{-# LANGUAGE CPP #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilyDependencies #-} {-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow] -- in module Language.Haskell.Syntax.Extension {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.* -- | Abstract Haskell syntax for expressions. module Language.Haskell.Syntax.Expr where #include "GhclibHsVersions.h" -- friends: import GHC.Prelude import Language.Haskell.Syntax.Decls import Language.Haskell.Syntax.Pat import Language.Haskell.Syntax.Lit import Language.Haskell.Syntax.Extension import Language.Haskell.Syntax.Type import Language.Haskell.Syntax.Binds -- others: import GHC.Tc.Types.Evidence import GHC.Core.DataCon (FieldLabelString) import GHC.Types.Name import GHC.Types.Basic import GHC.Types.Fixity import GHC.Types.SourceText import GHC.Types.SrcLoc import GHC.Types.Tickish import GHC.Core.ConLike import GHC.Unit.Module (ModuleName) import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Data.FastString import GHC.Core.Type -- libraries: import Data.Data hiding (Fixity(..)) import qualified Data.Data as Data (Fixity(..)) import Data.List.NonEmpty ( NonEmpty ) import GHCi.RemoteTypes ( ForeignRef ) import qualified Language.Haskell.TH as TH (Q) {- Note [RecordDotSyntax field updates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The extensions @OverloadedRecordDot@ @OverloadedRecordUpdate@ together enable record updates like @a{foo.bar.baz = 1}@. Introducing this syntax slightly complicates parsing. This note explains how it's done. In the event a record is being constructed or updated, it's this production that's in play: @ aexp1 -> aexp1 '{' fbinds '}' { ... mkHsRecordPV ... $1 (snd $3) } @ @fbinds@ is a list of field bindings. @mkHsRecordPV@ is a function of the @DisambECP b@ typeclass, see Note [Ambiguous syntactic categories]. The "normal" rules for an @fbind@ are: @ fbind : qvar '=' texp | qvar @ These rules compute values of @LHsRecField GhcPs (Located b)@. They apply in the context of record construction, record updates, record patterns and record expressions. That is, @b@ ranges over @HsExpr GhcPs@, @HsPat GhcPs@ and @HsCmd GhcPs@. When @OverloadedRecordDot@ and @OverloadedRecordUpdate@ are both enabled, two additional @fbind@ rules are admitted: @ | field TIGHT_INFIX_PROJ fieldToUpdate '=' texp | field TIGHT_INFIX_PROJ fieldToUpdate @ These rules only make sense when parsing record update expressions (that is, patterns and commands cannot be parsed by these rules and neither record constructions). The results of these new rules cannot be represented by @LHsRecField GhcPs (LHsExpr GhcPs)@ values as the type is defined today. We minimize modifying existing code by having these new rules calculate @LHsRecProj GhcPs (Located b)@ ("record projection") values instead: @ newtype FieldLabelStrings = FieldLabelStrings [Located FieldLabelString] type RecProj arg = HsRecField' FieldLabelStrings arg type LHsRecProj p arg = Located (RecProj arg) @ The @fbind@ rule is then given the type @fbind :: { forall b. DisambECP b => PV (Fbind b) }@ accomodating both alternatives: @ type Fbind b = Either (LHsRecField GhcPs (Located b)) ( LHsRecProj GhcPs (Located b)) @ In @data HsExpr p@, the @RecordUpd@ constuctor indicates regular updates vs. projection updates by means of the @rupd_flds@ member type, an @Either@ instance: @ | RecordUpd { rupd_ext :: XRecordUpd p , rupd_expr :: LHsExpr p , rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p] } @ Here, @ type RecUpdProj p = RecProj (LHsExpr p) type LHsRecUpdProj p = Located (RecUpdProj p) @ and @Left@ values indicating regular record update, @Right@ values updates desugared to @setField@s. If @OverloadedRecordUpdate@ is enabled, any updates parsed as @LHsRecField GhcPs@ values are converted to @LHsRecUpdProj GhcPs@ values (see function @mkRdrRecordUpd@ in 'GHC.Parser.PostProcess'). -} -- | RecordDotSyntax field updates newtype FieldLabelStrings p = FieldLabelStrings [Located (HsFieldLabel p)] instance