{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1998 Type and Coercion - friends' interface -} {-# LANGUAGE BangPatterns #-} -- | Substitution into types and coercions. module GHC.Core.TyCo.Subst ( -- * Substitutions Subst(..), TvSubstEnv, CvSubstEnv, IdSubstEnv, emptyIdSubstEnv, emptyTvSubstEnv, emptyCvSubstEnv, composeTCvSubst, emptySubst, mkEmptySubst, isEmptyTCvSubst, isEmptySubst, mkSubst, mkTvSubst, mkCvSubst, mkIdSubst, getTvSubstEnv, getIdSubstEnv, getCvSubstEnv, getSubstInScope, setInScope, getSubstRangeTyCoFVs, isInScope, elemSubst, notElemSubst, zapSubst, extendSubstInScope, extendSubstInScopeList, extendSubstInScopeSet, extendTCvSubst, extendTCvSubstWithClone, extendCvSubst, extendCvSubstWithClone, extendTvSubst, extendTvSubstBinderAndInScope, extendTvSubstWithClone, extendTvSubstList, extendTvSubstAndInScope, extendTCvSubstList, unionSubst, zipTyEnv, zipCoEnv, zipTvSubst, zipCvSubst, zipTCvSubst, mkTvSubstPrs, substTyWith, substTyWithCoVars, substTysWith, substTysWithCoVars, substCoWith, substTy, substTyAddInScope, substScaledTy, substTyUnchecked, substTysUnchecked, substScaledTysUnchecked, substThetaUnchecked, substTyWithUnchecked, substScaledTyUnchecked, substCoUnchecked, substCoWithUnchecked, substTyWithInScope, substTys, substScaledTys, substTheta, lookupTyVar, substCo, substCos, substCoVar, substCoVars, lookupCoVar, cloneTyVarBndr, cloneTyVarBndrs, substVarBndr, substVarBndrs, substTyVarBndr, substTyVarBndrs, substCoVarBndr, substTyVar, substTyVars, substTyVarToTyVar, substTyCoVars, substTyCoBndr, substForAllCoBndr, substVarBndrUsing, substForAllCoBndrUsing, checkValidSubst, isValidTCvSubst, ) where import GHC.Prelude import {-# SOURCE #-} GHC.Core.Type ( mkCastTy, mkAppTy, isCoercionTy, mkTyConApp, getTyVar_maybe ) import {-# SOURCE #-} GHC.Core.Coercion ( mkCoVarCo, mkKindCo, mkSelCo, mkTransCo , mkNomReflCo, mkSubCo, mkSymCo , mkFunCo2, mkForAllCo, mkUnivCo , mkAxiomInstCo, mkAppCo, mkGReflCo , mkInstCo, mkLRCo, mkTyConAppCo , mkCoercionType , coercionKind, coercionLKind, coVarKindsTypesRole ) import {-# SOURCE #-} GHC.Core.TyCo.Ppr ( pprTyVar ) import {-# SOURCE #-} GHC.Core.Ppr ( ) import {-# SOURCE #-} GHC.Core ( CoreExpr ) import GHC.Core.TyCo.Rep import GHC.Core.TyCo.FVs import GHC.Types.Var import GHC.Types.Var.Set import GHC.Types.Var.Env import GHC.Data.Pair import GHC.Utils.Constants (debugIsOn) import GHC.Utils.Misc import GHC.Types.Unique.Supply import GHC.Types.Unique import GHC.Types.Unique.FM import GHC.Types.Unique.Set import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain import Data.List (mapAccumL) {- %************************************************************************ %* * Substitutions Data type defined here to avoid unnecessary mutual recursion %* * %************************************************************************ -} -- | Type & coercion & id substitution -- -- The "Subst" data type defined in this module contains substitution -- for tyvar, covar and id. However, operations on IdSubstEnv (mapping -- from "Id" to "CoreExpr") that require the definition of the "Expr" -- data type are defined in GHC.Core.Subst to avoid circular module -- dependency. data Subst = Subst InScopeSet -- Variables in scope (both Ids and TyVars) /after/ -- applying the substitution IdSubstEnv -- Substitution from NcIds to CoreExprs TvSubstEnv -- Substitution from TyVars to Types CvSubstEnv -- Substitution from CoVars to Coercions -- INVARIANT 1: See Note [The substitution invariant] -- This is what lets us deal with name capture properly -- -- INVARIANT 2: The substitution is apply-once; -- see Note [Substitutions apply only once] -- -- INVARIANT 3: See Note [Extending the IdSubstEnv] in "GHC.Core.Subst" -- and Note [Extending the TvSubstEnv and CvSubstEnv] -- -- INVARIANT 4: See Note [Substituting types, coercions, and expressions] -- | A substitution of 'Expr's for non-coercion 'Id's type IdSubstEnv = IdEnv CoreExpr -- Domain is NonCoVarIds, i.e. not coercions -- | A substitution of 'Type's for 'TyVar's -- and 'Kind's for 'KindVar's type TvSubstEnv = TyVarEnv Type -- NB: A TvSubstEnv is used -- both inside a TCvSubst (with the apply-once invariant -- discussed in Note [Substitutions apply only once], -- and also independently in the middle of matching, -- and unification (see Types.Unify). -- So you have to look at the context to know if it's idempotent or -- apply-once or whatever -- | A substitution of 'Coercion's for 'CoVar's type CvSubstEnv = CoVarEnv Coercion {- Note [The substitution invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When calling (substTy subst ty) it should be the case that the in-scope set in the substitution is a superset of both: (SIa) The free vars of the range of the substitution (SIb) The free vars of ty minus the domain of the substitution * Reason for (SIa). Consider substTy [a :-> Maybe b] (forall b. b->a) we must rename the forall b, to get forall b2. b2 -> Maybe b Making 'b' part of the in-scope set forces this renaming to take place. * Reason for (SIb). Consider substTy [a :-> Maybe b] (forall b. (a,b,x)) Then if we use the in-scope set {b}, satisfying (SIa), there is a danger we will rename the forall'd variable to 'x' by mistake, getting this: forall