{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} -- | Handling of C foreign imports/exports module GHC.HsToCore.Foreign.C ( dsCImport , dsCFExport , dsCFExportDynamic ) where import GHC.Prelude import GHC.Platform import GHC.Tc.Utils.Monad -- temp import GHC.Tc.Utils.Env import GHC.Tc.Utils.TcType import GHC.Core import GHC.Core.Unfold.Make import GHC.Core.Type import GHC.Core.TyCon import GHC.Core.Coercion import GHC.Core.Multiplicity import GHC.HsToCore.Foreign.Call import GHC.HsToCore.Foreign.Prim import GHC.HsToCore.Foreign.Utils import GHC.HsToCore.Monad import GHC.HsToCore.Types (ds_next_wrapper_num) import GHC.Hs import GHC.Types.Id import GHC.Types.Literal import GHC.Types.ForeignStubs import GHC.Types.SourceText import GHC.Types.Name import GHC.Types.RepType import GHC.Types.ForeignCall import GHC.Types.Basic import GHC.Unit.Module import GHC.Driver.Session import GHC.Driver.Config import GHC.Cmm.Expr import GHC.Cmm.Utils import GHC.Builtin.Types import GHC.Builtin.Types.Prim import GHC.Builtin.Names import GHC.Data.FastString import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Utils.Panic.Plain import GHC.Utils.Encoding import Data.Maybe import Data.List (nub) dsCFExport:: Id -- Either the exported Id, -- or the foreign-export-dynamic constructor -> Coercion -- Coercion between the Haskell type callable -- from C, and its representation type -> CLabelString -- The name to export to C land -> CCallConv -> Bool -- True => foreign export dynamic -- so invoke IO action that's hanging off -- the first argument's stable pointer -> DsM ( CHeader -- contents of Module_stub.h , CStub -- contents of Module_stub.c , String -- string describing type to pass to createAdj. , Int -- size of args to stub function ) dsCFExport fn_id co ext_name cconv isDyn = do let ty = coercionRKind co (bndrs, orig_res_ty) = tcSplitPiTys ty fe_arg_tys' = mapMaybe anonPiTyBinderType_maybe bndrs -- We must use tcSplits here, because we want to see -- the (IO t) in the corner of the type! fe_arg_tys | isDyn = tail fe_arg_tys' | otherwise = fe_arg_tys' -- Look at the result type of the exported function, orig_res_ty -- If it's IO t, return (t, True) -- If it's plain t, return (t, False) (res_ty, is_IO_res_ty) = case tcSplitIOType_maybe orig_res_ty of -- The function already returns IO t Just (_ioTyCon, res_ty) -> (res_ty, True) -- The function returns t Nothing -> (orig_res_ty, False) dflags <- getDynFlags return $ mkFExportCBits dflags ext_name (if isDyn then Nothing else Just fn_id) fe_arg_tys res_ty is_IO_res_ty cconv dsCImport :: Id -> Coercion -> CImportSpec -> CCallConv -> Safety -> Maybe Header -> DsM ([Binding], CHeader, CStub) dsCImport id co (CLabel cid) cconv _ _ = do dflags <- getDynFlags let ty = coercionLKind co platform = targetPlatform dflags fod = case tyConAppTyCon_maybe (dropForAlls ty) of Just tycon | tyConUnique tycon == funPtrTyConKey -> IsFunction _ -> IsData (resTy, foRhs) <- resultWrapper ty assert (fromJust resTy `eqType` addrPrimTy) $ -- typechecker ensures this let rhs = foRhs (Lit (LitLabel cid stdcall_info fod)) rhs' = Cast rhs co stdcall_info = fun_type_arg_stdcall_info platform cconv ty in return ([(id, rhs')], mempty, mempty) dsCImport id co (CFunction target) cconv@PrimCallConv safety _ = dsPrimCall id co (CCall (CCallSpec target cconv safety)) dsCImport id co (CFunction target) cconv safety mHeader = dsFCall id co (CCall (CCallSpec target cconv safety)) mHeader dsCImport id co CWrapper cconv _ _ = dsCFExportDynamic id co cconv {- @foreign import "wrapper"@ (previously "foreign export dynamic") lets you dress up Haskell IO actions of some fixed type behind an externally callable interface (i.e., as a C function pointer). Useful for callbacks and stuff. \begin{verbatim} type Fun = Bool -> Int -> IO Int foreign