{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ViewPatterns #-} {- (c) The AQUA Project, Glasgow University, 1994-1998 \section[ErrsUtils]{Utilities for error reporting} -} module GHC.Utils.Error ( -- * Basic types Validity'(..), Validity, andValid, allValid, getInvalids, Severity(..), -- * Messages Diagnostic(..), MsgEnvelope(..), MessageClass(..), SDoc, DecoratedSDoc(unDecorated), Messages, mkMessages, unionMessages, errorsFound, isEmptyMessages, -- ** Formatting pprMessageBag, pprMsgEnvelopeBagWithLoc, pprMessages, pprLocMsgEnvelope, formatBulleted, -- ** Construction DiagOpts (..), diag_wopt, diag_fatal_wopt, emptyMessages, mkDecorated, mkLocMessage, mkLocMessageAnn, mkMsgEnvelope, mkPlainMsgEnvelope, mkPlainErrorMsgEnvelope, mkErrorMsgEnvelope, mkMCDiagnostic, errorDiagnostic, diagReasonSeverity, mkPlainError, mkPlainDiagnostic, mkDecoratedError, mkDecoratedDiagnostic, noHints, -- * Utilities getCaretDiagnostic, -- * Issuing messages during compilation putMsg, printInfoForUser, printOutputForUser, logInfo, logOutput, errorMsg, fatalErrorMsg, compilationProgressMsg, showPass, withTiming, withTimingSilent, debugTraceMsg, ghcExit, prettyPrintGhcErrors, traceCmd, sortMsgBag ) where import GHC.Prelude import GHC.Driver.Flags import GHC.Data.Bag import qualified GHC.Data.EnumSet as EnumSet import GHC.Data.EnumSet (EnumSet) import GHC.Utils.Exception import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain import GHC.Utils.Logger import GHC.Types.Error import GHC.Types.SrcLoc as SrcLoc import System.Exit ( ExitCode(..), exitWith ) import Data.List ( sortBy ) import Data.Function import Debug.Trace import Control.Monad import Control.Monad.IO.Class import Control.Monad.Catch as MC (handle) import GHC.Conc ( getAllocationCounter ) import System.CPUTime data DiagOpts = DiagOpts { diag_warning_flags :: !(EnumSet WarningFlag) -- ^ Enabled warnings , diag_fatal_warning_flags :: !(EnumSet WarningFlag) -- ^ Fatal warnings , diag_warn_is_error :: !Bool -- ^ Treat warnings as errors , diag_reverse_errors :: !Bool -- ^ Reverse error reporting order , diag_max_errors :: !(Maybe Int) -- ^ Max reported error count , diag_ppr_ctx :: !SDocContext -- ^ Error printing context } diag_wopt :: WarningFlag -> DiagOpts -> Bool diag_wopt wflag opts = wflag `EnumSet.member` diag_warning_flags opts diag_fatal_wopt :: WarningFlag -> DiagOpts -> Bool diag_fatal_wopt wflag opts = wflag `EnumSet.member` diag_fatal_warning_flags opts -- | Computes the /right/ 'Severity' for the input 'DiagnosticReason' out of -- the 'DiagOpts. This function /has/ to be called when a diagnostic is constructed, -- i.e. with a 'DiagOpts \"snapshot\" taken as close as possible to where a -- particular diagnostic message is built, otherwise the computed 'Severity' might -- not be correct, due to the mutable nature of the 'DynFlags' in GHC. diagReasonSeverity :: DiagOpts -> DiagnosticReason -> Severity diagReasonSeverity opts reason = case reason of WarningWithFlag wflag | not (diag_wopt wflag opts) -> SevIgnore | diag_fatal_wopt wflag opts -> SevError | otherwise -> SevWarning WarningWithoutFlag | diag_warn_is_error opts -> SevError | otherwise -> SevWarning ErrorWithoutFlag -> SevError -- | Make a 'MessageClass' for a given 'DiagnosticReason', consulting the -- 'DiagOpts. mkMCDiagnostic :: DiagOpts -> DiagnosticReason -> MessageClass mkMCDiagnostic opts reason = MCDiagnostic (diagReasonSeverity opts reason) reason -- | Varation of 'mkMCDiagnostic' which can be used when we are /sure/ the -- input 