x. (Maybe b, x, x) Breaking (SIb) caused the bug from #11371. Note: if the free vars of the range of the substitution are freshly created, then the problems of (SIa) can't happen, and so it would be sound to ignore (SIa). Note [Substitutions apply only once] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use TCvSubsts to instantiate things, and we might instantiate forall a b. ty with the types [a, b], or [b, a]. So the substitution might go [a->b, b->a]. A similar situation arises in Core when we find a beta redex like (/\ a /\ b -> e) b a Then we also end up with a substitution that permutes type variables. Other variations happen to; for example [a -> (a, b)]. ******************************************************** *** So a substitution must be applied precisely once *** ******************************************************** A TCvSubst is not idempotent, but, unlike the non-idempotent substitution we use during unifications, it must not be repeatedly applied. Note [Extending the TvSubstEnv and CvSubstEnv] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #tcvsubst_invariant# for the invariants that must hold. This invariant allows a short-cut when the subst envs are empty: if the TvSubstEnv and CvSubstEnv are empty --- i.e. (isEmptyTCvSubst subst) holds --- then (substTy subst ty) does nothing. For example, consider: (/\a. /\b:(a~Int). ...b..) Int We substitute Int for 'a'. The Unique of 'b' does not change, but nevertheless we add 'b' to the TvSubstEnv, because b's kind does change This invariant has several crucial consequences: * In substVarBndr, we need extend the TvSubstEnv - if the unique has changed - or if the kind has changed * In substTyVar, we do not need to consult the in-scope set; the TvSubstEnv is enough * In substTy, substTheta, we can short-circuit when the TvSubstEnv is empty Note [Substituting types, coercions, and expressions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Types and coercions are mutually recursive, and either may have variables "belonging" to the other. Thus, every time we wish to substitute in a type, we may also need to substitute in a coercion, and vice versa. Likewise, expressions may contain type variables or coercion variables. However, we use different constructors for constructing expression variables, coercion variables, and type variables, so we carry three VarEnvs for each variable type. Note that it would be possible to use the CoercionTy constructor and the Type constructor to combine these environments, but that seems like a false economy. Note that the domain of the VarEnvs must be respected, despite the fact that TyVar, Id, and CoVar are all type synonyms of the Var type. For example, TvSubstEnv should *never* map a CoVar (built with the Id constructor) and the CvSubstEnv should *never* map a TyVar. Furthermore, the range of the TvSubstEnv should *never* include a type headed with CoercionTy. -} emptyIdSubstEnv :: IdSubstEnv emptyIdSubstEnv = emptyVarEnv emptyTvSubstEnv :: TvSubstEnv emptyTvSubstEnv = emptyVarEnv emptyCvSubstEnv :: CvSubstEnv emptyCvSubstEnv = emptyVarEnv -- | Composes two substitutions, applying the second one provided first, -- like in function composition. This function leaves IdSubstEnv untouched -- because IdSubstEnv is not used during substitution for types. composeTCvSubst :: Subst -> Subst -> Subst composeTCvSubst subst1@(Subst is1 ids1 tenv1 cenv1) (Subst is2 _ tenv2 cenv2) = Subst is3 ids1 tenv3 cenv3 where is3 = is1 `unionInScope` is2 tenv3 = tenv1 `plusVarEnv` mapVarEnv (substTy extended_subst1) tenv2 cenv3 = cenv1 `plusVarEnv` mapVarEnv (substCo extended_subst1) cenv2 -- Make sure the in-scope set in the first substitution is wide enough to -- cover the free variables in the range of the second substitution before -- applying it (#22235). extended_subst1 = subst1 `setInScope` is3 emptySubst :: Subst emptySubst = Subst emptyInScopeSet emptyVarEnv emptyVarEnv emptyVarEnv mkEmptySubst :: InScopeSet -> Subst mkEmptySubst in_scope = Subst in_scope emptyVarEnv emptyVarEnv emptyVarEnv isEmptySubst :: Subst -> Bool isEmptySubst (Subst _ id_env tv_env cv_env) = isEmptyVarEnv id_env && isEmptyVarEnv tv_env && isEmptyVarEnv cv_env -- | Checks whether the tyvar and covar environments are empty. -- This function should be used over 'isEmptySubst' when substituting -- for types, because types currently do not contain expressions; we can -- safely disregard the expression environment when deciding whether -- to skip a substitution. Using 'isEmptyTCvSubst' gives us a non-trivial -- performance boost (up to 70% less allocation for T18223) isEmptyTCvSubst :: Subst -> Bool isEmptyTCvSubst (Subst _ _ tv_env cv_env) = isEmptyVarEnv tv_env && isEmptyVarEnv cv_env mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst mkSubst in_scope tvs cvs ids = Subst in_scope ids tvs cvs mkIdSubst :: InScopeSet -> IdSubstEnv -> Subst mkIdSubst in_scope ids = Subst in_scope ids emptyTvSubstEnv emptyCvSubstEnv mkTvSubst :: InScopeSet -> TvSubstEnv -> Subst -- ^ Make a TCvSubst with specified tyvar subst and empty covar subst mkTvSubst in_scope tenv = Subst in_scope emptyIdSubstEnv tenv emptyCvSubstEnv mkCvSubst :: InScopeSet -> CvSubstEnv -> Subst -- ^ Make a TCvSubst with specified