{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring expressions. -} module GHC.HsToCore.Expr ( dsExpr, dsLExpr, dsLocalBinds , dsValBinds, dsLit, dsSyntaxExpr ) where import GHC.Prelude import GHC.HsToCore.Match import GHC.HsToCore.Match.Literal import GHC.HsToCore.Binds import GHC.HsToCore.GuardedRHSs import GHC.HsToCore.ListComp import GHC.HsToCore.Utils import GHC.HsToCore.Arrows import GHC.HsToCore.Monad import GHC.HsToCore.Pmc ( addTyCs, pmcGRHSs ) import GHC.HsToCore.Errors.Types import GHC.Types.SourceText import GHC.Types.Name import GHC.Core.FamInstEnv( topNormaliseType ) import GHC.HsToCore.Quote import GHC.Hs -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types import GHC.Tc.Utils.TcType import GHC.Tc.Types.Evidence import GHC.Tc.Utils.Monad import GHC.Core.Type import GHC.Core.TyCo.Rep import GHC.Core import GHC.Core.Utils import GHC.Core.Make import GHC.Driver.Session import GHC.Types.CostCentre import GHC.Types.Id import GHC.Types.Id.Make import GHC.Unit.Module import GHC.Core.ConLike import GHC.Core.DataCon import GHC.Builtin.Types import GHC.Builtin.Names import GHC.Types.Basic import GHC.Types.SrcLoc import GHC.Types.Tickish import GHC.Utils.Misc import GHC.Data.Bag import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain import GHC.Core.PatSyn import Control.Monad import GHC.HsToCore.Ticks (stripTicksTopHsExpr) {- ************************************************************************ * * dsLocalBinds, dsValBinds * * ************************************************************************ -} dsLocalBinds :: HsLocalBinds GhcTc -> CoreExpr -> DsM CoreExpr dsLocalBinds (EmptyLocalBinds _) body = return body dsLocalBinds b@(HsValBinds _ binds) body = putSrcSpanDs (spanHsLocaLBinds b) $ dsValBinds binds body dsLocalBinds (HsIPBinds _ binds) body = dsIPBinds binds body ------------------------- -- caller sets location dsValBinds :: HsValBinds GhcTc -> CoreExpr -> DsM CoreExpr dsValBinds (XValBindsLR (NValBinds binds _)) body = foldrM ds_val_bind body binds dsValBinds (ValBinds {}) _ = panic "dsValBinds ValBindsIn" ------------------------- dsIPBinds :: HsIPBinds GhcTc -> CoreExpr -> DsM CoreExpr dsIPBinds (IPBinds ev_binds ip_binds) body = do { ds_binds <- dsTcEvBinds ev_binds ; let inner = mkCoreLets ds_binds body -- The dict bindings may not be in -- dependency order; hence Rec ; foldrM ds_ip_bind inner ip_binds } where ds_ip_bind :: LIPBind GhcTc -> CoreExpr -> DsM CoreExpr ds_ip_bind (L _ (IPBind n _ e)) body = do e' <- dsLExpr e return (Let (NonRec n e') body) ------------------------- -- caller sets location ds_val_bind :: (RecFlag, LHsBinds GhcTc) -> CoreExpr -> DsM CoreExpr -- Special case for bindings which bind unlifted variables -- We need to do a case right away, rather than building -- a tuple and doing selections. -- Silently ignore INLINE and SPECIALISE pragmas... ds_val_bind (NonRecursive, hsbinds) body | [L loc bind] <- bagToList hsbinds -- Non-recursive, non-overloaded bindings only come in ones -- ToDo: in some bizarre case it's conceivable that there -- could be dict binds in the 'binds'. (See the notes -- below. Then pattern-match would fail. Urk.) , isUnliftedHsBind bind = putSrcSpanDs (locA loc) $ -- see Note [Strict binds checks] in GHC.HsToCore.Binds if is_polymorphic bind then errDsCoreExpr (DsCannotMixPolyAndUnliftedBindings bind) -- data Ptr a = Ptr Addr# -- f x = let p@(Ptr y) = ... in ... -- Here the binding for 'p' is polymorphic, but does -- not mix with an unlifted binding for 'y'. You should -- use a bang pattern. #6078. else do { when (looksLazyPatBind bind) $ diagnosticDs (DsUnbangedStrictPatterns