{- Author: George Karachalias Haskell expressions (as used by the pattern matching checker) and utilities. -} {-# LANGUAGE CPP #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module PmExpr ( PmExpr(..), PmLit(..), PmAltCon(..), TmVarCt(..), eqPmLit, isNotPmExprOther, lhsExprToPmExpr, hsExprToPmExpr ) where #include "HsVersions.h" import GhcPrelude import BasicTypes (SourceText) import FastString (FastString, unpackFS) import HsSyn import Id import Name import DataCon import ConLike import TcEvidence (isErasableHsWrapper) import TcType (isStringTy) import TysWiredIn import Outputable import SrcLoc {- %************************************************************************ %* * Lifted Expressions %* * %************************************************************************ -} {- Note [PmExprOther in PmExpr] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since there is no plan to extend the (currently pretty naive) term oracle in the near future, instead of playing with the verbose (HsExpr Id), we lift it to PmExpr. All expressions the term oracle does not handle are wrapped by the constructor PmExprOther. Note that we do not perform substitution in PmExprOther. Because of this, we do not even print PmExprOther, since they may refer to variables that are otherwise substituted away. -} -- ---------------------------------------------------------------------------- -- ** Types -- | Lifted expressions for pattern match checking. data PmExpr = PmExprVar Name | PmExprCon ConLike [PmExpr] | PmExprLit PmLit | PmExprOther (HsExpr GhcTc) -- Note [PmExprOther in PmExpr] mkPmExprData :: DataCon -> [PmExpr] -> PmExpr mkPmExprData dc args = PmExprCon (RealDataCon dc) args -- | Literals (simple and overloaded ones) for pattern match checking. data PmLit = PmSLit (HsLit GhcTc) -- simple | PmOLit Bool {- is it negated? -} (HsOverLit GhcTc) -- overloaded -- | Equality between literals for pattern match checking. eqPmLit :: PmLit -> PmLit -> Bool eqPmLit (PmSLit l1) (PmSLit l2) = l1 == l2 eqPmLit (PmOLit b1 l1) (PmOLit b2 l2) = b1 == b2 && l1 == l2 -- See Note [Undecidable Equality for Overloaded Literals] eqPmLit _ _ = False -- | Represents a match against a literal. We mostly use it to to encode shapes -- for a variable that immediately lead to a refutation. -- -- See Note [Refutable shapes] in TmOracle. Really similar to 'CoreSyn.AltCon'. newtype PmAltCon = PmAltLit PmLit deriving Outputable instance Eq PmAltCon where PmAltLit l1 == PmAltLit l2 = eqPmLit l1 l2 {- Note [Undecidable Equality for Overloaded Literals] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equality on overloaded literals is undecidable in the general case. Consider the following example: instance Num Bool where ... fromInteger 0 = False -- C-like representation of booleans fromInteger _ = True f :: Bool -> () f 1 = () -- Clause A f 2 = () -- Clause B Clause B is redundant but to detect this, we should be able to solve the constraint: False ~ (fromInteger 2 ~ fromInteger 1) which means that we have to look through function `fromInteger`, whose implementation could be anything. This poses difficulties for: 1. The expressive power of the check. We cannot expect a reasonable implementation of pattern matching to detect that fromInteger 2 ~ fromInteger 1 is True, unless we unfold function fromInteger. This puts termination at risk and is undecidable in the general case. 2. Performance. Having an unresolved constraint False ~ (fromInteger 2 ~ fromInteger 1) lying around could become expensive really fast. Ticket #11161 illustrates how heavy use of overloaded literals can generate plenty of those constraints, effectively undermining the term oracle's performance. 3. Error nessages/Warnings. What should our message for `f` above be? A reasonable approach would be to issue: Pattern matches are (potentially) redundant: f 2 = ... under the assumption that 1 == 2 but seems to complex and confusing for the user. We choose to treat overloaded literals that look different as different. The impact of this is the following: * Redundancy checking is rather conservative, since it cannot see that clause B above is redundant. * We have instant equality check for overloaded literals (we do not rely on the term oracle which is rather expensive, both in terms of performance and memory). This significantly improves the performance of functions `covered` `uncovered` and `divergent` in deSugar/Check.hs and effectively addresses #11161. * The warnings issued are simpler. * We do not play on the safe side, strictly speaking. The assumption that 1 /= 2 makes the redundancy check more conservative but at the same time makes its dual (exhaustiveness check) unsafe. This we can live with, mainly for two reasons: 1. At the moment we do not use the results of the check during compilation where this would be a disaster (could result in runtime errors even if our function was deemed exhaustive). 