Outputable (FieldLabelStrings p) where ppr (FieldLabelStrings flds) = hcat (punctuate dot (map (ppr . unLoc) flds)) instance OutputableBndr (FieldLabelStrings p) where pprInfixOcc = pprFieldLabelStrings pprPrefixOcc = pprFieldLabelStrings pprFieldLabelStrings :: FieldLabelStrings p -> SDoc pprFieldLabelStrings (FieldLabelStrings flds) = hcat (punctuate dot (map (ppr . unLoc) flds)) instance Outputable (HsFieldLabel p) where ppr (HsFieldLabel _ s) = ppr s ppr XHsFieldLabel{} = text "XHsFieldLabel" -- Field projection updates (e.g. @foo.bar.baz = 1@). See Note -- [RecordDotSyntax field updates]. type RecProj p arg = HsRecField' (FieldLabelStrings p) arg -- The phantom type parameter @p@ is for symmetry with @LHsRecField p -- arg@ in the definition of @data Fbind@ (see GHC.Parser.Process). type LHsRecProj p arg = XRec p (RecProj p arg) -- These two synonyms are used in the definition of syntax @RecordUpd@ -- below. type RecUpdProj p = RecProj p (LHsExpr p) type LHsRecUpdProj p = XRec p (RecUpdProj p) {- ************************************************************************ * * \subsection{Expressions proper} * * ************************************************************************ -} -- * Expressions proper -- | Located Haskell Expression type LHsExpr p = XRec p (HsExpr p) -- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when -- in a list -- For details on above see note [exact print annotations] in GHC.Parser.Annotation ------------------------- {- Note [NoSyntaxExpr] ~~~~~~~~~~~~~~~~~~~~~~ Syntax expressions can be missing (NoSyntaxExprRn or NoSyntaxExprTc) for several reasons: 1. As described in Note [Rebindable if] 2. In order to suppress "not in scope: xyz" messages when a bit of rebindable syntax does not apply. For example, when using an irrefutable pattern in a BindStmt, we don't need a `fail` operator. 3. Rebindable syntax might just not make sense. For example, a BodyStmt contains the syntax for `guard`, but that's used only in monad comprehensions. If we had more of a whiz-bang type system, we might be able to rule this case out statically. -} -- | Syntax Expression -- -- SyntaxExpr is represents the function used in interpreting rebindable -- syntax. In the parser, we have no information to supply; in the renamer, -- we have the name of the function (but see -- Note [Monad fail : Rebindable syntax, overloaded strings] for a wrinkle) -- and in the type-checker we have a more elaborate structure 'SyntaxExprTc'. -- -- In some contexts, rebindable syntax is not implemented, and so we have -- constructors to represent that possibility in both the renamer and -- typechecker instantiations. -- -- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for -- @(>>=)@, and then instantiated by the type checker with its type args -- etc type family SyntaxExpr p -- | Command Syntax Table (for Arrow syntax) type CmdSyntaxTable p = [(Name, HsExpr p)] -- See Note [CmdSyntaxTable] {- Note [CmdSyntaxTable] ~~~~~~~~~~~~~~~~~~~~~ Used only for arrow-syntax stuff (HsCmdTop), the CmdSyntaxTable keeps track of the methods needed for a Cmd. * Before the renamer, this list is an empty list * After the renamer, it takes the form @[(std_name, HsVar actual_name)]@ For example, for the 'arr' method * normal case: (GHC.Control.Arrow.arr, HsVar GHC.Control.Arrow.arr) * with rebindable syntax: (GHC.Control.Arrow.arr, arr_22) where @arr_22@ is whatever 'arr' is in scope * After the type checker, it takes the form [(std_name, )] where is the evidence for the method. This evidence is instantiated with the class, but is still polymorphic in everything else. For example, in the case of 'arr', the evidence has type forall b c. (b->c) -> a b c where 'a' is the ambient type of the arrow. This polymorphism is important because the desugarer uses the same evidence at multiple different types. This is Less Cool than what we normally do for rebindable syntax, which is to make fully-instantiated piece of evidence at every use site. The