import "wrapper" f :: Fun -> IO (FunPtr Fun) -- Haskell-visible constructor, which is generated from the above: -- SUP: No check for NULL from createAdjustor anymore??? f :: Fun -> IO (FunPtr Fun) f cback = bindIO (newStablePtr cback) (\StablePtr sp# -> IO (\s1# -> case _ccall_ createAdjustor cconv sp# ``f_helper'' s1# of (# s2#, a# #) -> (# s2#, A# a# #))) foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun) -- and the helper in C: (approximately; see `mkFExportCBits` below) f_helper(StablePtr s, HsBool b, HsInt i) { Capability *cap; cap = rts_lock(); rts_inCall(&cap, rts_apply(rts_apply(deRefStablePtr(s), rts_mkBool(b)), rts_mkInt(i))); rts_unlock(cap); } \end{verbatim} -} dsCFExportDynamic :: Id -> Coercion -> CCallConv -> DsM ([Binding], CHeader, CStub) dsCFExportDynamic id co0 cconv = do mod <- getModule dflags <- getDynFlags let platform = targetPlatform dflags let fe_nm = mkFastString $ zEncodeString (moduleStableString mod ++ "$" ++ toCName id) -- Construct the label based on the passed id, don't use names -- depending on Unique. See #13807 and Note [Unique Determinism]. cback <- newSysLocalDs arg_mult arg_ty newStablePtrId <- dsLookupGlobalId newStablePtrName stable_ptr_tycon <- dsLookupTyCon stablePtrTyConName let stable_ptr_ty = mkTyConApp stable_ptr_tycon [arg_ty] export_ty = mkVisFunTyMany stable_ptr_ty arg_ty bindIOId <- dsLookupGlobalId bindIOName stbl_value <- newSysLocalDs ManyTy stable_ptr_ty (h_code, c_code, typestring, args_size) <- dsCFExport id (mkRepReflCo export_ty) fe_nm cconv True let {- The arguments to the external function which will create a little bit of (template) code on the fly for allowing the (stable pointed) Haskell closure to be entered using an external calling convention (stdcall, ccall). -} adj_args = [ mkIntLit platform (fromIntegral (ccallConvToInt cconv)) , Var stbl_value , Lit (LitLabel fe_nm mb_sz_args IsFunction) , Lit (mkLitString typestring) ] -- name of external entry point providing these services. -- (probably in the RTS.) adjustor = fsLit "createAdjustor" -- Determine the number of bytes of arguments to the stub function, -- so that we can attach the '@N' suffix to its label if it is a -- stdcall on Windows. mb_sz_args = case cconv of StdCallConv -> Just args_size _ -> Nothing ccall_adj <- dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty]) -- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback let io_app = mkLams tvs $ Lam cback $ mkApps (Var bindIOId) [ Type stable_ptr_ty , Type res_ty , mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ] , Lam stbl_value ccall_adj ] fed = (id `setInlineActivation` NeverActive, Cast io_app co0) -- Never inline the f.e.d. function, because the litlit -- might not be in scope in other modules. return ([fed], h_code, c_code) where ty = coercionLKind co0 (tvs,sans_foralls) = tcSplitForAllInvisTyVars ty ([Scaled arg_mult arg_ty], fn_res_ty) = tcSplitFunTys sans_foralls Just (io_tc, res_ty) = tcSplitIOType_maybe fn_res_ty -- Must have an IO type; hence Just -- | Foreign calls dsFCall :: Id -> Coercion -> ForeignCall -> Maybe Header -> DsM ([(Id, Expr TyVar)], CHeader, CStub) dsFCall fn_id co fcall mDeclHeader = do let (ty,ty1) = (coercionLKind co, coercionRKind co) (tv_bndrs, rho) = tcSplitForAllTyVarBinders ty (arg_tys, io_res_ty) = tcSplitFunTys rho let constQual -- provide 'const' qualifier (#22034) | (_, res_ty1) <- tcSplitFunTys ty1 , newty <- maybe res_ty1 snd (tcSplitIOType_maybe res_ty1) , Just (ptr, _) <- splitTyConApp_maybe newty , tyConName ptr `elem` [constPtrConName] = text "const" | otherwise = empty args <- newSysLocalsDs arg_tys -- no FFI representation polymorphism (val_args, arg_wrappers) <- mapAndUnzipM unboxArg (map Var args) let work_arg_ids = [v | Var v <- val_args] -- All guaranteed to be vars (ccall_result_ty, res_wrapper) <- boxResult io_res_ty ccall_uniq <- newUnique work_uniq <- newUnique (fcall', cDoc) <- case fcall of CCall (CCallSpec (StaticTarget _ cName mUnitId isFun) CApiConv safety) -> do nextWrapperNum <- ds_next_wrapper_num <$> getGblEnv wrapperName <- mkWrapperName nextWrapperNum "ghc_wrapper" (unpackFS cName) let fcall' = CCall (CCallSpec (StaticTarget NoSourceText wrapperName mUnitId True) CApiConv safety) c = includes $$ fun_proto <+> braces (cRet <> semi) includes = vcat [ text "#include \"" <> ftext h <> text "\"" | Header _ h <- nub headers ] fun_proto = constQual <+> cResType <+> pprCconv <+> ppr wrapperName <> parens argTypes cRet | isVoidRes = cCall | otherwise = text "return" <+> cCall cCall | isFun = ppr cName <> parens argVals | null arg_tys = ppr cName | otherwise = panic "dsFCall: Unexpected arguments to FFI value import" raw_res_ty = case tcSplitIOType_maybe io_res_ty of Just (_ioTyCon, res_ty) -> res_ty Nothing -> io_res_ty isVoidRes = raw_res_ty `eqType` unitTy (mHeader, cResType) | isVoidRes = (Nothing, text "void") | otherwise = toCType raw_res_ty pprCconv = ccallConvAttribute CApiConv mHeadersArgTypeList = [ (header, cType <+> char 'a' <> int n) | (t, n) <- zip arg_tys [1..] , let (header, cType) = toCType (scaledThing t) ] (mHeaders, argTypeList) = unzip mHeadersArgTypeList argTypes = if null argTypeList then text "void" else hsep $ punctuate comma argTypeList mHeaders' = mDeclHeader : mHeader : mHeaders headers = catMaybes mHeaders' argVals = hsep $ punctuate comma [ char 'a' <> int n | (_, n) <- zip arg_tys [1..] ] return (fcall', c) _ -> return (fcall, empty) dflags <- getDynFlags let -- Build the worker worker_ty = mkForAllTys tv_bndrs (mkVisFunTysMany (map idType work_arg_ids) ccall_result_ty) tvs = map binderVar tv_bndrs the_ccall_app = mkFCall ccall_uniq fcall' val_args ccall_result_ty work_rhs = mkLams tvs (mkLams work_arg_ids the_ccall_app) work_id = mkSysLocal (fsLit "$wccall") work_uniq ManyTy worker_ty -- Build the wrapper work_app = mkApps (mkVarApps (Var work_id) tvs) val_args wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers wrap_rhs = mkLams (tvs ++ args) wrapper_body wrap_rhs' = Cast wrap_rhs co simpl_opts = initSimpleOpts dflags fn_id_w_inl = fn_id `setIdUnfolding` mkInlineUnfoldingWithArity simpl_opts StableSystemSrc (length args) wrap_rhs' return ([(work_id, work_rhs), (fn_id_w_inl, wrap_rhs')], mempty, CStub cDoc [] []) toCName :: Id -> String toCName i = showSDocOneLine defaultSDocContext (pprCode (ppr (idName i))) toCType :: Type -> (Maybe Header, SDoc) toCType = f False where f voidOK t -- First, if we have (Ptr t) of (FunPtr t), then we need to -- convert t to a C type and put a * after it. If we don't -- know a type for t, then "void" is fine, though. | Just (ptr, [t']) <- splitTyConApp_maybe t , tyConName ptr `elem` [ptrTyConName, funPtrTyConName] = case f True t' of (mh, cType') -> (mh, cType' <> char '*') -- Otherwise, if we have a type constructor application, then -- see if there is a C type associated with that constructor. -- Note that we aren't looking through type synonyms or -- anything, as it may be the synonym that is annotated. | Just tycon <- tyConAppTyConPicky_maybe t , Just (CType _ mHeader (_,cType)) <- tyConCType_maybe tycon = (mHeader, ftext cType) -- If we don't know a C type for this type, then try looking -- through one layer of type synonym etc. | Just t' <- coreView t = f voidOK t' -- Handle 'UnliftedFFITypes' argument | Just tyCon <- tyConAppTyConPicky_maybe t , isPrimTyCon tyCon , Just cType <- ppPrimTyConStgType tyCon = (Nothing, text cType) -- Otherwise we don't know the C type. If we are allowing -- void then return that; otherwise something has gone wrong. | voidOK = (Nothing, text "void") | otherwise = pprPanic "toCType" (ppr