covar subst and empty tyvar subst mkCvSubst in_scope cenv = Subst in_scope emptyIdSubstEnv emptyTvSubstEnv cenv getIdSubstEnv :: Subst -> IdSubstEnv getIdSubstEnv (Subst _ ids _ _) = ids getTvSubstEnv :: Subst -> TvSubstEnv getTvSubstEnv (Subst _ _ tenv _) = tenv getCvSubstEnv :: Subst -> CvSubstEnv getCvSubstEnv (Subst _ _ _ cenv) = cenv -- | Find the in-scope set: see Note [The substitution invariant] getSubstInScope :: Subst -> InScopeSet getSubstInScope (Subst in_scope _ _ _) = in_scope setInScope :: Subst -> InScopeSet -> Subst setInScope (Subst _ ids tvs cvs) in_scope = Subst in_scope ids tvs cvs -- | Returns the free variables of the types in the range of a substitution as -- a non-deterministic set. getSubstRangeTyCoFVs :: Subst -> VarSet getSubstRangeTyCoFVs (Subst _ _ tenv cenv) = tenvFVs `unionVarSet` cenvFVs where tenvFVs = shallowTyCoVarsOfTyVarEnv tenv cenvFVs = shallowTyCoVarsOfCoVarEnv cenv isInScope :: Var -> Subst -> Bool isInScope v (Subst in_scope _ _ _) = v `elemInScopeSet` in_scope elemSubst :: Var -> Subst -> Bool elemSubst v (Subst _ ids tenv cenv) | isTyVar v = v `elemVarEnv` tenv | isCoVar v = v `elemVarEnv` cenv | otherwise = v `elemVarEnv` ids notElemSubst :: Var -> Subst -> Bool notElemSubst v = not . elemSubst v -- | Remove all substitutions that might have been built up -- while preserving the in-scope set -- originally called zapSubstEnv zapSubst :: Subst -> Subst zapSubst (Subst in_scope _ _ _) = Subst in_scope emptyVarEnv emptyVarEnv emptyVarEnv -- | Add the 'Var' to the in-scope set extendSubstInScope :: Subst -> Var -> Subst extendSubstInScope (Subst in_scope ids tvs cvs) v = Subst (in_scope `extendInScopeSet` v) ids tvs cvs -- | Add the 'Var's to the in-scope set: see also 'extendInScope' extendSubstInScopeList :: Subst -> [Var] -> Subst extendSubstInScopeList (Subst in_scope ids tvs cvs) vs = Subst (in_scope `extendInScopeSetList` vs) ids tvs cvs -- | Add the 'Var's to the in-scope set: see also 'extendInScope' extendSubstInScopeSet :: Subst -> VarSet -> Subst extendSubstInScopeSet (Subst in_scope ids tvs cvs) vs = Subst (in_scope `extendInScopeSetSet` vs) ids tvs cvs extendTCvSubst :: Subst -> TyCoVar -> Type -> Subst extendTCvSubst subst v ty | isTyVar v = extendTvSubst subst v ty | CoercionTy co <- ty = extendCvSubst subst v co | otherwise = pprPanic "extendTCvSubst" (ppr v <+> text "|->" <+> ppr ty) extendTCvSubstWithClone :: Subst -> TyCoVar -> TyCoVar -> Subst extendTCvSubstWithClone subst tcv | isTyVar tcv = extendTvSubstWithClone subst tcv | otherwise = extendCvSubstWithClone subst tcv -- | Add a substitution for a 'TyVar' to the 'Subst' -- The 'TyVar' *must* be a real TyVar, and not a CoVar -- You must ensure that the in-scope set is such that -- Note [The substitution invariant] holds -- after extending the substitution like this. extendTvSubst :: Subst -> TyVar -> Type -> Subst extendTvSubst (Subst in_scope ids tvs cvs) tv ty = assert (isTyVar tv) $ Subst in_scope ids (extendVarEnv tvs tv ty) cvs extendTvSubstBinderAndInScope :: Subst -> PiTyBinder -> Type -> Subst extendTvSubstBinderAndInScope subst (Named (Bndr v _)) ty = assert (isTyVar v ) extendTvSubstAndInScope subst v ty extendTvSubstBinderAndInScope subst (Anon {}) _ = subst extendTvSubstWithClone :: Subst -> TyVar -> TyVar -> Subst -- Adds a new tv -> tv mapping, /and/ extends the in-scope set with the clone -- Does not look in the kind of the new variable; -- those variables should be in scope already extendTvSubstWithClone (Subst in_scope idenv tenv cenv) tv tv' = Subst (extendInScopeSet in_scope tv') idenv (extendVarEnv tenv tv (mkTyVarTy tv')) cenv -- | Add a substitution from a 'CoVar' to a 'Coercion' to the 'Subst': -- you must ensure that the in-scope set satisfies -- Note [The substitution invariant] -- after extending the substitution like this extendCvSubst :: Subst -> CoVar -> Coercion -> Subst extendCvSubst (Subst in_scope ids tvs cvs) v r = assert (isCoVar v) $ Subst in_scope ids tvs (extendVarEnv cvs v r) extendCvSubstWithClone :: Subst -> CoVar -> CoVar -> Subst extendCvSubstWithClone (Subst in_scope ids tenv cenv) cv cv' = Subst (extendInScopeSetSet in_scope new_in_scope) ids tenv (extendVarEnv cenv cv (mkCoVarCo cv')) where new_in_scope = tyCoVarsOfType (varType cv') `extendVarSet` cv' extendTvSubstAndInScope :: Subst -> TyVar -> Type -> Subst -- Also extends the in-scope set extendTvSubstAndInScope (Subst in_scope ids tenv cenv) tv ty = Subst (in_scope `extendInScopeSetSet` tyCoVarsOfType ty) ids (extendVarEnv tenv tv ty) cenv -- | Adds multiple 'TyVar' substitutions to the 'Subst': see also 'extendTvSubst' extendTvSubstList :: Subst -> [(TyVar,Type)] -> Subst extendTvSubstList subst vrs = foldl' extend subst vrs where extend subst (v, r) = extendTvSubst subst v r extendTCvSubstList :: Subst -> [Var] -> [Type] -> Subst extendTCvSubstList subst tvs tys = foldl2 extendTCvSubst subst tvs tys unionSubst :: Subst -> Subst -> Subst -- Works when the ranges are disjoint unionSubst (Subst in_scope1 ids1 tenv1 cenv1) (Subst in_scope2 ids2 tenv2 cenv2) = assert (ids1 `disjointVarEnv` ids2 && tenv1 `disjointVarEnv` tenv2 && cenv1 `disjointVarEnv` cenv2 ) Subst (in_scope1 `unionInScope` in_scope2) (ids1 `plusVarEnv` ids2) (tenv1 `plusVarEnv` tenv2) (cenv1 `plusVarEnv` cenv2) -- | Generates the in-scope set for the 'Subst' from the types in the incoming -- environment. No CoVars or Ids, please! zipTvSubst :: HasDebugCallStack => [TyVar] -> [Type] -> Subst zipTvSubst tvs tys = mkTvSubst (mkInScopeSet (shallowTyCoVarsOfTypes tys)) tenv where tenv = zipTyEnv tvs tys -- | Generates the in-scope set for the 'Subst' from the types in the incoming -- environment. No TyVars, please! zipCvSubst :: HasDebugCallStack => [CoVar] -> [Coercion] -> Subst zipCvSubst cvs cos = mkCvSubst (mkInScopeSet (shallowTyCoVarsOfCos cos)) cenv where cenv = zipCoEnv cvs cos zipTCvSubst :: HasDebugCallStack => [TyCoVar] -> [Type] -> Subst zipTCvSubst tcvs tys = zip_tcvsubst tcvs tys $ mkEmptySubst $ mkInScopeSet $ shallowTyCoVarsOfTypes tys where zip_tcvsubst :: [TyCoVar] -> [Type] -> Subst -> Subst zip_tcvsubst (tv:tvs) (ty:tys) subst = zip_tcvsubst tvs tys (extendTCvSubst subst tv ty) zip_tcvsubst [] [] subst = subst -- empty case zip_tcvsubst _ _ _ = pprPanic "zipTCvSubst: length mismatch" (ppr tcvs <+> ppr tys) -- | Generates the in-scope set for the 'TCvSubst' from the types in the -- incoming environment. No CoVars, please! The InScopeSet is just a thunk -- so with a bit of luck it'll never be evaluated mkTvSubstPrs :: [(TyVar, Type)] -> Subst mkTvSubstPrs [] = emptySubst mkTvSubstPrs prs = assertPpr onlyTyVarsAndNoCoercionTy (text "prs" <+> ppr prs) $ mkTvSubst in_scope tenv where tenv = mkVarEnv prs in_scope = mkInScopeSet $ shallowTyCoVarsOfTypes $ map snd prs onlyTyVarsAndNoCoercionTy = and [ isTyVar tv && not (isCoercionTy ty) | (tv, ty) <- prs ] -- | The InScopeSet is just a thunk so with a bit of luck it'll never be evaluated zipTyEnv :: HasDebugCallStack => [TyVar] -> [Type] -> TvSubstEnv zipTyEnv tyvars tys | debugIsOn , not (all isTyVar tyvars && (tyvars `equalLength` tys)) = pprPanic "zipTyEnv" (ppr tyvars $$ ppr tys) | otherwise = assert (all (not . isCoercionTy) tys ) zipToUFM tyvars tys -- There used to be a special case for when -- ty == TyVarTy tv -- (a not-uncommon case) in which case the substitution was dropped. -- But the type-tidier changes the print-name of a type variable without -- changing the unique, and that led to a bug. Why? Pre-tidying, we had -- a type {Foo t}, where Foo is a one-method class. So Foo is really a newtype. -- And it happened that t was the type variable of the class. Post-tiding, -- it got turned into {Foo t2}. The ext-core printer expanded this using -- sourceTypeRep, but that said "Oh, t == t2" because they have the same unique, -- and so generated a rep type mentioning t not t2. -- -- Simplest fix is to nuke the "optimisation" zipCoEnv :: HasDebugCallStack => [CoVar] -> [Coercion] -> CvSubstEnv zipCoEnv cvs cos | debugIsOn , not (all isCoVar cvs) = pprPanic "zipCoEnv" (ppr cvs <+> ppr cos) | otherwise = mkVarEnv (zipEqual "zipCoEnv" cvs cos) -- Pretty printing, for debugging only instance Outputable Subst where ppr (Subst in_scope ids tvs cvs) = text " in_scope_doc $$ text " IdSubst =" <+> ppr ids $$ text " TvSubst =" <+> ppr tvs $$ text " CvSubst =" <+> ppr cvs <> char '>' where in_scope_doc = pprVarSet (getInScopeVars in_scope) (braces . fsep . map ppr) {- %************************************************************************ %* * Performing type or kind substitutions %* * %************************************************************************ Note [Sym and ForAllCo] ~~~~~~~~~~~~~~~~~~~~~~~ In OptCoercion, we try to push "sym" out to the leaves of a coercion. But, how do we push sym into a ForAllCo? It's a little ugly. Here is the typing rule: h : k1 ~# k2 (tv : k1) |- g : ty1 ~# ty2 ---------------------------- ForAllCo tv h g : (ForAllTy (tv : k1) ty1) ~# (ForAllTy (tv : k2) (ty2[tv |-> tv |> sym h])) Here is what we want: ForAllCo tv h' g' : (ForAllTy (tv : k2) (ty2[tv |-> tv |> sym h])) ~# (ForAllTy (tv : k1) ty1) Because the kinds of the type variables to the right of the colon are the kinds coerced by h', we know (h' : k2 ~# k1). Thus, (h' = sym h). Now, we can rewrite ty1 to be (ty1[tv |-> tv |> sym h' |> h']). We thus want ForAllCo tv h' g' : (ForAllTy (tv : k2) (ty2[tv |-> tv |> h'])) ~# (ForAllTy (tv : k1) (ty1[tv |-> tv |> h'][tv |-> tv |> sym h'])) We thus see that we want g' : ty2[tv |-> tv |> h'] ~# ty1[tv |-> tv |> h'] and thus g' = sym (g[tv |-> tv |> h']). Putting it all together, we get this: sym (ForAllCo tv h g) ==> ForAllCo tv (sym h) (sym g[tv |-> tv |> sym h]) Note [Substituting in a coercion hole] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It seems highly suspicious to be substituting in a coercion that still has coercion holes. Yet, this can happen in a situation like this: f :: forall k. k :~: Type -> () f Refl = let x :: forall (a :: k). [a] -> ... x = ... When we check x's type signature, we require that k ~ Type. We indeed know this due to the Refl pattern match, but the eager unifier can't make use of givens. So, when we're done looking at x's type, a coercion hole will remain. Then, when we're checking x's definition, we skolemise x's type (in order to, e.g., bring the scoped type variable `a` into scope). This requires performing a substitution for the fresh skolem variables. This substitution