (ppr (getLocA match1)) , nest 2 (ppr (getLocA (head bad_matches)))]) where n_args1 = args_in_match match1 bad_matches = [m | m <- matches, args_in_match m /= n_args1] args_in_match :: (LocatedA (Match GhcRn body1) -> Int) args_in_match (L _ (Match { m_pats = pats })) = length pats