Cmd way is Less Cool because * The renamer has to predict which methods are needed. See the tedious GHC.Rename.Expr.methodNamesCmd. * The desugarer has to know the polymorphic type of the instantiated method. This is checked by Inst.tcSyntaxName, but is less flexible than the rest of rebindable syntax, where the type is less pre-ordained. (And this flexibility is useful; for example we can typecheck do-notation with (>>=) :: m1 a -> (a -> m2 b) -> m2 b.) -} -- | A Haskell expression. data HsExpr p = HsVar (XVar p) (LIdP p) -- ^ Variable -- See Note [Located RdrNames] | HsUnboundVar (XUnboundVar p) OccName -- ^ Unbound variable; also used for "holes" -- (_ or _x). -- Turned from HsVar to HsUnboundVar by the -- renamer, when it finds an out-of-scope -- variable or hole. -- The (XUnboundVar p) field becomes an HoleExprRef -- after typechecking; this is where the -- erroring expression will be written after -- solving. See Note [Holes] in GHC.Tc.Types.Constraint. | HsConLikeOut (XConLikeOut p) ConLike -- ^ After typechecker only; must be different -- HsVar for pretty printing | HsRecFld (XRecFld p) (AmbiguousFieldOcc p) -- ^ Variable pointing to record selector -- The parser produces HsVars -- The renamer renames record-field selectors to HsRecFld -- The typechecker preserves HsRecFld | HsOverLabel (XOverLabel p) FastString -- ^ Overloaded label (Note [Overloaded labels] in GHC.OverloadedLabels) | HsIPVar (XIPVar p) HsIPName -- ^ Implicit parameter (not in use after typechecking) | HsOverLit (XOverLitE p) (HsOverLit p) -- ^ Overloaded literals | HsLit (XLitE p) (HsLit p) -- ^ Simple (non-overloaded) literals | HsLam (XLam p) (MatchGroup p (LHsExpr p)) -- ^ Lambda abstraction. Currently always a single match -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam', -- 'GHC.Parser.Annotation.AnnRarrow', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsLamCase (XLamCase p) (MatchGroup p (LHsExpr p)) -- ^ Lambda-case -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam', -- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen', -- 'GHC.Parser.Annotation.AnnClose' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsApp (XApp p) (LHsExpr p) (LHsExpr p) -- ^ Application | HsAppType (XAppTypeE p) -- After typechecking: the type argument (LHsExpr p) (LHsWcType (NoGhcTc p)) -- ^ Visible type application -- -- Explicit type argument; e.g f @Int x y -- NB: Has wildcards, but no implicit quantification -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnAt', -- | Operator applications: -- NB Bracketed ops such as (+) come out as Vars. -- NB Sadly, we need an expr for the operator in an OpApp/Section since -- the renamer may turn a HsVar into HsRecFld or HsUnboundVar | OpApp (XOpApp p) (LHsExpr p) -- left operand (LHsExpr p) -- operator (LHsExpr p) -- right operand -- | Negation operator. Contains the negated expression and the name -- of 'negate' -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnMinus' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | NegApp (XNegApp p) (LHsExpr p) (SyntaxExpr p) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@, -- 'GHC.Parser.Annotation.AnnClose' @')'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsPar (XPar p) (LHsExpr p) -- ^ Parenthesised expr; see Note [Parens in HsSyn] | SectionL (XSectionL p) (LHsExpr p) -- operand; see Note [Sections in HsSyn] (LHsExpr p) -- operator | SectionR (XSectionR p) (LHsExpr p) -- operator; see Note [Sections in HsSyn] (LHsExpr p) -- operand -- | Used for explicit tuples and sections thereof -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen', -- 'GHC.Parser.Annotation.AnnClose' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation -- Note [ExplicitTuple] | ExplicitTuple (XExplicitTuple p) [HsTupArg p] Boxity -- | Used for unboxed sum types -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@, -- 'GHC.Parser.Annotation.AnnVbar', 'GHC.Parser.Annotation.AnnClose' @'#)'@, -- -- There will be multiple 'GHC.Parser.Annotation.AnnVbar', (1 - alternative) before -- the expression, (arity - alternative) after it | ExplicitSum (XExplicitSum p) ConTag -- Alternative (one-based) Arity -- Sum arity (LHsExpr p) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase', -- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnClose' @'}'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCase (XCase p) (LHsExpr p) (MatchGroup p (LHsExpr p)) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf', -- 'GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnElse', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsIf (XIf p) -- GhcPs: this is a Bool; False <=> do not use -- rebindable syntax (LHsExpr p) -- predicate (LHsExpr p) -- then part (LHsExpr p) -- else part -- | Multi-way if -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf' -- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsMultiIf (XMultiIf p) [LGRHS p (LHsExpr p)] -- | let(rec) -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet', -- 'GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsLet (XLet p) (HsLocalBinds p) (LHsExpr p) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo', -- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnVbar', -- 'GHC.Parser.Annotation.AnnClose' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsDo (XDo p) -- Type of the whole expression (HsStmtContext (HsDoRn p)) -- The parameterisation of the above is unimportant -- because in this context we never use -- the PatGuard or ParStmt variant (XRec p [ExprLStmt p]) -- "do":one or more stmts -- | Syntactic list: [a,b,c,...] -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@, -- 'GHC.Parser.Annotation.AnnClose' @']'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation -- See Note [Empty lists] | ExplicitList (XExplicitList p) -- Gives type of components of list [LHsExpr p] -- | Record construction -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | RecordCon { rcon_ext :: XRecordCon p , rcon_con :: XRec p (ConLikeP p) -- The constructor , rcon_flds :: HsRecordBinds p } -- The fields -- | Record update -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@ -- 'GHC.Parser.Annotation.AnnComma, 'GHC.Parser.Annotation.AnnDot', -- 'GHC.Parser.Annotation.AnnClose' @'}'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | RecordUpd { rupd_ext :: XRecordUpd p , rupd_expr :: LHsExpr p , rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p] } -- For a type family, the arg types are of the *instance* tycon, -- not the family tycon -- | Record field selection e.g @z.x@. -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDot' -- -- This case only arises when the OverloadedRecordDot langauge -- extension is enabled. | HsGetField { gf_ext :: XGetField p , gf_expr :: LHsExpr p , gf_field :: Located (HsFieldLabel p) } -- | Record field selector. e.g. @(.x)@ or @(.x.y)@ -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenP' -- 'GHC.Parser.Annotation.AnnDot', 'GHC.Parser.Annotation.AnnCloseP' -- -- This case only arises when the OverloadedRecordDot langauge -- extensions is enabled. | HsProjection { proj_ext :: XProjection p , proj_flds :: NonEmpty (Located (HsFieldLabel p)) } -- | Expression with an explicit type signature. @e :: type@ -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | ExprWithTySig (XExprWithTySig p) (LHsExpr p) (LHsSigWcType (NoGhcTc p)) -- | Arithmetic sequence -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@, -- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnDotdot', -- 'GHC.Parser.Annotation.AnnClose' @']'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | ArithSeq (XArithSeq p) (Maybe (SyntaxExpr p)) -- For OverloadedLists, the fromList witness (ArithSeqInfo p) -- For details on above see note [exact print annotations] in GHC.Parser.Annotation ----------------------------------------------------------- -- MetaHaskell Extensions -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen', -- 