needs to affect the kind of the coercion hole, too -- otherwise, the kind will have an out-of-scope variable in it. More problematically in practice (we won't actually notice the out-of-scope variable ever), skolems in the kind might have too high a level, triggering a failure to uphold the invariant that no free variables in a type have a higher level than the ambient level in the type checker. In the event of having free variables in the hole's kind, I'm pretty sure we'll always have an erroneous program, so we don't need to worry what will happen when the hole gets filled in. After all, a hole relating a locally-bound type variable will be unable to be solved. This is why it's OK not to look through the IORef of a coercion hole during substitution. -} -- | Type substitution, see 'zipTvSubst' substTyWith :: HasDebugCallStack => [TyVar] -> [Type] -> Type -> Type -- Works only if the domain of the substitution is a -- superset of the type being substituted into substTyWith tvs tys = {-#SCC "substTyWith" #-} assert (tvs `equalLength` tys ) substTy (zipTvSubst tvs tys) -- | Type substitution, see 'zipTvSubst'. Disables sanity checks. -- The problems that the sanity checks in substTy catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substTyUnchecked to -- substTy and remove this function. Please don't use in new code. substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type substTyWithUnchecked tvs tys = assert (tvs `equalLength` tys ) substTyUnchecked (zipTvSubst tvs tys) -- | Substitute tyvars within a type using a known 'InScopeSet'. -- Pre-condition: the 'in_scope' set should satisfy Note [The substitution -- invariant]; specifically it should include the free vars of 'tys', -- and of 'ty' minus the domain of the subst. substTyWithInScope :: InScopeSet -> [TyVar] -> [Type] -> Type -> Type substTyWithInScope in_scope tvs tys ty = assert (tvs `equalLength` tys ) substTy (mkTvSubst in_scope tenv) ty where tenv = zipTyEnv tvs tys -- | Coercion substitution, see 'zipTvSubst' substCoWith :: HasDebugCallStack => [TyVar] -> [Type] -> Coercion -> Coercion substCoWith tvs tys = assert (tvs `equalLength` tys ) substCo (zipTvSubst tvs tys) -- | Coercion substitution, see 'zipTvSubst'. Disables sanity checks. -- The problems that the sanity checks in substCo catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substCoUnchecked to -- substCo and remove this function. Please don't use in new code. substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion substCoWithUnchecked tvs tys = assert (tvs `equalLength` tys ) substCoUnchecked (zipTvSubst tvs tys) -- | Substitute covars within a type substTyWithCoVars :: [CoVar] -> [Coercion] -> Type -> Type substTyWithCoVars cvs cos = substTy (zipCvSubst cvs cos) -- | Type substitution, see 'zipTvSubst' substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type] substTysWith tvs tys = assert (tvs `equalLength` tys ) substTys (zipTvSubst tvs tys) -- | Type substitution, see 'zipTvSubst' substTysWithCoVars :: [CoVar] -> [Coercion] -> [Type] -> [Type] substTysWithCoVars cvs cos = assert (cvs `equalLength` cos ) substTys (zipCvSubst cvs cos) -- | Substitute within a 'Type' after adding the free variables of the type -- to the in-scope set. This is useful for the case when the free variables -- aren't already in the in-scope set or easily available. -- See also Note [The substitution invariant]. substTyAddInScope :: Subst -> Type -> Type substTyAddInScope subst ty = substTy (extendSubstInScopeSet subst $ tyCoVarsOfType ty) ty -- | When calling `substTy` it should be the case that the in-scope set in -- the substitution is a superset of the free vars of the range of the -- substitution. -- See also Note [The substitution invariant]. -- TODO: take into account ids and rename as isValidSubst isValidTCvSubst :: Subst -> Bool isValidTCvSubst (Subst in_scope _ tenv cenv) = (tenvFVs `varSetInScope` in_scope) && (cenvFVs `varSetInScope` in_scope) where tenvFVs = shallowTyCoVarsOfTyVarEnv tenv cenvFVs = shallowTyCoVarsOfCoVarEnv cenv -- | This checks if the substitution satisfies the invariant from -- Note [The substitution invariant]. checkValidSubst :: HasDebugCallStack => Subst -> [Type] -> [Coercion] -> a -> a checkValidSubst subst@(Subst in_scope _ tenv cenv) tys cos a = assertPpr (isValidTCvSubst subst) (text "in_scope" <+> ppr in_scope $$ text "tenv" <+> ppr tenv $$ text "tenvFVs" <+> ppr (shallowTyCoVarsOfTyVarEnv tenv) $$ text "cenv" <+> ppr cenv $$ text "cenvFVs" <+> ppr (shallowTyCoVarsOfCoVarEnv cenv) $$ text "tys" <+> ppr tys $$ text "cos" <+> ppr cos) $ assertPpr tysCosFVsInScope (text "in_scope" <+> ppr in_scope $$ text "tenv" <+> ppr tenv $$ text "cenv" <+> ppr cenv $$ text "tys" <+> ppr tys $$ text "cos" <+> ppr cos $$ text "needInScope" <+> ppr needInScope) a where substDomain = nonDetKeysUFM tenv ++ nonDetKeysUFM cenv -- It's OK to use nonDetKeysUFM here, because we only use this list to -- remove some elements from a set needInScope = (shallowTyCoVarsOfTypes tys `unionVarSet` shallowTyCoVarsOfCos cos) `delListFromUniqSet_Directly` substDomain tysCosFVsInScope = needInScope `varSetInScope` in_scope -- | Substitute within a 'Type' -- The substitution has to satisfy the invariants