{- Author: George Karachalias Haskell expressions (as used by the pattern matching checker) and utilities. -} {-# LANGUAGE CPP #-} {-# LANGUAGE ViewPatterns #-} module PmExpr ( PmExpr(..), PmLit(..), SimpleEq, ComplexEq, toComplex, eqPmLit, truePmExpr, falsePmExpr, isTruePmExpr, isFalsePmExpr, isNotPmExprOther, lhsExprToPmExpr, hsExprToPmExpr, substComplexEq, filterComplex, pprPmExprWithParens, runPmPprM ) where #include "HsVersions.h" import GhcPrelude import BasicTypes (SourceText) import FastString (FastString, unpackFS) import HsSyn import Id import Name import NameSet import DataCon import ConLike import TcType (isStringTy) import TysWiredIn import Outputable import Util import SrcLoc import Data.Maybe (mapMaybe) import Data.List (groupBy, sortBy, nubBy) import Control.Monad.Trans.State.Lazy {- %************************************************************************ %* * Lifted Expressions %* * %************************************************************************ -} {- Note [PmExprOther in PmExpr] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since there is no plan to extend the (currently pretty naive) term oracle in the near future, instead of playing with the verbose (HsExpr Id), we lift it to PmExpr. All expressions the term oracle does not handle are wrapped by the constructor PmExprOther. Note that we do not perform substitution in PmExprOther. Because of this, we do not even print PmExprOther, since they may refer to variables that are otherwise substituted away. -} -- ---------------------------------------------------------------------------- -- ** Types -- | Lifted expressions for pattern match checking. data PmExpr = PmExprVar Name | PmExprCon ConLike [PmExpr] | PmExprLit PmLit | PmExprEq PmExpr PmExpr -- Syntactic equality | PmExprOther (HsExpr GhcTc) -- Note [PmExprOther in PmExpr] mkPmExprData :: DataCon -> [PmExpr] -> PmExpr mkPmExprData dc args = PmExprCon (RealDataCon dc) args -- | Literals (simple and overloaded ones) for pattern match checking. data PmLit = PmSLit (HsLit GhcTc) -- simple | PmOLit Bool {- is it negated? -} (HsOverLit GhcTc) -- overloaded -- | Equality between literals for pattern match checking. eqPmLit :: PmLit -> PmLit -> Bool eqPmLit (PmSLit l1) (PmSLit l2) = l1 == l2 eqPmLit (PmOLit b1 l1) (PmOLit b2 l2) = b1 == b2 && l1 == l2 -- See Note [Undecidable Equality for Overloaded Literals] eqPmLit _ _ = False {- Note [Undecidable Equality for Overloaded Literals] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equality on overloaded literals is undecidable in the general case. Consider the following example: instance Num Bool where ... fromInteger 0 = False -- C-like representation of booleans fromInteger _ = True f :: Bool -> () f 1 = () -- Clause A f 2 = () -- Clause B Clause B is redundant but to detect this, we should be able to solve the constraint: False ~ (fromInteger 2 ~ fromInteger 1) which means that we have to look through function `fromInteger`, whose implementation could be anything. This poses difficulties for: 1. The expressive power of the check. We cannot expect a reasonable implementation of pattern matching to detect that fromInteger 2 ~ fromInteger 1 is True, unless we unfold function fromInteger. This puts termination at risk and is undecidable in the general case. 2. Performance. Having an unresolved constraint False ~ (fromInteger 2 ~ fromInteger 1) lying around could become expensive really fast. Ticket #11161 illustrates how heavy use of overloaded literals can generate plenty of those constraints, effectively undermining the term oracle's performance. 