bind) -- Complain about a binding that looks lazy -- e.g. let I# y = x in ... -- Remember, in checkStrictBinds we are going to do strict -- matching, so (for software engineering reasons) we insist -- that the strictness is manifest on each binding -- However, lone (unboxed) variables are ok ; dsUnliftedBind bind body } where is_polymorphic (XHsBindsLR (AbsBinds { abs_tvs = tvs, abs_ev_vars = evs })) = not (null tvs && null evs) is_polymorphic _ = False ds_val_bind (is_rec, binds) _body | anyBag (isUnliftedHsBind . unLoc) binds -- see Note [Strict binds checks] in GHC.HsToCore.Binds = assert (isRec is_rec ) errDsCoreExpr $ DsRecBindsNotAllowedForUnliftedTys (bagToList binds) -- Ordinary case for bindings; none should be unlifted ds_val_bind (is_rec, binds) body = do { massert (isRec is_rec || isSingletonBag binds) -- we should never produce a non-recursive list of multiple binds ; (force_vars,prs) <- dsLHsBinds binds ; let body' = foldr seqVar body force_vars ; assertPpr (not (any (isUnliftedType . idType . fst) prs)) (ppr is_rec $$ ppr binds) $ -- NB: bindings have a fixed RuntimeRep, so it's OK to call isUnliftedType case prs of [] -> return body _ -> return (Let (Rec prs) body') } -- Use a Rec regardless of is_rec. -- Why? Because it allows the binds to be all -- mixed up, which is what happens in one rare case -- Namely, for an AbsBind with no tyvars and no dicts, -- but which does have dictionary bindings. -- See notes with GHC.Tc.Solver.inferLoop [NO TYVARS] -- It turned out that wrapping a Rec here was the easiest solution -- -- NB The previous case dealt with unlifted bindings, so we -- only have to deal with lifted ones now; so Rec is ok ------------------ dsUnliftedBind :: HsBind GhcTc -> CoreExpr -> DsM CoreExpr dsUnliftedBind (XHsBindsLR (AbsBinds { abs_tvs = [], abs_ev_vars = [] , abs_exports = exports , abs_ev_binds = ev_binds , abs_binds = lbinds })) body = do { let body1 = foldr bind_export body exports bind_export export b = bindNonRec (abe_poly export) (Var (abe_mono export)) b ; body2 <- foldlM (\body lbind -> dsUnliftedBind (unLoc lbind) body) body1 lbinds ; ds_binds <- dsTcEvBinds_s ev_binds ; return (mkCoreLets ds_binds body2) } dsUnliftedBind (FunBind { fun_id = L l fun , fun_matches = matches , fun_ext = (co_fn, tick) }) body -- Can't be a bang pattern (that looks like a PatBind) -- so must be simply unboxed = do { (args, rhs) <- matchWrapper (mkPrefixFunRhs (L l $ idName fun)) Nothing matches ; massert (null args) -- Functions aren't unlifted ; core_wrap <- dsHsWrapper co_fn -- Can be non-identity (#21516) ; let rhs' = core_wrap (mkOptTickBox tick rhs) ; return (bindNonRec fun rhs' body) } dsUnliftedBind (PatBind {pat_lhs = pat, pat_rhs = grhss , pat_ext = (ty, _) }) body = -- let C x# y# = rhs in body -- ==> case rhs of C x# y# -> body do { match_nablas <- pmcGRHSs PatBindGuards grhss ; rhs <- dsGuarded grhss ty match_nablas ; let upat = unLoc pat eqn = EqnInfo { eqn_pats = [upat], eqn_orig = FromSource, eqn_rhs = cantFailMatchResult body } ; var <- selectMatchVar ManyTy upat -- `var` will end up in a let binder, so the multiplicity -- doesn't matter. ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body) ; return (bindNonRec var rhs result) } dsUnliftedBind bind body = pprPanic "dsLet: unlifted" (ppr bind $$ ppr body) {- ************************************************************************ * * * Variables, constructors, literals * * * ************************************************************************ -} -- | Replace the body of the function with this block to test the hsExprType -- function in GHC.Tc.Utils.Zonk: -- putSrcSpanDs loc $ do -- { core_expr <- dsExpr e -- ; massertPpr (exprType core_expr `eqType` hsExprType e) -- (ppr e <+> dcolon <+> ppr (hsExprType e) $$ -- ppr core_expr <+> dcolon <+> ppr (exprType core_expr)) -- ; return core_expr } dsLExpr :: LHsExpr GhcTc -> DsM CoreExpr dsLExpr (L loc e) = putSrcSpanDsA loc $ dsExpr e dsExpr :: HsExpr GhcTc -> DsM CoreExpr dsExpr (HsVar _ (L _ id)) = dsHsVar id dsExpr (HsRecSel _ (FieldOcc id _)) = dsHsVar id dsExpr (HsUnboundVar (HER ref _ _) _) = dsEvTerm =<< readMutVar ref -- See Note [Holes] in GHC.Tc.Types.Constraint dsExpr (HsPar _ _ e _) = dsLExpr e dsExpr (ExprWithTySig _ e _) = dsLExpr e dsExpr (HsIPVar x _) = dataConCantHappen x dsExpr (HsGetField x _ _) = dataConCantHappen x dsExpr (HsProjection x _) = dataConCantHappen x dsExpr (HsLit _ lit) = do { warnAboutOverflowedLit lit ; dsLit (convertLit lit) } dsExpr (HsOverLit _ lit) = do { warnAboutOverflowedOverLit lit ; dsOverLit lit } dsExpr e@(XExpr ext_expr_tc) = case ext_expr_tc of ExpansionExpr (HsExpanded _ b) -> dsExpr b WrapExpr {} -> dsHsWrapped e ConLikeTc con tvs tys -> dsConLike con tvs tys -- Hpc Support HsTick tickish e -> do e' <- dsLExpr e return (Tick tickish e') -- There is a problem here. The then and else branches -- have no free variables, so they are open to lifting. -- We need someway of stopping this. -- This will make no difference to binary coverage -- (did you go here: YES or NO), but will effect accurate -- tick counting. HsBinTick ixT ixF e -> do e2 <- dsLExpr e do { assert (exprType e2 `eqType` boolTy) mkBinaryTickBox ixT ixF e2 } -- Strip ticks due to #21701, need to be invariant about warnings we produce whether -- this is enabled or not. dsExpr (NegApp _ (L loc (stripTicksTopHsExpr -> (ts, (HsOverLit _ lit@(OverLit { ol_val = HsIntegral i}))))) neg_expr) = do { expr' <- putSrcSpanDsA loc $ do { warnAboutOverflowedOverLit -- See Note [Checking "negative literals"] (lit { ol_val = HsIntegral (negateIntegralLit i) }) ; dsOverLit lit } ; ; dsSyntaxExpr neg_expr [mkTicks ts expr'] } dsExpr (NegApp _ expr neg_expr) = do { expr' <- dsLExpr expr ; dsSyntaxExpr neg_expr [expr'] } dsExpr (HsLam _ a_Match) = uncurry mkCoreLams <$> matchWrapper LambdaExpr Nothing a_Match dsExpr (HsLamCase _ lc_variant matches) = uncurry mkCoreLams <$> matchWrapper (LamCaseAlt lc_variant) Nothing matches dsExpr e@(HsApp _ fun arg) = do { fun' <- dsLExpr fun ; arg' <- dsLExpr arg ; return $ mkCoreAppDs (text "HsApp" <+> ppr e) fun' arg' } dsExpr e@(HsAppType {}) = dsHsWrapped e {- Note [Checking "negative literals"] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As observed in #13257 it's desirable to warn about overflowing negative literals in some situations where the user thinks they are writing a negative literal (ie -1) but without `-XNegativeLiterals` enabled. This catches cases such as (-1 :: Word8) which overflow, because (negate 1 == 255) but which we desugar to `negate (fromIntegral 1)`. Notice it's crucial we still desugar to the correct (negate (fromIntegral ...)) despite performing the negation in order to check whether the application of negate will overflow. For a user written Integer instance we can't predict the interaction of negate and fromIntegral. Also note that this works for detecting the right result for `-128 :: Int8`.. which is in-range for Int8 but the correct result is achieved via two overflows. negate (fromIntegral 128 :: Int8) = negate (-128 :: Int8) = -128 :: Int8 Note [Desugaring vars] ~~~~~~~~~~~~~~~~~~~~~~ In one situation we can get a *coercion* variable in a HsVar, namely the support method for an equality