2. Pattern matcing on literals can never be considered exhaustive unless we have a catch-all clause. Hence, this assumption affects mainly the appearance of the warnings and is, in practice safe. -} -- | A term constraint. @TVC x e@ encodes that @x@ is equal to @e@. data TmVarCt = TVC !Id !PmExpr instance Outputable TmVarCt where ppr (TVC x e) = ppr x <+> char '~' <+> ppr e -- ---------------------------------------------------------------------------- -- ** Predicates on PmExpr -- | Check if an expression is lifted or not isNotPmExprOther :: PmExpr -> Bool isNotPmExprOther (PmExprOther _) = False isNotPmExprOther _expr = True -- ----------------------------------------------------------------------- -- ** Lift source expressions (HsExpr Id) to PmExpr lhsExprToPmExpr :: LHsExpr GhcTc -> PmExpr lhsExprToPmExpr (dL->L _ e) = hsExprToPmExpr e hsExprToPmExpr :: HsExpr GhcTc -> PmExpr -- Translating HsVar to flexible meta variables in the unification problem is -- morally wrong, but it does the right thing for now. -- In contrast to the situation in pattern matches, HsVars in expression syntax -- are object language variables, most similar to rigid variables with an -- unknown solution. The correct way would be to handle them through PmExprOther -- and identify syntactically equal occurrences by the same rigid meta variable, -- but we can't compare the wrapped HsExpr for equality. Hence we are stuck with -- this hack. hsExprToPmExpr (HsVar _ x) = PmExprVar (idName (unLoc x)) -- Translating HsConLikeOut to a flexible meta variable is misleading. -- For an example why, consider `consAreRigid` in -- `testsuite/tests/pmcheck/should_compile/PmExprVars.hs`. -- hsExprToPmExpr (HsConLikeOut _ c) = PmExprVar (conLikeName c) -- Desugar literal strings as a list of characters. For other literal values, -- keep it as it is. -- See `translatePat` in Check.hs (the `NPat` and `LitPat` case), and -- Note [Translate Overloaded Literal for Exhaustiveness Checking]. hsExprToPmExpr (HsOverLit _ olit) | OverLit (OverLitTc False ty) (HsIsString src s) _ <- olit, isStringTy ty = stringExprToList src s | otherwise = PmExprLit (PmOLit False olit) hsExprToPmExpr (HsLit _ lit) | HsString src s <- lit = stringExprToList src s | otherwise = PmExprLit (PmSLit lit) hsExprToPmExpr e@(NegApp _ (dL->L _ neg_expr) _) | PmExprLit (PmOLit False olit) <- hsExprToPmExpr neg_expr -- NB: DON'T simply @(NegApp (NegApp olit))@ as @x@. when extension -- @RebindableSyntax@ enabled, (-(-x)) may not equals to x. = PmExprLit (PmOLit True olit) | otherwise = PmExprOther e hsExprToPmExpr (HsPar _ (dL->L _ e)) = hsExprToPmExpr e hsExprToPmExpr e@(ExplicitTuple _ ps boxity) | all tupArgPresent ps = mkPmExprData tuple_con tuple_args | otherwise = PmExprOther e where tuple_con = tupleDataCon boxity (length ps) tuple_args = [ lhsExprToPmExpr e | (dL->L _ (Present _ e)) <- ps ] hsExprToPmExpr e@(ExplicitList _ mb_ol elems) | Nothing <- mb_ol = foldr cons nil (map lhsExprToPmExpr elems) | otherwise = PmExprOther e {- overloaded list: No PmExprApp -} where cons x xs = mkPmExprData consDataCon [x,xs] nil = mkPmExprData nilDataCon [] -- we want this but we would have to make everything monadic :/ -- ./compiler/deSugar/DsMonad.hs:397:dsLookupDataCon :: Name -> DsM DataCon -- -- hsExprToPmExpr (RecordCon c _ binds) = do -- con <- dsLookupDataCon (unLoc c) -- args <- mapM lhsExprToPmExpr (hsRecFieldsArgs binds) -- return (PmExprCon con args) hsExprToPmExpr e@(RecordCon {}) = PmExprOther e hsExprToPmExpr (HsTick _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsBinTick _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsTickPragma _ _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsSCC _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (HsCoreAnn _ _ _ e) = lhsExprToPmExpr e hsExprToPmExpr (ExprWithTySig _ e _) = lhsExprToPmExpr e hsExprToPmExpr (HsWrap _ w e) -- A dictionary application spoils e and we have no choice but to return an -- PmExprOther. Same thing for other stuff that can't erased in the -- compilation process. Otherwise this bites in -- teststuite/tests/pmcheck/should_compile/PmExprVars.hs. | isErasableHsWrapper w = hsExprToPmExpr e hsExprToPmExpr e = PmExprOther e -- the rest are not handled by the oracle stringExprToList :: SourceText -> FastString -> PmExpr stringExprToList src s = foldr cons nil (map charToPmExpr (unpackFS s)) where cons x xs = mkPmExprData consDataCon [x,xs] nil = mkPmExprData nilDataCon [] charToPmExpr c = PmExprLit (PmSLit (HsChar src c)) {- %************************************************************************ %* * Pretty printing %* * %************************************************************************ -} instance Outputable PmLit where ppr (PmSLit l) = pmPprHsLit l ppr (PmOLit neg l) = (if neg then char '-' else empty) <> ppr l instance Outputable PmExpr where ppr = go (0 :: Int) where go _ (PmExprLit l) = ppr l go _ (PmExprVar v) = ppr v go _ (PmExprOther e) = angleBrackets (ppr e) go _ (PmExprCon (RealDataCon dc) args) | isTupleDataCon dc = parens $ comma_sep $ map ppr args | dc == consDataCon = brackets $ comma_sep $ map ppr (list_cells args) where comma_sep = fsep . punctuate comma list_cells (hd:tl) = hd : list_cells tl list_cells _ = [] go prec (PmExprCon cl args) = cparen (null args || prec > 0) (hcat (ppr cl:map (go 1) args))