3. Error nessages/Warnings. What should our message for `f` above be? A reasonable approach would be to issue: Pattern matches are (potentially) redundant: f 2 = ... under the assumption that 1 == 2 but seems to complex and confusing for the user. We choose to treat overloaded literals that look different as different. The impact of this is the following: * Redundancy checking is rather conservative, since it cannot see that clause B above is redundant. * We have instant equality check for overloaded literals (we do not rely on the term oracle which is rather expensive, both in terms of performance and memory). This significantly improves the performance of functions `covered` `uncovered` and `divergent` in deSugar/Check.hs and effectively addresses #11161. * The warnings issued are simpler. * We do not play on the safe side, strictly speaking. The assumption that 1 /= 2 makes the redundancy check more conservative but at the same time makes its dual (exhaustiveness check) unsafe. This we can live with, mainly for two reasons: 1. At the moment we do not use the results of the check during compilation where this would be a disaster (could result in runtime errors even if our function was deemed exhaustive). 2. Pattern matcing on literals can never be considered exhaustive unless we have a catch-all clause. Hence, this assumption affects mainly the appearance of the warnings and is, in practice safe. -} nubPmLit :: [PmLit] -> [PmLit] nubPmLit = nubBy eqPmLit -- | Term equalities type SimpleEq = (Id, PmExpr) -- We always use this orientation type ComplexEq = (PmExpr, PmExpr) -- | Lift a `SimpleEq` to a `ComplexEq` toComplex :: SimpleEq -> ComplexEq toComplex (x,e) = (PmExprVar (idName x), e) -- | Expression `True' truePmExpr :: PmExpr truePmExpr = mkPmExprData trueDataCon [] -- | Expression `False' falsePmExpr :: PmExpr falsePmExpr = mkPmExprData falseDataCon [] -- ---------------------------------------------------------------------------- -- ** Predicates on PmExpr -- | Check if an expression is lifted or not isNotPmExprOther :: PmExpr -> Bool isNotPmExprOther (PmExprOther _) = False isNotPmExprOther _expr = True -- | Check whether a literal is negated isNegatedPmLit :: PmLit -> Bool isNegatedPmLit (PmOLit b _) = b isNegatedPmLit _other_lit = False -- | Check whether a PmExpr is syntactically equal to term `True'. isTruePmExpr :: PmExpr -> Bool isTruePmExpr (PmExprCon c []) = c == RealDataCon trueDataCon isTruePmExpr _other_expr = False -- | Check whether a PmExpr is syntactically equal to term `False'. isFalsePmExpr :: PmExpr -> Bool isFalsePmExpr (PmExprCon c []) = c == RealDataCon falseDataCon isFalsePmExpr _other_expr = False -- | Check whether a PmExpr is syntactically e isNilPmExpr :: PmExpr -> Bool isNilPmExpr (PmExprCon c _) = c == RealDataCon nilDataCon isNilPmExpr _other_expr = False -- | Check whether a PmExpr is syntactically equal to (x == y). -- Since (==) is overloaded and can have an arbitrary implementation, we use -- the PmExprEq constructor to represent only equalities with non-overloaded -- literals where it coincides with a syntactic equality check. isPmExprEq :: PmExpr -> Maybe (PmExpr, PmExpr) isPmExprEq (PmExprEq e1 e2) = Just (e1,e2) isPmExprEq _other_expr = Nothing -- | Check if a DataCon is (:). isConsDataCon :: DataCon -> Bool isConsDataCon con = consDataCon == con -- ---------------------------------------------------------------------------- -- ** Substitution in PmExpr -- | We return a boolean along with the expression. Hence, if substitution was -- a no-op, we know that the expression still cannot progress. substPmExpr :: Name -> PmExpr -> PmExpr -> (PmExpr, Bool) substPmExpr x e1 e = case e of PmExprVar z | x == z -> (e1, True) | otherwise -> (e, False) PmExprCon c ps -> let (ps', bs) = mapAndUnzip (substPmExpr x e1) ps in (PmExprCon c ps', or bs) PmExprEq ex ey -> let (ex', bx) = substPmExpr x e1 ex (ey', by) = substPmExpr x e1 ey in (PmExprEq ex' ey', bx || by) _other_expr -> (e, False) -- The rest are terminals (We silently ignore -- Other). See Note [PmExprOther in PmExpr] -- | Substitute in a complex equality. We return (Left eq) if the substitution -- affected the equality or (Right eq) if nothing happened. substComplexEq :: Name -> PmExpr -> ComplexEq -> Either ComplexEq ComplexEq substComplexEq x e (ex, ey) | bx || by = Left (ex', ey') | otherwise = Right (ex', ey') where (ex', bx) = substPmExpr x e ex (ey', by) = substPmExpr x e ey -- ----------------------------------------------------------------------- -- ** Lift source expressions (HsExpr Id) to