superclass: class (a~b) => C a b where ... instance (blah) => C (T a) (T b) where .. Then we get $dfCT :: forall ab. blah => C (T a) (T b) $dfCT ab blah = MkC ($c$p1C a blah) ($cop a blah) $c$p1C :: forall ab. blah => (T a ~ T b) $c$p1C ab blah = let ...; g :: T a ~ T b = ... } in g That 'g' in the 'in' part is an evidence variable, and when converting to core it must become a CO. -} dsExpr (ExplicitTuple _ tup_args boxity) = do { let go (lam_vars, args) (Missing (Scaled mult ty)) -- For every missing expression, we need -- another lambda in the desugaring. = do { lam_var <- newSysLocalDs mult ty ; return (lam_var : lam_vars, Var lam_var : args) } go (lam_vars, args) (Present _ expr) -- Expressions that are present don't generate -- lambdas, just arguments. = do { core_expr <- dsLExpr expr ; return (lam_vars, core_expr : args) } ; (lam_vars, args) <- foldM go ([], []) (reverse tup_args) -- The reverse is because foldM goes left-to-right ; return $ mkCoreLams lam_vars (mkCoreTupBoxity boxity args) } -- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make dsExpr (ExplicitSum types alt arity expr) = mkCoreUnboxedSum arity alt types <$> dsLExpr expr dsExpr (HsPragE _ prag expr) = ds_prag_expr prag expr dsExpr (HsCase _ discrim matches) = do { core_discrim <- dsLExpr discrim ; ([discrim_var], matching_code) <- matchWrapper CaseAlt (Just [discrim]) matches ; return (bindNonRec discrim_var core_discrim matching_code) } -- Pepe: The binds are in scope in the body but NOT in the binding group -- This is to avoid silliness in breakpoints dsExpr (HsLet _ _ binds _ body) = do body' <- dsLExpr body dsLocalBinds binds body' -- We need the `ListComp' form to use `deListComp' (rather than the "do" form) -- because the interpretation of `stmts' depends on what sort of thing it is. -- dsExpr (HsDo res_ty ListComp (L _ stmts)) = dsListComp stmts res_ty dsExpr (HsDo _ ctx@DoExpr{} (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ ctx@GhciStmtCtxt (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ ctx@MDoExpr{} (L _ stmts)) = dsDo ctx stmts dsExpr (HsDo _ MonadComp (L _ stmts)) = dsMonadComp stmts dsExpr (HsIf _ guard_expr then_expr else_expr) = do { pred <- dsLExpr guard_expr ; b1 <- dsLExpr then_expr ; b2 <- dsLExpr else_expr ; return $ mkIfThenElse pred b1 b2 } dsExpr (HsMultiIf res_ty alts) | null alts = mkErrorExpr | otherwise = do { let grhss = GRHSs emptyComments alts emptyLocalBinds ; rhss_nablas <- pmcGRHSs IfAlt grhss ; match_result <- dsGRHSs IfAlt grhss res_ty rhss_nablas ; error_expr <- mkErrorExpr ; extractMatchResult match_result error_expr } where mkErrorExpr = mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID res_ty (text "multi-way if") {- \noindent \underline{\bf Various data construction things} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -} dsExpr (ExplicitList elt_ty xs) = dsExplicitList elt_ty xs dsExpr (ArithSeq expr witness seq) = case witness of Nothing -> dsArithSeq expr seq Just fl -> do { newArithSeq <- dsArithSeq expr seq ; dsSyntaxExpr fl [newArithSeq] } {- Static Pointers ~~~~~~~~~~~~~~~ See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview. g = ... static f ... ==> g = ... makeStatic loc f ... -} dsExpr (HsStatic (_, whole_ty) expr@(L loc _)) = do expr_ds <- dsLExpr expr let (_, [ty]) = splitTyConApp whole_ty makeStaticId <- dsLookupGlobalId makeStaticName dflags <- getDynFlags let platform = targetPlatform dflags let (line, col) = case locA loc of RealSrcSpan r _ -> ( srcLocLine $ realSrcSpanStart r , srcLocCol $ realSrcSpanStart r ) _ -> (0, 0) srcLoc = mkCoreConApps (tupleDataCon Boxed 2) [ Type intTy , Type intTy , mkIntExprInt platform line, mkIntExprInt platform col ] putSrcSpanDsA loc $ return $ mkCoreApps (Var makeStaticId) [ Type ty, srcLoc, expr_ds ] {- \noindent \underline{\bf Record construction and update} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) \begin{verbatim} T { op2 = e } ==> let err = /\a -> recConError a T (recConError t1 "M.hs/230/op1") e (recConError t1 "M.hs/230/op3") \end{verbatim} @recConError@ then converts its argument string into a proper message before printing it as \begin{verbatim} M.hs, line 230: missing field op1 was evaluated \end{verbatim} We also handle @C{}@ as valid construction syntax for an unlabelled constructor @C@, setting all of @C@'s fields to bottom. -} dsExpr (RecordCon { rcon_con = L _ con_like , rcon_flds = rbinds , rcon_ext = con_expr }) = do { con_expr' <- dsExpr con_expr ; let (arg_tys, _) = tcSplitFunTys (exprType con_expr') -- A newtype in the corner should be opaque; -- hence TcType.tcSplitFunTys mk_arg (arg_ty, fl) = case findField (rec_flds rbinds) (flSelector fl) of (rhs:rhss) -> assert (null rhss) dsLExpr rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (ppr (flLabel fl)) unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty Outputable.empty labels = conLikeFieldLabels con_like ; con_args <- if null labels then mapM unlabelled_bottom (map scaledThing arg_tys) else mapM mk_arg (zipEqual "dsExpr:RecordCon" (map scaledThing arg_tys) labels) ; return (mkCoreApps con_expr' con_args) } dsExpr (RecordUpd x _ _) = dataConCantHappen x -- Here is where we desugar the Template Haskell brackets and escapes -- Template Haskell stuff -- See Note [The life cycle of a TH quotation] dsExpr (HsTypedBracket bracket_tc _) = dsBracket bracket_tc dsExpr (HsUntypedBracket bracket_tc _) = dsBracket bracket_tc dsExpr (HsTypedSplice _ s) = pprPanic "dsExpr:typed splice" (pprTypedSplice Nothing s) dsExpr (HsUntypedSplice ext _) = dataConCantHappen ext -- Arrow notation extension dsExpr (HsProc _ pat cmd) = dsProcExpr pat cmd -- HsSyn constructs that just shouldn't be here, because -- the renamer removed them. See GHC.Rename.Expr. -- Note [Handling overloaded and rebindable constructs] dsExpr (HsOverLabel x _) = dataConCantHappen x dsExpr (OpApp x _ _ _) = dataConCantHappen x dsExpr (SectionL x _ _) = dataConCantHappen x dsExpr (SectionR x _ _) = dataConCantHappen x ds_prag_expr :: HsPragE GhcTc -> LHsExpr GhcTc -> DsM CoreExpr ds_prag_expr (HsPragSCC _ cc) expr = do dflags <- getDynFlags if sccProfilingEnabled dflags && gopt Opt_ProfManualCcs dflags then do mod_name <- getModule count <- goptM Opt_ProfCountEntries let nm = sl_fs cc flavour <- ExprCC <$> getCCIndexDsM nm Tick (ProfNote (mkUserCC nm mod_name (getLocA expr) flavour) count True) <$> dsLExpr expr else dsLExpr expr ------------------------------ dsSyntaxExpr :: SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr dsSyntaxExpr (SyntaxExprTc { syn_expr = expr , syn_arg_wraps = arg_wraps , syn_res_wrap = res_wrap }) arg_exprs = do { fun <- dsExpr expr ; core_arg_wraps <- mapM dsHsWrapper arg_wraps ; core_res_wrap <- dsHsWrapper res_wrap ; let wrapped_args = zipWithEqual "dsSyntaxExpr" ($) core_arg_wraps arg_exprs ; return $ core_res_wrap (mkCoreApps fun wrapped_args) } dsSyntaxExpr NoSyntaxExprTc _ = panic "dsSyntaxExpr" findField :: [LHsRecField GhcTc arg] -> Name -> [arg] findField rbinds sel = [hfbRHS fld | L _ fld <- rbinds , sel == idName (hsRecFieldId fld) ] {- %-------------------------------------------------------------------- Note [Desugaring explicit lists] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Explicit lists are desugared