described in -- Note [The substitution invariant]. substTy :: HasDebugCallStack => Subst -> Type -> Type substTy subst ty | isEmptyTCvSubst subst = ty | otherwise = checkValidSubst subst [ty] [] $ subst_ty subst ty -- | Substitute within a 'Type' disabling the sanity checks. -- The problems that the sanity checks in substTy catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substTyUnchecked to -- substTy and remove this function. Please don't use in new code. substTyUnchecked :: Subst -> Type -> Type substTyUnchecked subst ty | isEmptyTCvSubst subst = ty | otherwise = subst_ty subst ty substScaledTy :: HasDebugCallStack => Subst -> Scaled Type -> Scaled Type substScaledTy subst scaled_ty = mapScaledType (substTy subst) scaled_ty substScaledTyUnchecked :: HasDebugCallStack => Subst -> Scaled Type -> Scaled Type substScaledTyUnchecked subst scaled_ty = mapScaledType (substTyUnchecked subst) scaled_ty -- | Substitute within several 'Type's -- The substitution has to satisfy the invariants described in -- Note [The substitution invariant]. substTys :: HasDebugCallStack => Subst -> [Type] -> [Type] substTys subst tys | isEmptyTCvSubst subst = tys | otherwise = checkValidSubst subst tys [] $ map (subst_ty subst) tys substScaledTys :: HasDebugCallStack => Subst -> [Scaled Type] -> [Scaled Type] substScaledTys subst scaled_tys | isEmptyTCvSubst subst = scaled_tys | otherwise = checkValidSubst subst (map scaledMult scaled_tys ++ map scaledThing scaled_tys) [] $ map (mapScaledType (subst_ty subst)) scaled_tys -- | Substitute within several 'Type's disabling the sanity checks. -- The problems that the sanity checks in substTys catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substTysUnchecked to -- substTys and remove this function. Please don't use in new code. substTysUnchecked :: Subst -> [Type] -> [Type] substTysUnchecked subst tys | isEmptyTCvSubst subst = tys | otherwise = map (subst_ty subst) tys substScaledTysUnchecked :: Subst -> [Scaled Type] -> [Scaled Type] substScaledTysUnchecked subst tys | isEmptyTCvSubst subst = tys | otherwise = map (mapScaledType (subst_ty subst)) tys -- | Substitute within a 'ThetaType' -- The substitution has to satisfy the invariants described in -- Note [The substitution invariant]. substTheta :: HasDebugCallStack => Subst -> ThetaType -> ThetaType substTheta = substTys -- | Substitute within a 'ThetaType' disabling the sanity checks. -- The problems that the sanity checks in substTys catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substThetaUnchecked to -- substTheta and remove this function. Please don't use in new code. substThetaUnchecked :: Subst -> ThetaType -> ThetaType substThetaUnchecked = substTysUnchecked subst_ty :: Subst -> Type -> Type -- subst_ty is the main workhorse for type substitution -- -- Note that the in_scope set is poked only if we hit a forall -- so it may often never be fully computed subst_ty subst ty = go ty where go (TyVarTy tv) = substTyVar subst tv go (AppTy fun arg) = (mkAppTy $! (go fun)) $! (go arg) -- The mkAppTy smart constructor is important -- we might be replacing (a Int), represented with App -- by [Int], represented with TyConApp go ty@(TyConApp tc []) = tc `seq` ty -- avoid allocation in this common case go (TyConApp tc tys) = (mkTyConApp $! tc) $! strictMap go tys -- NB: mkTyConApp, not TyConApp. -- mkTyConApp has optimizations. -- See Note [Using synonyms to compress types] -- in GHC.Core.Type go ty@(FunTy { ft_mult = mult, ft_arg = arg, ft_res = res }) = let !mult' = go mult !arg' = go arg !res' = go res in ty { ft_mult = mult', ft_arg = arg', ft_res = res' } go (ForAllTy (Bndr tv vis) ty) = case substVarBndrUnchecked subst tv of (subst', tv') -> (ForAllTy $! ((Bndr $! tv') vis)) $! (subst_ty subst' ty) go (LitTy n) = LitTy $! n go (CastTy ty co) = (mkCastTy $! (go ty)) $! (subst_co subst co) go (CoercionTy co) = CoercionTy $! (subst_co subst co) substTyVar :: Subst -> TyVar -> Type substTyVar (Subst _ _ tenv _) tv = assert (isTyVar tv) $ case lookupVarEnv tenv tv of Just ty -> ty Nothing -> TyVarTy tv substTyVarToTyVar :: HasDebugCallStack => Subst -> TyVar -> TyVar -- Apply the substitution, expecing the result to be a TyVarTy substTyVarToTyVar (Subst _ _ tenv _) tv = assert (isTyVar tv) $ case lookupVarEnv tenv tv of Just ty -> case getTyVar_maybe ty of Just tv -> tv Nothing -> pprPanic "substTyVarToTyVar" (ppr tv $$ ppr ty) Nothing -> tv substTyVars :: Subst -> [TyVar] -> [Type] substTyVars subst = map $ substTyVar subst substTyCoVars :: Subst -> [TyCoVar] -> [Type] substTyCoVars subst = map $ substTyCoVar subst substTyCoVar :: Subst -> TyCoVar -> Type substTyCoVar subst tv | isTyVar tv = substTyVar subst tv | otherwise = CoercionTy $ substCoVar subst tv lookupTyVar :: Subst -> TyVar -> Maybe Type -- See Note [Extending the TvSubstEnv and CvSubstEnv] lookupTyVar (Subst _ _ tenv _) tv = assert (isTyVar tv ) lookupVarEnv tenv tv -- | Substitute within a 'Coercion' -- The substitution has to satisfy the invariants described in -- Note [The substitution invariant]. substCo :: HasDebugCallStack => Subst -> Coercion -> Coercion substCo subst co | isEmptyTCvSubst subst = co | otherwise = checkValidSubst subst [] [co] $ subst_co subst co -- | Substitute