t) {- * \subsection{Generating @foreign export@ stubs} * For each @foreign export@ function, a C stub function is generated. The C stub constructs the application of the exported Haskell function using the hugs/ghc rts invocation API. -} mkFExportCBits :: DynFlags -> FastString -> Maybe Id -- Just==static, Nothing==dynamic -> [Type] -> Type -> Bool -- True <=> returns an IO type -> CCallConv -> (CHeader, CStub, String, -- the argument reps Int -- total size of arguments ) mkFExportCBits dflags c_nm maybe_target arg_htys res_hty is_IO_res_ty cc = ( header_bits , CStub body [] [] , type_string, sum [ widthInBytes (typeWidth rep) | (_,_,_,rep) <- aug_arg_info] -- all the args -- NB. the calculation here isn't strictly speaking correct. -- We have a primitive Haskell type (eg. Int#, Double#), and -- we want to know the size, when passed on the C stack, of -- the associated C type (eg. HsInt, HsDouble). We don't have -- this information to hand, but we know what GHC's conventions -- are for passing around the primitive Haskell types, so we -- use that instead. I hope the two coincide --SDM ) where platform = targetPlatform dflags -- list the arguments to the C function arg_info :: [(SDoc, -- arg name SDoc, -- C type Type, -- Haskell type CmmType)] -- the CmmType arg_info = [ let stg_type = showStgType ty in (arg_cname n stg_type, stg_type, ty, typeCmmType platform (getPrimTyOf ty)) | (ty,n) <- zip arg_htys [1::Int ..] ] arg_cname n stg_ty | libffi = char '*' <> parens (stg_ty <> char '*') <> text "args" <> brackets (int (n-1)) | otherwise = char 'a' <> int n -- generate a libffi-style stub if this is a "wrapper" and libffi is enabled libffi = platformMisc_libFFI (platformMisc dflags) && isNothing maybe_target type_string -- libffi needs to know the result type too: | libffi = primTyDescChar platform res_hty : arg_type_string | otherwise = arg_type_string arg_type_string = [primTyDescChar platform ty | (_,_,ty,_) <- arg_info] -- just the real args -- add some auxiliary args; the stable ptr in the wrapper case, and -- a slot for the dummy return address in the wrapper + ccall case aug_arg_info | isNothing maybe_target = stable_ptr_arg : insertRetAddr platform cc arg_info | otherwise = arg_info stable_ptr_arg = (text "the_stableptr", text "StgStablePtr", undefined, typeCmmType platform (mkStablePtrPrimTy alphaTy)) -- stuff to do with the return type of the C function res_hty_is_unit = res_hty `eqType` unitTy -- Look through any newtypes cResType | res_hty_is_unit = text "void" | otherwise = showStgType res_hty -- when the return type is integral and word-sized or smaller, it -- must be assigned as type ffi_arg (#3516). To see what type -- libffi is expecting here, take a look in its own testsuite, e.g. -- libffi/testsuite/libffi.call/cls_align_ulonglong.c ffi_cResType | is_ffi_arg_type = text "ffi_arg" | otherwise = cResType where res_ty_key = getUnique (getName (typeTyCon res_hty)) is_ffi_arg_type = res_ty_key `notElem` [floatTyConKey, doubleTyConKey, int64TyConKey, word64TyConKey] -- Now we can cook up the prototype for the exported function. pprCconv = ccallConvAttribute cc header_bits = CHeader (text "extern" <+> fun_proto <> semi) fun_args | null aug_arg_info = text "void" | otherwise = hsep $ punctuate comma $ map (\(nm,ty,_,_) -> ty <+> nm) aug_arg_info fun_proto | libffi = text "void" <+> ftext c_nm <> parens (text "void *cif STG_UNUSED, void* resp, void** args, void* the_stableptr") | otherwise = cResType <+> pprCconv <+> ftext c_nm <> parens fun_args -- the target which will form the root of what we ask rts_inCall to run the_cfun = case maybe_target of Nothing -> text "(StgClosure*)deRefStablePtr(the_stableptr)" Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure" cap = text "cap" <> comma -- the expression we give to