'GHC.Parser.Annotation.AnnOpenE','GHC.Parser.Annotation.AnnOpenEQ', -- 'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnCloseQ' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsBracket (XBracket p) (HsBracket p) -- See Note [Pending Splices] | HsRnBracketOut (XRnBracketOut p) (HsBracket (HsBracketRn p)) -- Output of the renamer is the *original* renamed -- expression, plus [PendingRnSplice' p] -- _renamed_ splices to be type checked | HsTcBracketOut (XTcBracketOut p) (Maybe QuoteWrapper) -- The wrapper to apply type and dictionary argument -- to the quote. (HsBracket (HsBracketRn p)) -- Output of the type checker is the *original* -- renamed expression, plus [PendingTcSplice' p] -- _typechecked_ splices to be -- pasted back in by the desugarer -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen', -- 'GHC.Parser.Annotation.AnnClose' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsSpliceE (XSpliceE p) (HsSplice p) ----------------------------------------------------------- -- Arrow notation extension -- | @proc@ notation for Arrows -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnProc', -- 'GHC.Parser.Annotation.AnnRarrow' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsProc (XProc p) (LPat p) -- arrow abstraction, proc (LHsCmdTop p) -- body of the abstraction -- always has an empty stack --------------------------------------- -- static pointers extension -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnStatic', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsStatic (XStatic p) -- Free variables of the body (LHsExpr p) -- Body --------------------------------------- -- Haskell program coverage (Hpc) Support | HsTick (XTick p) CoreTickish (LHsExpr p) -- sub-expression | HsBinTick (XBinTick p) Int -- module-local tick number for True Int -- module-local tick number for False (LHsExpr p) -- sub-expression --------------------------------------- -- Expressions annotated with pragmas, written as {-# ... #-} | HsPragE (XPragE p) (HsPragE p) (LHsExpr p) | XExpr !(XXExpr p) -- Note [Trees that Grow] extension constructor for the -- general idea, and Note [Rebindable syntax and HsExpansion] in GHC.Hs.Expr -- for an example of how we use it. -- | The AST used to hard-refer to GhcPass, which was a layer violation. For now, -- we paper it over with this new extension point. type family HsDoRn p type family HsBracketRn p type family PendingRnSplice' p type family PendingTcSplice' p -- --------------------------------------------------------------------- data HsFieldLabel p = HsFieldLabel { hflExt :: XCHsFieldLabel p , hflLabel :: Located FieldLabelString } | XHsFieldLabel !(XXHsFieldLabel p) -- --------------------------------------------------------------------- -- | A pragma, written as {-# ... #-}, that may appear within an expression. data HsPragE p = HsPragSCC (XSCC p) SourceText -- Note [Pragma source text] in GHC.Types.SourceText StringLiteral -- "set cost centre" SCC pragma -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen', -- 'GHC.Parser.Annotation.AnnOpen' @'{-\# GENERATED'@, -- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnVal', -- 'GHC.Parser.Annotation.AnnColon','GHC.Parser.Annotation.AnnVal', -- 'GHC.Parser.Annotation.AnnMinus', -- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnColon', -- 'GHC.Parser.Annotation.AnnVal', -- 'GHC.Parser.Annotation.AnnClose' @'\#-}'@ | XHsPragE !(XXPragE p) -- | Located Haskell Tuple Argument -- -- 'HsTupArg' is used for tuple sections -- @(,a,)@ is represented by -- @ExplicitTuple [Missing ty1, Present a, Missing ty3]@ -- Which in turn stands for @(\x:ty1 \y:ty2. (x,a,y))@ type LHsTupArg id = XRec id (HsTupArg id) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation -- | Haskell Tuple Argument data HsTupArg id = Present (XPresent id) (LHsExpr id) -- ^ The argument | Missing (XMissing id) -- ^ The argument is missing, but this is its type | XTupArg !