within a 'Coercion' disabling sanity checks. -- The problems that the sanity checks in substCo catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substCoUnchecked to -- substCo and remove this function. Please don't use in new code. substCoUnchecked :: Subst -> Coercion -> Coercion substCoUnchecked subst co | isEmptyTCvSubst subst = co | otherwise = subst_co subst co -- | Substitute within several 'Coercion's -- The substitution has to satisfy the invariants described in -- Note [The substitution invariant]. substCos :: HasDebugCallStack => Subst -> [Coercion] -> [Coercion] substCos subst cos | isEmptyTCvSubst subst = cos | otherwise = checkValidSubst subst [] cos $ map (subst_co subst) cos subst_co :: Subst -> Coercion -> Coercion subst_co subst co = go co where go_ty :: Type -> Type go_ty = subst_ty subst go_mco :: MCoercion -> MCoercion go_mco MRefl = MRefl go_mco (MCo co) = MCo (go co) go :: Coercion -> Coercion go (Refl ty) = mkNomReflCo $! (go_ty ty) go (GRefl r ty mco) = (mkGReflCo r $! (go_ty ty)) $! (go_mco mco) go (TyConAppCo r tc args)= let args' = map go args in args' `seqList` mkTyConAppCo r tc args' go (AppCo co arg) = (mkAppCo $! go co) $! go arg go (ForAllCo tv kind_co co) = case substForAllCoBndrUnchecked subst tv kind_co of (subst', tv', kind_co') -> ((mkForAllCo $! tv') $! kind_co') $! subst_co subst' co go (FunCo r afl afr w co1 co2) = ((mkFunCo2 r afl afr $! go w) $! go co1) $! go co2 go (CoVarCo cv) = substCoVar subst cv go (AxiomInstCo con ind cos) = mkAxiomInstCo con ind $! map go cos go (UnivCo p r t1 t2) = (((mkUnivCo $! go_prov p) $! r) $! (go_ty t1)) $! (go_ty t2) go (SymCo co) = mkSymCo $! (go co) go (TransCo co1 co2) = (mkTransCo $! (go co1)) $! (go co2) go (SelCo d co) = mkSelCo d $! (go co) go (LRCo lr co) = mkLRCo lr $! (go co) go (InstCo co arg) = (mkInstCo $! (go co)) $! go arg go (KindCo co) = mkKindCo $! (go co) go (SubCo co) = mkSubCo $! (go co) go (AxiomRuleCo c cs) = let cs1 = map go cs in cs1 `seqList` AxiomRuleCo c cs1 go (HoleCo h) = HoleCo $! go_hole h go_prov (PhantomProv kco) = PhantomProv (go kco) go_prov (ProofIrrelProv kco) = ProofIrrelProv (go kco) go_prov p@(PluginProv _) = p go_prov p@(CorePrepProv _) = p -- See Note [Substituting in a coercion hole] go_hole h@(CoercionHole { ch_co_var = cv }) = h { ch_co_var = updateVarType go_ty cv } substForAllCoBndr :: Subst -> TyCoVar -> KindCoercion -> (Subst, TyCoVar, Coercion) substForAllCoBndr subst = substForAllCoBndrUsing False (substCo subst) subst -- | Like 'substForAllCoBndr', but disables sanity checks. -- The problems that the sanity checks in substCo catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substCoUnchecked to -- substCo and remove this function. Please don't use in new code. substForAllCoBndrUnchecked :: Subst -> TyCoVar -> KindCoercion -> (Subst, TyCoVar, Coercion) substForAllCoBndrUnchecked subst = substForAllCoBndrUsing False (substCoUnchecked subst) subst -- See Note [Sym and ForAllCo] substForAllCoBndrUsing :: Bool -- apply sym to binder? -> (Coercion -> Coercion) -- transformation to kind co -> Subst -> TyCoVar -> KindCoercion -> (Subst, TyCoVar, KindCoercion) substForAllCoBndrUsing sym sco subst old_var | isTyVar old_var = substForAllCoTyVarBndrUsing sym sco subst old_var | otherwise = substForAllCoCoVarBndrUsing sym sco subst old_var substForAllCoTyVarBndrUsing :: Bool -- apply sym to binder? -> (Coercion -> Coercion) -- transformation to kind co -> Subst -> TyVar -> KindCoercion -> (Subst, TyVar, KindCoercion) substForAllCoTyVarBndrUsing sym sco (Subst in_scope idenv tenv cenv) old_var old_kind_co = assert (isTyVar old_var ) ( Subst (in_scope `extendInScopeSet` new_var) idenv new_env cenv , new_var, new_kind_co ) where new_env | no_change && not sym = delVarEnv tenv old_var | sym = extendVarEnv tenv old_var $ TyVarTy new_var `CastTy` new_kind_co | otherwise = extendVarEnv tenv old_var (TyVarTy new_var) no_kind_change = noFreeVarsOfCo old_kind_co no_change = no_kind_change && (new_var == old_var) new_kind_co | no_kind_change = old_kind_co | otherwise = sco old_kind_co new_ki1 = coercionLKind new_kind_co -- We could do substitution to (tyVarKind old_var). We don't do so because -- we already substituted new_kind_co, which contains the kind information -- we want. We don't want to do substitution once more. Also, in most cases, -- new_kind_co is a Refl, in which case coercionKind is really fast. new_var = uniqAway in_scope (setTyVarKind old_var new_ki1) substForAllCoCoVarBndrUsing :: Bool -- apply sym to binder? -> (Coercion -> Coercion) -- transformation to kind co -> Subst -> CoVar -> KindCoercion -> (Subst, CoVar, KindCoercion) substForAllCoCoVarBndrUsing sym sco (Subst in_scope idenv tenv cenv) old_var old_kind_co = assert (isCoVar old_var ) ( Subst (in_scope `extendInScopeSet` new_var) idenv tenv new_cenv , new_var, new_kind_co ) where new_cenv | no_change && not sym = delVarEnv cenv old_var | otherwise = extendVarEnv cenv old_var (mkCoVarCo new_var) no_kind_change = noFreeVarsOfCo old_kind_co no_change = no_kind_change && (new_var == old_var) new_kind_co | no_kind_change = old_kind_co | otherwise = sco old_kind_co Pair h1 h2 = coercionKind new_kind_co new_var = uniqAway in_scope $ mkCoVar (varName