rts_inCall expr_to_run = foldl' appArg the_cfun arg_info -- NOT aug_arg_info where appArg acc (arg_cname, _, arg_hty, _) = text "rts_apply" <> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname)) -- various other bits for inside the fn declareResult = text "HaskellObj ret;" declareCResult | res_hty_is_unit = empty | otherwise = cResType <+> text "cret;" assignCResult | res_hty_is_unit = empty | otherwise = text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi -- an extern decl for the fn being called extern_decl = case maybe_target of Nothing -> empty Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi -- finally, the whole darn thing body = space $$ extern_decl $$ fun_proto $$ vcat [ lbrace , text "Capability *cap;" , declareResult , declareCResult , text "cap = rts_lock();" -- create the application + perform it. , text "rts_inCall" <> parens ( char '&' <> cap <> text "rts_apply" <> parens ( cap <> text "(HaskellObj)" <> (if is_IO_res_ty then text "runIO_closure" else text "runNonIO_closure") <> comma <> expr_to_run ) <+> comma <> text "&ret" ) <> semi , text "rts_checkSchedStatus" <> parens (doubleQuotes (ftext c_nm) <> comma <> text "cap") <> semi , assignCResult , text "rts_unlock(cap);" , ppUnless res_hty_is_unit $ if libffi then char '*' <> parens (ffi_cResType <> char '*') <> text "resp = cret;" else text "return cret;" , rbrace ] mkHObj :: Type -> SDoc mkHObj t = text "rts_mk" <> showFFIType t unpackHObj :: Type -> SDoc unpackHObj t = text "rts_get" <> showFFIType t showStgType :: Type -> SDoc showStgType t = text "Hs" <> showFFIType t showFFIType :: Type -> SDoc showFFIType t = ftext (occNameFS (getOccName (typeTyCon t))) typeTyCon :: Type -> TyCon typeTyCon ty | Just (tc, _) <- tcSplitTyConApp_maybe (unwrapType ty) = tc | otherwise = pprPanic "GHC.HsToCore.Foreign.C.typeTyCon" (ppr ty) insertRetAddr :: Platform -> CCallConv -> [(SDoc, SDoc, Type, CmmType)] -> [(SDoc, SDoc, Type, CmmType)] insertRetAddr platform CCallConv args = case platformArch platform of ArchX86_64 | platformOS platform == OSMinGW32 -> -- On other Windows x86_64 we insert the return address -- after the 4th argument, because this is the point -- at which we need to flush a register argument to the stack -- (See rts/Adjustor.c for details). let go :: Int -> [(SDoc, SDoc, Type, CmmType)] -> [(SDoc, SDoc, Type, CmmType)] go 4 args = ret_addr_arg platform : args go n (arg:args) = arg : go (n+1) args go _ [] = [] in go 0 args | otherwise -> -- On other x86_64 platforms we insert the return address -- after the 6th integer argument, because this is the point -- at which we need to flush a register argument to the stack -- (See rts/Adjustor.c for details). let go :: Int -> [(SDoc, SDoc, Type, CmmType)] -> [(SDoc, SDoc, Type, CmmType)] go 6 args = ret_addr_arg platform : args go n (arg@(_,_,_,rep):args) | cmmEqType_ignoring_ptrhood rep b64 = arg : go (n+1) args | otherwise = arg : go n args go _ [] = [] in go 0 args _ -> ret_addr_arg platform : args insertRetAddr _ _ args = args ret_addr_arg :: Platform -> (SDoc, SDoc, Type, CmmType) ret_addr_arg platform = (text "original_return_addr", text "void*", undefined, typeCmmType platform addrPrimTy) -- For stdcall labels, if the type was a FunPtr or newtype thereof, -- then we need to calculate the size of the arguments in order to add -- the @n suffix to the label. fun_type_arg_stdcall_info :: Platform -> CCallConv -> Type -> Maybe Int fun_type_arg_stdcall_info platform StdCallConv ty | Just (tc,[arg_ty]) <- splitTyConApp_maybe ty, tyConUnique tc == funPtrTyConKey = let (bndrs, _) = tcSplitPiTys arg_ty fe_arg_tys = mapMaybe anonPiTyBinderType_maybe bndrs in Just $ sum (map (widthInBytes . typeWidth . typeCmmType platform . getPrimTyOf) fe_arg_tys) fun_type_arg_stdcall_info _ _other_conv _ = Nothing