PmExpr lhsExprToPmExpr :: LHsExpr GhcTc -> PmExpr lhsExprToPmExpr (dL->L _ e) = hsExprToPmExpr e hsExprToPmExpr :: HsExpr GhcTc -> PmExpr hsExprToPmExpr (HsVar _ x) = PmExprVar (idName (unLoc x)) hsExprToPmExpr (HsConLikeOut _ c) = PmExprVar (conLikeName c) -- Desugar literal strings as a list of characters. For other literal values, -- keep it as it is. -- See `translatePat` in Check.hs (the `NPat` and `LitPat` case), and -- Note [Translate Overloaded Literal for Exhaustiveness Checking]. hsExprToPmExpr (HsOverLit _ olit) | OverLit (OverLitTc False ty) (HsIsString src s) _ <- olit, isStringTy ty = stringExprToList src s | otherwise = PmExprLit (PmOLit False olit) hsExprToPmExpr (HsLit _ lit) | HsString src s <- lit = stringExprToList src s | otherwise = PmExprLit (PmSLit lit) hsExprToPmExpr e@(NegApp _ (dL->L _ neg_expr) _) | PmExprLit (PmOLit False olit) <- hsExprToPmExpr neg_expr -- NB: DON'T simply @(NegApp (NegApp olit))@ as @x@. when extension -- @RebindableSyntax@ enabled, (-(-x)) may not equals to x. = PmExprLit (PmOLit True olit) | otherwise = PmExprOther e hsExprToPmExpr (HsPar _ (dL->L _ e)) = hsExprToPmExpr e hsExprToPmExpr e@(ExplicitTuple _ ps boxity) | all tupArgPresent ps = mkPmExprData tuple_con tuple_args | otherwise = PmExprOther e where tuple_con = tupleDataCon boxity (length ps) tuple_args = [ lhsExprToPmExpr e | (dL->L _ (Present _ e)) <- ps ] hsExprToPmExpr e@(ExplicitList _ mb_ol elems) | Nothing <- mb_ol = foldr cons nil (map lhsExprToPmExpr elems) | otherwise = PmExprOther e {- overloaded list: No PmExprApp -} where cons x xs = mkPmExprData consDataCon [x,xs] nil = mkPmExprData nilDataCon [] -- we want this but we would have to make everything monadic :/ -- ./compiler/deSugar/DsMonad.hs:397:dsLookupDataCon :: Name -> DsM DataCon -- -- hsExprToPmExpr (RecordCon c _ binds) = do -- con <- dsLookupDataCon (unLoc c) -- args <- mapM lhsExprToPmExpr (hsRecFieldsArgs binds) -- return (PmExprCon con args) hsExprToPmExpr e@(RecordCon {}) = PmExprOther e hsExprToPmExpr (HsTick _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsBinTick _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsTickPragma _ _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsSCC _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsCoreAnn _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (ExprWithTySig _ e _) = lhsExprToPmExpr e hsExprToPmExpr (HsWrap _ _ e) = hsExprToPmExpr e hsExprToPmExpr e = PmExprOther e -- the rest are not handled by the oracle stringExprToList :: SourceText -> FastString -> PmExpr stringExprToList src s = foldr cons nil (map charToPmExpr (unpackFS s)) where cons x xs = mkPmExprData consDataCon [x,xs] nil = mkPmExprData nilDataCon [] charToPmExpr c = PmExprLit (PmSLit (HsChar src c)) {- %************************************************************************ %* * Pretty printing %* * %************************************************************************ -} {- 1. Literals ~~~~~~~~~~~~~~ Starting with a function definition like: f :: Int -> Bool f 5 = True f 6 = True The uncovered set looks like: { var |> False == (var == 5), False == (var == 6) } Yet, we would like to print this nicely as follows: x , where x not one of {5,6} Function `filterComplex' takes the set of residual constraints and packs together the negative constraints that refer to the same variable so we can do just this. Since these variables will be shown to the programmer, we also give them better names (t1, t2, ..), hence the SDoc in PmNegLitCt. 