'DiagnosticReason' /is/ 'ErrorWithoutFlag'. errorDiagnostic :: MessageClass errorDiagnostic = MCDiagnostic SevError ErrorWithoutFlag -- -- Creating MsgEnvelope(s) -- mk_msg_envelope :: Diagnostic e => Severity -> SrcSpan -> PrintUnqualified -> e -> MsgEnvelope e mk_msg_envelope severity locn print_unqual err = MsgEnvelope { errMsgSpan = locn , errMsgContext = print_unqual , errMsgDiagnostic = err , errMsgSeverity = severity } -- | Wrap a 'Diagnostic' in a 'MsgEnvelope', recording its location. -- If you know your 'Diagnostic' is an error, consider using 'mkErrorMsgEnvelope', -- which does not require looking at the 'DiagOpts' mkMsgEnvelope :: Diagnostic e => DiagOpts -> SrcSpan -> PrintUnqualified -> e -> MsgEnvelope e mkMsgEnvelope opts locn print_unqual err = mk_msg_envelope (diagReasonSeverity opts (diagnosticReason err)) locn print_unqual err -- | Wrap a 'Diagnostic' in a 'MsgEnvelope', recording its location. -- Precondition: the diagnostic is, in fact, an error. That is, -- @diagnosticReason msg == ErrorWithoutFlag@. mkErrorMsgEnvelope :: Diagnostic e => SrcSpan -> PrintUnqualified -> e -> MsgEnvelope e mkErrorMsgEnvelope locn unqual msg = assert (diagnosticReason msg == ErrorWithoutFlag) $ mk_msg_envelope SevError locn unqual msg -- | Variant that doesn't care about qualified/unqualified names. mkPlainMsgEnvelope :: Diagnostic e => DiagOpts -> SrcSpan -> e -> MsgEnvelope e mkPlainMsgEnvelope opts locn msg = mkMsgEnvelope opts locn alwaysQualify msg -- | Variant of 'mkPlainMsgEnvelope' which can be used when we are /sure/ we -- are constructing a diagnostic with a 'ErrorWithoutFlag' reason. mkPlainErrorMsgEnvelope :: Diagnostic e => SrcSpan -> e -> MsgEnvelope e mkPlainErrorMsgEnvelope locn msg = mk_msg_envelope SevError locn alwaysQualify msg ------------------------- data Validity' a = IsValid -- ^ Everything is fine | NotValid a -- ^ A problem, and some indication of why deriving Functor -- | Monomorphic version of @Validity'@ specialised for 'SDoc's. type Validity = Validity' SDoc andValid :: Validity' a -> Validity' a -> Validity' a andValid IsValid v = v andValid v _ = v -- | If they aren't all valid, return the first allValid :: [Validity' a] -> Validity' a allValid [] = IsValid allValid (v : vs) = v `andValid` allValid vs getInvalids :: [Validity' a] -> [a] getInvalids vs = [d | NotValid d <- vs] -- ----------------------------------------------------------------------------- -- Collecting up messages for later ordering and printing. ---------------- -- | Formats the input list of structured document, where each element of the list gets a bullet. formatBulleted :: SDocContext -> DecoratedSDoc -> SDoc formatBulleted ctx (unDecorated -> docs) = case msgs of [] -> Outputable.empty [msg] -> msg _ -> vcat $ map starred msgs where msgs = filter (not . Outputable.isEmpty ctx) docs starred = (bullet<+>) pprMessages :: Diagnostic e => Messages e -> SDoc pprMessages = vcat . pprMsgEnvelopeBagWithLoc . getMessages pprMsgEnvelopeBagWithLoc :: Diagnostic e => Bag (MsgEnvelope e) -> [SDoc] pprMsgEnvelopeBagWithLoc bag = [ pprLocMsgEnvelope item | item <- sortMsgBag Nothing bag ] pprLocMsgEnvelope :: Diagnostic e => MsgEnvelope e -> SDoc pprLocMsgEnvelope (MsgEnvelope { errMsgSpan = s , errMsgDiagnostic = e , errMsgSeverity = sev , errMsgContext = unqual }) = sdocWithContext $ \ctx -> withErrStyle unqual $ mkLocMessage (MCDiagnostic sev (diagnosticReason e)) s (formatBulleted ctx $ diagnosticMessage e) sortMsgBag :: Maybe DiagOpts -> Bag (MsgEnvelope e) -> [MsgEnvelope e] sortMsgBag