old_var) new_var_type new_var_type | sym = h2 | otherwise = h1 substCoVar :: Subst -> CoVar -> Coercion substCoVar (Subst _ _ _ cenv) cv = case lookupVarEnv cenv cv of Just co -> co Nothing -> CoVarCo cv substCoVars :: Subst -> [CoVar] -> [Coercion] substCoVars subst cvs = map (substCoVar subst) cvs lookupCoVar :: Subst -> Var -> Maybe Coercion lookupCoVar (Subst _ _ _ cenv) v = lookupVarEnv cenv v substTyVarBndr :: HasDebugCallStack => Subst -> TyVar -> (Subst, TyVar) substTyVarBndr = substTyVarBndrUsing substTy substTyVarBndrs :: HasDebugCallStack => Subst -> [TyVar] -> (Subst, [TyVar]) substTyVarBndrs = mapAccumL substTyVarBndr substVarBndr :: HasDebugCallStack => Subst -> TyCoVar -> (Subst, TyCoVar) substVarBndr = substVarBndrUsing substTy substVarBndrs :: HasDebugCallStack => Subst -> [TyCoVar] -> (Subst, [TyCoVar]) substVarBndrs = mapAccumL substVarBndr substCoVarBndr :: HasDebugCallStack => Subst -> CoVar -> (Subst, CoVar) substCoVarBndr = substCoVarBndrUsing substTy -- | Like 'substVarBndr', but disables sanity checks. -- The problems that the sanity checks in substTy catch are described in -- Note [The substitution invariant]. -- The goal of #11371 is to migrate all the calls of substTyUnchecked to -- substTy and remove this function. Please don't use in new code. substVarBndrUnchecked :: Subst -> TyCoVar -> (Subst, TyCoVar) substVarBndrUnchecked = substVarBndrUsing substTyUnchecked substVarBndrUsing :: (Subst -> Type -> Type) -> Subst -> TyCoVar -> (Subst, TyCoVar) substVarBndrUsing subst_fn subst v | isTyVar v = substTyVarBndrUsing subst_fn subst v | otherwise = substCoVarBndrUsing subst_fn subst v -- | Substitute a tyvar in a binding position, returning an -- extended subst and a new tyvar. -- Use the supplied function to substitute in the kind substTyVarBndrUsing :: (Subst -> Type -> Type) -- ^ Use this to substitute in the kind -> Subst -> TyVar -> (Subst, TyVar) substTyVarBndrUsing subst_fn subst@(Subst in_scope idenv tenv cenv) old_var = assertPpr _no_capture (pprTyVar old_var $$ pprTyVar new_var $$ ppr subst) $ assert (isTyVar old_var ) (Subst (in_scope `extendInScopeSet` new_var) idenv new_env cenv, new_var) where new_env | no_change = delVarEnv tenv old_var | otherwise = extendVarEnv tenv old_var (TyVarTy new_var) _no_capture = not (new_var `elemVarSet` shallowTyCoVarsOfTyVarEnv tenv) -- Assertion check that we are not capturing something in the substitution old_ki = tyVarKind old_var no_kind_change = noFreeVarsOfType old_ki -- verify that kind is closed no_change = no_kind_change && (new_var == old_var) -- no_change means that the new_var is identical in -- all respects to the old_var (same unique, same kind) -- See Note [Extending the TvSubstEnv and CvSubstEnv] -- -- In that case we don't need to extend the substitution -- to map old to new. But instead we must zap any -- current substitution for the variable. For example: -- (\x.e) with id_subst = [x |-> e'] -- Here we must simply zap the substitution for x new_var | no_kind_change = uniqAway in_scope old_var | otherwise = uniqAway in_scope $ setTyVarKind old_var (subst_fn subst old_ki) -- The uniqAway part makes sure the new variable is not already in scope -- | Substitute a covar in a binding position, returning an -- extended subst and a new covar. -- Use the supplied function to substitute in the kind substCoVarBndrUsing :: (Subst -> Type -> Type) -> Subst -> CoVar -> (Subst, CoVar) substCoVarBndrUsing subst_fn subst@(Subst in_scope idenv tenv cenv) old_var = assert (isCoVar old_var) (Subst (in_scope `extendInScopeSet` new_var) idenv tenv new_cenv, new_var) where new_co = mkCoVarCo new_var no_kind_change = noFreeVarsOfTypes [t1, t2] no_change = new_var == old_var && no_kind_change new_cenv | no_change = delVarEnv cenv old_var | otherwise = extendVarEnv cenv old_var new_co new_var = uniqAway in_scope subst_old_var subst_old_var = mkCoVar (varName old_var) new_var_type (_, _, t1, t2, role) = coVarKindsTypesRole old_var t1' = subst_fn subst t1 t2' = subst_fn subst t2 new_var_type = mkCoercionType role t1' t2' -- It's important to do the substitution for coercions, -- because they can have free type variables cloneTyVarBndr :: Subst -> TyVar -> Unique -> (Subst, TyVar) cloneTyVarBndr subst@(Subst in_scope id_env tv_env cv_env) tv uniq = assertPpr (isTyVar tv) (ppr tv) -- I think it's only called on TyVars ( Subst (extendInScopeSet in_scope tv') id_env (extendVarEnv tv_env tv (mkTyVarTy tv')) cv_env , tv') where old_ki = tyVarKind tv no_kind_change = noFreeVarsOfType old_ki -- verify that kind is closed tv1 | no_kind_change = tv | otherwise = setTyVarKind tv (substTy subst old_ki) tv' = setVarUnique tv1 uniq cloneTyVarBndrs :: Subst -> [TyVar] -> UniqSupply -> (Subst, [TyVar]) cloneTyVarBndrs subst [] _usupply = (subst, []) cloneTyVarBndrs subst (t:ts) usupply = (subst'', tv:tvs) where (uniq, usupply') = takeUniqFromSupply usupply (subst' , tv ) = cloneTyVarBndr subst t uniq (subst'', tvs) = cloneTyVarBndrs subst' ts usupply' substTyCoBndr :: Subst -> PiTyBinder -> (Subst, PiTyBinder) substTyCoBndr subst (Anon ty af) = (subst, Anon (substScaledTy subst ty) af) substTyCoBndr subst (Named (Bndr tv vis)) = (subst', Named (Bndr tv' vis)) where (subst', tv') = substVarBndr subst tv