(XXTupArg id) -- ^ Note [Trees that Grow] extension point {- Note [Parens in HsSyn] ~~~~~~~~~~~~~~~~~~~~~~ HsPar (and ParPat in patterns, HsParTy in types) is used as follows * HsPar is required; the pretty printer does not add parens. * HsPars are respected when rearranging operator fixities. So a * (b + c) means what it says (where the parens are an HsPar) * For ParPat and HsParTy the pretty printer does add parens but this should be a no-op for ParsedSource, based on the pretty printer round trip feature introduced in https://phabricator.haskell.org/rGHC499e43824bda967546ebf95ee33ec1f84a114a7c * ParPat and HsParTy are pretty printed as '( .. )' regardless of whether or not they are strictly necessary. This should be addressed when #13238 is completed, to be treated the same as HsPar. Note [Sections in HsSyn] ~~~~~~~~~~~~~~~~~~~~~~~~ Sections should always appear wrapped in an HsPar, thus HsPar (SectionR ...) The parser parses sections in a wider variety of situations (See Note [Parsing sections]), but the renamer checks for those parens. This invariant makes pretty-printing easier; we don't need a special case for adding the parens round sections. Note [Rebindable if] ~~~~~~~~~~~~~~~~~~~~ The rebindable syntax for 'if' is a bit special, because when rebindable syntax is *off* we do not want to treat (if c then t else e) as if it was an application (ifThenElse c t e). Why not? Because we allow an 'if' to return *unboxed* results, thus if blah then 3# else 4# whereas that would not be possible using a all to a polymorphic function (because you can't call a polymorphic function at an unboxed type). So we use NoSyntaxExpr to mean "use the old built-in typing rule". A further complication is that, in the `deriving` code, we never want to use rebindable syntax. So, even in GhcPs, we want to denote whether to use rebindable syntax or not. This is done via the type instance for XIf GhcPs. Note [Record Update HsWrapper] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There is a wrapper in RecordUpd which is used for the *required* constraints for pattern synonyms. This wrapper is created in the typechecking and is then directly used in the desugaring without modification. For example, if we have the record pattern synonym P, pattern P :: (Show a) => a -> Maybe a pattern P{x} = Just x foo = (Just True) { x = False } then `foo` desugars to something like foo = case Just True of P x -> P False hence we need to provide the correct dictionaries to P's matcher on the RHS so that we can build the expression. Note [Located RdrNames] ~~~~~~~~~~~~~~~~~~~~~~~ A number of syntax elements have seemingly redundant locations attached to them. This is deliberate, to allow transformations making use of the exact print annotations to easily correlate a Located Name in the RenamedSource with a Located RdrName in the ParsedSource. There are unfortunately enough differences between the ParsedSource and the RenamedSource that the exact print annotations cannot be used directly with RenamedSource, so this allows a simple mapping to be used based on the location. Note [ExplicitTuple] ~~~~~~~~~~~~~~~~~~~~ An ExplicitTuple is never just a data constructor like (,,,). That is, the `[LHsTupArg p]` argument of `ExplicitTuple` has at least one `Present` member (and is thus never empty). A tuple data constructor like () or (,,,) is parsed as an `HsVar`, not an `ExplicitTuple`, and stays that way. This is important for two reasons: 1. We don't need -XTupleSections for (,,,) 2. The type variables in (,,,) can be instantiated with visible type application. That is, (,,) :: forall a b c. a -> b -> c -> (a,b,c) (True,,) :: forall {b} {c}. b -> c -> (Bool,b,c) Note that the tuple section has *inferred* arguments, while the data constructor has *specified* ones. (See Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl for background.) Sadly, the grammar for this is actually ambiguous, and it's only thanks to the preference of a shift in a shift/reduce conflict that the parser works as this Note details. Search for a reference to this Note in GHC.Parser for further