ghc-lib-parser-0.20190423: The GHC API, decoupled from GHC versions

BooleanFormula

Description

Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).

This module is used to represent minimal complete definitions for classes.

# Documentation

Constructors

 Var a And [LBooleanFormula a] Or [LBooleanFormula a] Parens (LBooleanFormula a)
Instances
 Source # Instance detailsDefined in BooleanFormula Methodsfmap :: (a -> b) -> BooleanFormula a -> BooleanFormula b #(<\$) :: a -> BooleanFormula b -> BooleanFormula a # Source # Instance detailsDefined in BooleanFormula Methodsfold :: Monoid m => BooleanFormula m -> m #foldMap :: Monoid m => (a -> m) -> BooleanFormula a -> m #foldr :: (a -> b -> b) -> b -> BooleanFormula a -> b #foldr' :: (a -> b -> b) -> b -> BooleanFormula a -> b #foldl :: (b -> a -> b) -> b -> BooleanFormula a -> b #foldl' :: (b -> a -> b) -> b -> BooleanFormula a -> b #foldr1 :: (a -> a -> a) -> BooleanFormula a -> a #foldl1 :: (a -> a -> a) -> BooleanFormula a -> a #toList :: BooleanFormula a -> [a] #null :: BooleanFormula a -> Bool #length :: BooleanFormula a -> Int #elem :: Eq a => a -> BooleanFormula a -> Bool #maximum :: Ord a => BooleanFormula a -> a #minimum :: Ord a => BooleanFormula a -> a #sum :: Num a => BooleanFormula a -> a #product :: Num a => BooleanFormula a -> a # Source # Instance detailsDefined in BooleanFormula Methodstraverse :: Applicative f => (a -> f b) -> BooleanFormula a -> f (BooleanFormula b) #sequenceA :: Applicative f => BooleanFormula (f a) -> f (BooleanFormula a) #mapM :: Monad m => (a -> m b) -> BooleanFormula a -> m (BooleanFormula b) #sequence :: Monad m => BooleanFormula (m a) -> m (BooleanFormula a) # Eq a => Eq (BooleanFormula a) Source # Instance detailsDefined in BooleanFormula Methods(==) :: BooleanFormula a -> BooleanFormula a -> Bool #(/=) :: BooleanFormula a -> BooleanFormula a -> Bool # Data a => Data (BooleanFormula a) Source # Instance detailsDefined in BooleanFormula Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BooleanFormula a -> c (BooleanFormula a) #gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BooleanFormula a) #dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BooleanFormula a)) #dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BooleanFormula a)) #gmapT :: (forall b. Data b => b -> b) -> BooleanFormula a -> BooleanFormula a #gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r #gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r #gmapQ :: (forall d. Data d => d -> u) -> BooleanFormula a -> [u] #gmapQi :: Int -> (forall d. Data d => d -> u) -> BooleanFormula a -> u #gmapM :: Monad m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) #gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) #gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) # Source # Instance detailsDefined in BooleanFormula Methods Binary a => Binary (BooleanFormula a) Source # Instance detailsDefined in BooleanFormula Methodsput_ :: BinHandle -> BooleanFormula a -> IO () Source #put :: BinHandle -> BooleanFormula a -> IO (Bin (BooleanFormula a)) Source #

eval :: (a -> Bool) -> BooleanFormula a -> Bool Source #