2. Residual Constraints ~~~~~~~~~~~~~~~~~~~~~~~ Unhandled constraints that refer to HsExpr are typically ignored by the solver (it does not even substitute in HsExpr so they are even printed as wildcards). Additionally, the oracle returns a substitution if it succeeds so we apply this substitution to the vectors before printing them out (see function `pprOne' in Check.hs) to be more precice. -} -- ----------------------------------------------------------------------------- -- ** Transform residual constraints in appropriate form for pretty printing type PmNegLitCt = (Name, (SDoc, [PmLit])) filterComplex :: [ComplexEq] -> [PmNegLitCt] filterComplex = zipWith rename nameList . map mkGroup . groupBy name . sortBy order . mapMaybe isNegLitCs where order x y = compare (fst x) (fst y) name x y = fst x == fst y mkGroup l = (fst (head l), nubPmLit $ map snd l) rename new (old, lits) = (old, (new, lits)) isNegLitCs (e1,e2) | isFalsePmExpr e1, Just (x,y) <- isPmExprEq e2 = isNegLitCs' x y | isFalsePmExpr e2, Just (x,y) <- isPmExprEq e1 = isNegLitCs' x y | otherwise = Nothing isNegLitCs' (PmExprVar x) (PmExprLit l) = Just (x, l) isNegLitCs' (PmExprLit l) (PmExprVar x) = Just (x, l) isNegLitCs' _ _ = Nothing -- Try nice names p,q,r,s,t before using the (ugly) t_i nameList :: [SDoc] nameList = map text ["p","q","r","s","t"] ++ [ text ('t':show u) | u <- [(0 :: Int)..] ] -- ---------------------------------------------------------------------------- runPmPprM :: PmPprM a -> [PmNegLitCt] -> (a, [(SDoc,[PmLit])]) runPmPprM m lit_env = (result, mapMaybe is_used lit_env) where (result, (_lit_env, used)) = runState m (lit_env, emptyNameSet) is_used (x,(name, lits)) | elemNameSet x used = Just (name, lits) | otherwise = Nothing type PmPprM a = State ([PmNegLitCt], NameSet) a -- (the first part of the state is read only. make it a reader?) addUsed :: Name -> PmPprM () addUsed x = modify (\(negated, used) -> (negated, extendNameSet used x)) checkNegation :: Name -> PmPprM (Maybe SDoc) -- the clean name if it is negated checkNegation x = do negated <- gets fst return $ case lookup x negated of Just (new, _) -> Just new Nothing -> Nothing -- | Pretty print a pmexpr, but remember to prettify the names of the variables -- that refer to neg-literals. The ones that cannot be shown are printed as -- underscores. pprPmExpr :: PmExpr -> PmPprM SDoc pprPmExpr (PmExprVar x) = do mb_name <- checkNegation x case mb_name of Just name -> addUsed x >> return name Nothing -> return underscore pprPmExpr (PmExprCon con args) = pprPmExprCon con args pprPmExpr (PmExprLit l) = return (ppr l) pprPmExpr (PmExprEq _ _) = return underscore -- don't show pprPmExpr (PmExprOther _) = return underscore -- don't show needsParens :: PmExpr -> Bool needsParens (PmExprVar {}) = False needsParens (PmExprLit l) = isNegatedPmLit l needsParens (PmExprEq {}) = False -- will become a wildcard needsParens (PmExprOther {}) = False -- will become a wildcard needsParens (PmExprCon (RealDataCon c) es) | isTupleDataCon c || isConsDataCon c || null es = False | otherwise = True needsParens (PmExprCon (PatSynCon _) es) = not (null es) pprPmExprWithParens :: PmExpr -> PmPprM SDoc pprPmExprWithParens expr | needsParens expr = parens <$> pprPmExpr expr | otherwise = pprPmExpr expr pprPmExprCon :: ConLike -> [PmExpr] -> PmPprM SDoc pprPmExprCon (RealDataCon con) args | isTupleDataCon con = mkTuple <$> mapM pprPmExpr args | isConsDataCon con = pretty_list where mkTuple :: [SDoc] -> SDoc mkTuple = parens . fsep . punctuate comma -- lazily, to be used in the list case only pretty_list :: PmPprM SDoc pretty_list = case isNilPmExpr (last list) of True -> brackets . fsep . punctuate comma <$> mapM pprPmExpr (init list) False -> parens . hcat . punctuate colon <$> mapM pprPmExpr list list = list_elements args list_elements [x,y] | PmExprCon c es <- y, RealDataCon nilDataCon == c = ASSERT(null es) [x,y] | PmExprCon c es <- y, RealDataCon consDataCon == c = x : list_elements es | otherwise = [x,y] list_elements list = pprPanic "list_elements:" (ppr list) pprPmExprCon cl args | conLikeIsInfix cl = case args of [x, y] -> do x' <- pprPmExprWithParens x y' <- pprPmExprWithParens y return (x' <+> ppr cl <+> y') -- can it be infix but have more than two arguments? list -> pprPanic "pprPmExprCon:" (ppr list) | null args = return (ppr cl) | otherwise = do args' <- mapM pprPmExprWithParens args return (fsep (ppr cl : args')) instance Outputable PmLit where ppr (PmSLit l) = pmPprHsLit l ppr (PmOLit neg l) = (if neg then char '-' else empty) <> ppr l -- not really useful for pmexprs per se instance Outputable PmExpr where ppr e = fst $ runPmPprM (pprPmExpr e) []