mopts = maybeLimit . sortBy (cmp `on` errMsgSpan) . bagToList where cmp | Just opts <- mopts , diag_reverse_errors opts = SrcLoc.rightmost_smallest | otherwise = SrcLoc.leftmost_smallest maybeLimit | Just opts <- mopts , Just err_limit <- diag_max_errors opts = take err_limit | otherwise = id ghcExit :: Logger -> Int -> IO () ghcExit logger val | val == 0 = exitWith ExitSuccess | otherwise = do errorMsg logger (text "\nCompilation had errors\n\n") exitWith (ExitFailure val) -- ----------------------------------------------------------------------------- -- Outputting messages from the compiler errorMsg :: Logger -> SDoc -> IO () errorMsg logger msg = logMsg logger errorDiagnostic noSrcSpan $ withPprStyle defaultErrStyle msg fatalErrorMsg :: Logger -> SDoc -> IO () fatalErrorMsg logger msg = logMsg logger MCFatal noSrcSpan $ withPprStyle defaultErrStyle msg compilationProgressMsg :: Logger -> SDoc -> IO () compilationProgressMsg logger msg = do let logflags = logFlags logger let str = renderWithContext (log_default_user_context logflags) (text "GHC progress: " <> msg) traceEventIO str when (logVerbAtLeast logger 1) $ logOutput logger $ withPprStyle defaultUserStyle msg showPass :: Logger -> String -> IO () showPass logger what = when (logVerbAtLeast logger 2) $ logInfo logger $ withPprStyle defaultUserStyle (text "***" <+> text what <> colon) data PrintTimings = PrintTimings | DontPrintTimings deriving (Eq, Show) -- | Time a compilation phase. -- -- When timings are enabled (e.g. with the @-v2@ flag), the allocations -- and CPU time used by the phase will be reported to stderr. Consider -- a typical usage: -- @withTiming getDynFlags (text "simplify") force PrintTimings pass@. -- When timings are enabled the following costs are included in the -- produced accounting, -- -- - The cost of executing @pass@ to a result @r@ in WHNF -- - The cost of evaluating @force r@ to WHNF (e.g. @()@) -- -- The choice of the @force@ function depends upon the amount of forcing -- desired; the goal here is to ensure that the cost of evaluating the result -- is, to the greatest extent possible, included in the accounting provided by -- 'withTiming'. Often the pass already sufficiently forces its result during -- construction; in this case @const ()@ is a reasonable choice. -- In other cases, it is necessary to evaluate the result to normal form, in -- which case something like @Control.DeepSeq.rnf@ is appropriate. -- -- To avoid adversely affecting compiler performance when timings are not -- requested, the result is only forced when timings are enabled. -- -- See Note [withTiming] for more. withTiming :: MonadIO m => Logger -> SDoc -- ^ The name of the phase -> (a -> ()) -- ^ A function to force the result -- (often either @const ()@ or 'rnf') -> m a -- ^ The body of the phase to be timed -> m a withTiming logger what force action = withTiming' logger what force PrintTimings action -- | Same as 'withTiming', but doesn't print timings in the -- console (when given @-vN@, @N >= 2@ or @-ddump-timings@). -- -- See Note [withTiming] for more. withTimingSilent :: MonadIO m => Logger -> SDoc -- ^ The name of the phase -> (a -> ()) -- ^ A function to force the result -- (often either @const ()@ or 'rnf') -> m a -- ^ The body of the phase to be timed -> m a withTimingSilent logger what force action = withTiming' logger what force DontPrintTimings action -- | Worker for 'withTiming' and 'withTimingSilent'. withTiming' :: MonadIO m => Logger -> SDoc -- ^ The name of the phase -> (a -> ()) -- ^ A function to force the result -- (often either @const ()@ or 'rnf') -> PrintTimings -- ^ Whether to print the timings -> m a -- ^ The body of the phase to be timed -> m a withTiming' logger what force_result prtimings action = if logVerbAtLeast logger 2 || logHasDumpFlag logger Opt_D_dump_timings then do whenPrintTimings $ logInfo logger $ withPprStyle defaultUserStyle $ text "***" <+> what <> colon let ctx = log_default_user_context (logFlags logger) alloc0 <- liftIO getAllocationCounter start <- liftIO getCPUTime eventBegins ctx what recordAllocs alloc0 !r <- action () <- pure $ force_result r eventEnds ctx what end <- liftIO getCPUTime alloc1 <- liftIO getAllocationCounter recordAllocs alloc1 -- recall that allocation counter counts down let alloc = alloc0 - alloc1 time = realToFrac (end - start) * 1e-9 when (logVerbAtLeast logger 2 && prtimings == PrintTimings) $ liftIO $ logInfo logger $ withPprStyle defaultUserStyle (text "!!!" <+> what <> colon <+> text "finished in" <+> doublePrec 2 time <+> text "milliseconds" <> comma <+> text "allocated" <+> doublePrec 3 (realToFrac alloc / 1024 / 1024) <+> text "megabytes") whenPrintTimings $ putDumpFileMaybe logger Opt_D_dump_timings "" FormatText $ text $ showSDocOneLine ctx $ hsep [ what <> colon , text "alloc=" <> ppr alloc , text "time=" <> doublePrec 3 time ] pure r else action where whenPrintTimings = liftIO . when (prtimings == PrintTimings) recordAllocs alloc = liftIO $ traceMarkerIO $ "GHC:allocs:" ++ show alloc eventBegins ctx w = do let doc = eventBeginsDoc ctx w whenPrintTimings $ traceMarkerIO doc liftIO $ traceEventIO doc eventEnds ctx w = do let doc = eventEndsDoc ctx w whenPrintTimings $ traceMarkerIO doc liftIO $ traceEventIO doc eventBeginsDoc ctx w = showSDocOneLine ctx $ text "GHC:started:" <+> w eventEndsDoc ctx w = showSDocOneLine ctx $ text "GHC:finished:" <+> w debugTraceMsg :: Logger -> Int -> SDoc -> IO () debugTraceMsg logger val msg = when (log_verbosity (logFlags logger) >= val) $ logInfo logger (withPprStyle defaultDumpStyle msg) {-# INLINE debugTraceMsg #-} -- see Note [INLINE conditional tracing utilities] putMsg :: Logger -> SDoc -> IO () putMsg logger msg = logInfo logger (withPprStyle defaultUserStyle msg) printInfoForUser :: Logger -> PrintUnqualified -> SDoc -> IO () printInfoForUser logger print_unqual msg = logInfo logger (withUserStyle print_unqual AllTheWay msg) printOutputForUser :: Logger -> PrintUnqualified -> SDoc -> IO () printOutputForUser logger print_unqual msg = logOutput logger (withUserStyle print_unqual AllTheWay msg) logInfo :: Logger -> SDoc -> IO () logInfo logger msg = logMsg logger MCInfo noSrcSpan msg -- | Like 'logInfo' but with 'SevOutput' rather then 'SevInfo' logOutput :: Logger -> SDoc -> IO () logOutput logger msg = logMsg logger MCOutput noSrcSpan msg prettyPrintGhcErrors :: ExceptionMonad m => Logger -> m a -> m a prettyPrintGhcErrors logger = do let ctx = log_default_user_context (logFlags logger) MC.handle $ \e -> case e of PprPanic str doc -> pprDebugAndThen ctx panic (text str) doc PprSorry str doc -> pprDebugAndThen ctx sorry (text str) doc PprProgramError str doc -> pprDebugAndThen ctx pgmError (text str) doc _ -> liftIO $ throwIO e -- | Trace a command (when verbosity level >= 3) traceCmd :: Logger -> String -> String -> IO a -> IO a traceCmd logger phase_name cmd_line action = do showPass logger phase_name let cmd_doc = text cmd_line handle_exn exn = do debugTraceMsg logger 2 (char '\n') debugTraceMsg logger 2 (text "Failed:" <+> cmd_doc <+> text (show exn)) throwGhcExceptionIO (ProgramError (show exn)) debugTraceMsg logger 3 cmd_doc loggerTraceFlush logger -- And run it! action `catchIO` handle_exn {- Note [withTiming] ~~~~~~~~~~~~~~~~~~~~ For reference: withTiming :: MonadIO => m DynFlags -- how to get the DynFlags -> SDoc -- label for the computation we're timing -> (a -> ()) -- how to evaluate the result -> PrintTimings -- whether to report the timings when passed -- -v2 or -ddump-timings -> m a -- computation we're timing -> m a withTiming lets you run an action while: (1) measuring the CPU time it took and reporting that on stderr (when PrintTimings is passed), (2) emitting start/stop events to GHC's event log, with the label given as an argument. Evaluation of the result ------------------------ 'withTiming' takes as an argument a function of type 'a -> ()', whose purpose is to evaluate the result "sufficiently". A given pass might return an 'm a' for some monad 'm' and result type 'a', but where the 'a' is complex enough that evaluating it to WHNF barely scratches its surface and leaves many complex and time-consuming computations unevaluated. Those would only be forced by the next pass, and the time needed to evaluate them would be mis-attributed to that next pass. A more appropriate function would be one that deeply evaluates the result, so as to assign the time spent doing it to the pass we're timing. Note: as hinted at above, the time spent evaluating the application of the forcing function to the result is included in the timings reported by 'withTiming'. How we use it ------------- We measure the time and allocations of various passes in GHC's pipeline by just wrapping the whole pass with 'withTiming'. This also materializes by having a label for each pass in the eventlog, where each pass is executed in one go, during a continuous time window. However, from STG onwards, the pipeline uses streams to emit groups of STG/Cmm/etc declarations one at a time, and process them until we get to assembly code generation. This means that the execution of those last few passes is interleaved and that we cannot measure how long they take by just wrapping the whole thing with 'withTiming'. Instead we wrap the processing of each individual stream element, all along the codegen pipeline, using the appropriate label for the pass to which this processing belongs. That generates a lot more data but allows us to get fine-grained timings about all the passes and we can easily compute totals with tools like ghc-events-analyze (see below). Producing an eventlog for GHC ----------------------------- You can produce an eventlog when compiling, for instance, hello.hs by simply running: If GHC was built by Hadrian: $ _build/stage1/bin/ghc -ddump-timings hello.hs -o hello +RTS -l If GHC was built with Make: $ inplace/bin/ghc-stage2 -ddump-timing hello.hs -o hello +RTS -l You could alternatively use -v (with N >= 2) instead of -ddump-timings, to ask GHC to report timings (on stderr and the eventlog). This will write the eventlog to ./ghc.eventlog in both cases. You can then visualize it or look at the totals for each label by using ghc-events-analyze, threadscope or any other eventlog consumer. Illustrating with ghc-events-analyze: $ ghc-events-analyze --timed --timed-txt --totals \ --start "GHC:started:" --stop "GHC:finished:" \ ghc.eventlog This produces ghc.timed.txt (all event timestamps), ghc.timed.svg (visualisation of the execution through the various labels) and ghc.totals.txt (total time spent in each label). -}