in a cleverer way to prevent some fruitless allocations. Essentially, whenever we see a list literal [x_1, ..., x_n] we generate the corresponding expression in terms of build: Explicit lists (literals) are desugared to allow build/foldr fusion when beneficial. This is a bit of a trade-off, * build/foldr fusion can generate far larger code than the corresponding cons-chain (e.g. see #11707) * even when it doesn't produce more code, build can still fail to fuse, requiring that the simplifier do more work to bring the expression back into cons-chain form; this costs compile time * when it works, fusion can be a significant win. Allocations are reduced by up to 25% in some nofib programs. Specifically, Program Size Allocs Runtime CompTime rewrite +0.0% -26.3% 0.02 -1.8% ansi -0.3% -13.8% 0.00 +0.0% lift +0.0% -8.7% 0.00 -2.3% At the moment we use a simple heuristic to determine whether build will be fruitful: for small lists we assume the benefits of fusion will be worthwhile; for long lists we assume that the benefits will be outweighed by the cost of code duplication. This magic length threshold is @maxBuildLength@. Also, fusion won't work at all if rewrite rules are disabled, so we don't use the build-based desugaring in this case. We used to have a more complex heuristic which would try to break the list into "static" and "dynamic" parts and only build-desugar the dynamic part. Unfortunately, determining "static-ness" reliably is a bit tricky and the heuristic at times produced surprising behavior (see #11710) so it was dropped. -} {- | The longest list length which we will desugar using @build@. This is essentially a magic number and its setting is unfortunate rather arbitrary. The idea here, as mentioned in Note [Desugaring explicit lists], is to avoid deforesting large static data into large(r) code. Ideally we'd want a smaller threshold with larger consumers and vice-versa, but we have no way of knowing what will be consuming our list in the desugaring impossible to set generally correctly. The effect of reducing this number will be that 'build' fusion is applied less often. From a runtime performance perspective, applying 'build' more liberally on "moderately" sized lists should rarely hurt and will often it can only expose further optimization opportunities; if no fusion is possible it will eventually get rule-rewritten back to a list). We do, however, pay in compile time. -} maxBuildLength :: Int maxBuildLength = 32 dsExplicitList :: Type -> [LHsExpr GhcTc] -> DsM CoreExpr -- See Note [Desugaring explicit lists] dsExplicitList elt_ty xs = do { dflags <- getDynFlags ; xs' <- mapM dsLExpr xs ; if xs' `lengthExceeds` maxBuildLength -- Don't generate builds if the list is very long. || null xs' -- Don't generate builds when the [] constructor will do || not (gopt Opt_EnableRewriteRules dflags) -- Rewrite rules off -- Don't generate a build if there are no rules to eliminate it! -- See Note [Desugaring RULE left hand sides] in GHC.HsToCore then return $ mkListExpr elt_ty xs' else mkBuildExpr elt_ty (mk_build_list xs') } where mk_build_list xs' (cons, _) (nil, _) = return (foldr (App . App (Var cons)) (Var nil) xs') dsArithSeq :: PostTcExpr -> (ArithSeqInfo GhcTc) -> DsM CoreExpr dsArithSeq expr (From from) = App <$> dsExpr expr <*> dsLExpr from dsArithSeq expr (FromTo from to) = do fam_envs <- dsGetFamInstEnvs dflags <- getDynFlags warnAboutEmptyEnumerations fam_envs dflags from Nothing to expr' <- dsExpr expr from' <- dsLExpr from to' <- dsLExpr to return $ mkApps expr' [from', to'] dsArithSeq expr (FromThen from thn) = mkApps <$> dsExpr expr <*> mapM dsLExpr [from, thn] dsArithSeq expr (FromThenTo from thn to) = do fam_envs <- dsGetFamInstEnvs dflags <- getDynFlags warnAboutEmptyEnumerations fam_envs dflags from (Just thn) to expr' <- dsExpr expr from' <- dsLExpr from thn' <- dsLExpr thn to' <- dsLExpr to return $ mkApps expr' [from', thn', to'] {- Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're handled in GHC.HsToCore.ListComp). Basically does the translation given in the Haskell 98 report: -} dsDo :: HsDoFlavour -> [ExprLStmt GhcTc] -> DsM CoreExpr dsDo ctx stmts = goL stmts where goL [] = panic "dsDo" goL ((L loc stmt):lstmts) = putSrcSpanDsA loc (go loc stmt lstmts) go _ (LastStmt _ body _ _) stmts = assert (null stmts ) dsLExpr body -- The 'return' op isn't used for 'do' expressions go _ (BodyStmt _ rhs then_expr _) stmts = do { rhs2 <- dsLExpr rhs ; warnDiscardedDoBindings rhs (exprType rhs2) ; rest <- goL stmts ; dsSyntaxExpr then_expr [rhs2, rest] } go _ (LetStmt _ binds) stmts = do { rest <- goL stmts ; dsLocalBinds binds rest } go _ (BindStmt xbs pat rhs) stmts = do { body <- goL stmts ; rhs' <- dsLExpr rhs ; var <- selectSimpleMatchVarL (xbstc_boundResultMult xbs) pat ; match <- matchSinglePatVar var Nothing (StmtCtxt (HsDoStmt ctx)) pat (xbstc_boundResultType xbs) (cantFailMatchResult body) ; match_code <- dsHandleMonadicFailure ctx pat match (xbstc_failOp xbs) ; dsSyntaxExpr (xbstc_bindOp xbs) [rhs', Lam var match_code] } go _ (ApplicativeStmt body_ty args mb_join) stmts = do { let (pats, rhss) = unzip (map (do_arg . snd) args) do_arg (ApplicativeArgOne fail_op pat expr _) = ((pat, fail_op), dsLExpr expr) do_arg (ApplicativeArgMany _ stmts ret pat _) = ((pat, Nothing), dsDo ctx (stmts ++ [noLocA $ mkLastStmt (noLocA ret)])) ; rhss' <- sequence rhss ; body' <- dsLExpr $ noLocA $ HsDo body_ty ctx (noLocA stmts) ; let match_args (pat, fail_op) (vs,body) = putSrcSpanDs (getLocA pat) $ do { var <- selectSimpleMatchVarL ManyTy pat ; match <- matchSinglePatVar var Nothing (StmtCtxt (HsDoStmt ctx)) pat body_ty (cantFailMatchResult body) ; match_code <- dsHandleMonadicFailure ctx pat match fail_op ; return (var:vs, match_code) } ; (vars, body) <- foldrM match_args ([],body') pats ; let fun' = mkLams vars body ; let mk_ap_call l (op,r) = dsSyntaxExpr op [l,r] ; expr <- foldlM mk_ap_call fun' (zip (map fst args) rhss') ; case mb_join of Nothing -> return expr Just join_op -> dsSyntaxExpr join_op [expr] } go loc (RecStmt { recS_stmts = L _ rec_stmts, recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = return_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op , recS_ext = RecStmtTc { recS_bind_ty = bind_ty , recS_rec_rets = rec_rets , recS_ret_ty = body_ty} }) stmts = goL (new_bind_stmt : stmts) -- rec_ids can be empty; eg rec { print 'x' } where new_bind_stmt = L loc $ BindStmt XBindStmtTc { xbstc_bindOp = bind_op , xbstc_boundResultType = bind_ty , xbstc_boundResultMult = ManyTy , xbstc_failOp = Nothing -- Tuple cannot fail } (mkBigLHsPatTupId later_pats) mfix_app tup_ids = rec_ids ++ filterOut (`elem` rec_ids) later_ids tup_ty = mkBigCoreTupTy (map idType tup_ids) -- Deals with singleton case rec_tup_pats = map nlVarPat tup_ids later_pats = rec_tup_pats rets = map noLocA rec_rets mfix_app = nlHsSyntaxApps mfix_op [mfix_arg] mfix_arg = noLocA $ HsLam noExtField (MG { mg_alts = noLocA [mkSimpleMatch LambdaExpr [mfix_pat] body] , mg_ext = MatchGroupTc [unrestricted tup_ty] body_ty Generated }) mfix_pat = noLocA $ LazyPat noExtField $ mkBigLHsPatTupId rec_tup_pats body = noLocA $ HsDo body_ty ctx (noLocA (rec_stmts ++ [ret_stmt])) ret_app = nlHsSyntaxApps return_op [mkBigLHsTupId rets] ret_stmt = noLocA $ mkLastStmt ret_app -- This LastStmt will be desugared with dsDo, -- which ignores the return_op in the LastStmt, -- so we must apply the return_op explicitly go _ (ParStmt {}) _ = panic "dsDo ParStmt" go _ (TransStmt {}) _ = panic "dsDo TransStmt" {- ************************************************************************ * * Desugaring Variables * * ************************************************************************ -} dsHsVar :: Id -> DsM CoreExpr -- We could just call dsHsUnwrapped; but this is a short-cut -- for the very common case of a variable with no wrapper. dsHsVar var = return (varToCoreExpr var) -- See Note [Desugaring vars] dsHsConLike :: ConLike -> DsM CoreExpr dsHsConLike (RealDataCon dc) = return (varToCoreExpr (dataConWrapId dc)) dsHsConLike (PatSynCon ps) | Just (builder_name, _, add_void) <- patSynBuilder ps = do { builder_id <- dsLookupGlobalId builder_name ; return (if add_void then mkCoreApp (text "dsConLike" <+> ppr ps) (Var builder_id) unboxedUnitExpr else Var builder_id) } | otherwise = pprPanic "dsConLike" (ppr ps) -- | This function desugars 'ConLikeTc': it eta-expands -- data constructors to make linear types work. -- -- See Note [Typechecking data constructors] in GHC.Tc.Gen.Head dsConLike :: ConLike -> [TcTyVar] -> [Scaled Type] -> DsM CoreExpr dsConLike con tvs tys = do { ds_con <- dsHsConLike con ; ids <- newSysLocalsDs tys -- NB: these 'Id's may be representation-polymorphic; -- see Wrinkle [Representation-polymorphic lambda] in -- Note [Typechecking data constructors] in GHC.Tc.Gen.Head. ; return (mkLams tvs $ mkLams ids $ ds_con `mkTyApps` mkTyVarTys tvs `mkVarApps` ids) } {- ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ -} -- Warn about certain types of values discarded in monadic bindings (#3263) warnDiscardedDoBindings :: LHsExpr GhcTc -> Type -> DsM () warnDiscardedDoBindings rhs rhs_ty | Just (m_ty, elt_ty) <- tcSplitAppTy_maybe rhs_ty = do { warn_unused <- woptM Opt_WarnUnusedDoBind ; warn_wrong <- woptM Opt_WarnWrongDoBind ; when (warn_unused || warn_wrong) $ do { fam_inst_envs <- dsGetFamInstEnvs ; let norm_elt_ty = topNormaliseType fam_inst_envs elt_ty -- Warn about discarding non-() things in 'monadic' binding ; if warn_unused && not (isUnitTy norm_elt_ty) then diagnosticDs (DsUnusedDoBind rhs elt_ty) else -- Warn about discarding m a things in 'monadic' binding of the same type, -- but only if we didn't already warn due to Opt_WarnUnusedDoBind when warn_wrong $ case tcSplitAppTy_maybe norm_elt_ty of Just (elt_m_ty, _) | m_ty `eqType` topNormaliseType fam_inst_envs elt_m_ty -> diagnosticDs (DsWrongDoBind rhs elt_ty) _ -> return () } } | otherwise -- RHS does have type of form (m ty), which is weird = return () -- but at least this warning is irrelevant {- ************************************************************************ * * dsHsWrapped * * ************************************************************************ -} ------------------------------ dsHsWrapped :: HsExpr GhcTc -> DsM CoreExpr dsHsWrapped orig_hs_expr = go idHsWrapper orig_hs_expr where go wrap (HsPar _ _ (L _ hs_e) _) = go wrap hs_e go wrap1 (XExpr (WrapExpr (HsWrap wrap2 hs_e))) = go (wrap1 <.> wrap2) hs_e go wrap (HsAppType ty (L _ hs_e) _ _) = go (wrap <.> WpTyApp ty) hs_e go wrap (HsVar _ (L _ var)) = do { wrap' <- dsHsWrapper wrap ; let expr = wrap' (varToCoreExpr var) ty = exprType expr ; dflags <- getDynFlags ; warnAboutIdentities dflags var ty ; return expr } go wrap hs_e = do { wrap' <- dsHsWrapper wrap ; addTyCs FromSource (hsWrapDictBinders wrap) $ do { e <- dsExpr hs_e ; return (wrap' e) } }