explanation. Note [Empty lists] ~~~~~~~~~~~~~~~~~~ An empty list could be considered either a data constructor (stored with HsVar) or an ExplicitList. This Note describes how empty lists flow through the various phases and why. Parsing ------- An empty list is parsed by the sysdcon nonterminal. It thus comes to life via HsVar nilDataCon (defined in GHC.Builtin.Types). A freshly-parsed (HsExpr GhcPs) empty list is never a ExplicitList. Renaming -------- If -XOverloadedLists is enabled, we must type-check the empty list as if it were a call to fromListN. (This is true regardless of the setting of -XRebindableSyntax.) This is very easy if the empty list is an ExplicitList, but an annoying special case if it's an HsVar. So the renamer changes a HsVar nilDataCon to an ExplicitList [], but only if -XOverloadedLists is on. (Why not always? Read on, dear friend.) This happens in the HsVar case of rnExpr. Type-checking ------------- We want to accept an expression like [] @Int. To do this, we must infer that [] :: forall a. [a]. This is easy if [] is a HsVar with the right DataCon inside. However, the type-checking for explicit lists works differently: [x,y,z] is never polymorphic. Instead, we unify the types of x, y, and z together, and use the unified type as the argument to the cons and nil constructors. Thus, treating [] as an empty ExplicitList in the type-checker would prevent [] @Int from working. However, if -XOverloadedLists is on, then [] @Int really shouldn't be allowed: it's just like fromListN 0 [] @Int. Since fromListN :: forall list. IsList list => Int -> [Item list] -> list that expression really should be rejected. Thus, the renamer's behaviour is exactly what we want: treat [] as a datacon when -XNoOverloadedLists, and as an empty ExplicitList when -XOverloadedLists. See also #13680, which requested [] @Int to work. -} ----------------------- pprExternalSrcLoc :: (StringLiteral,(Int,Int),(Int,Int)) -> SDoc pprExternalSrcLoc (StringLiteral _ src _,(n1,n2),(n3,n4)) = ppr (src,(n1,n2),(n3,n4)) {- HsSyn records exactly where the user put parens, with HsPar. So generally speaking we print without adding any parens. However, some code is internally generated, and in some places parens are absolutely required; so for these places we use pprParendLExpr (but don't print double parens of course). For operator applications we don't add parens, because the operator fixities should do the job, except in debug mode (-dppr-debug) so we can see the structure of the parse tree. -} {- ************************************************************************ * * \subsection{Commands (in arrow abstractions)} * * ************************************************************************ We re-use HsExpr to represent these. -} -- | Located Haskell Command (for arrow syntax) type LHsCmd id = XRec id (HsCmd id) -- | Haskell Command (e.g. a "statement" in an Arrow proc block) data HsCmd id -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.Annlarrowtail', -- 'GHC.Parser.Annotation.Annrarrowtail','GHC.Parser.Annotation.AnnLarrowtail', -- 'GHC.Parser.Annotation.AnnRarrowtail' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation = HsCmdArrApp -- Arrow tail, or arrow application (f -< arg) (XCmdArrApp id) -- type of the arrow expressions f, -- of the form a t t', where arg :: t (LHsExpr id) -- arrow expression, f (LHsExpr id) -- input expression, arg HsArrAppType -- higher-order (-<<) or first-order (-<) Bool -- True => right-to-left (f -< arg) -- False => left-to-right (arg >- f) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenB' @'(|'@, -- 'GHC.Parser.Annotation.AnnCloseB' @'|)'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdArrForm -- Command formation, (| e cmd1 .. cmdn |) (XCmdArrForm id) (LHsExpr id) -- The operator. -- After type-checking, a type abstraction to be -- applied to the type of the local environment tuple LexicalFixity -- Whether the operator appeared prefix or infix when -- parsed. (Maybe Fixity) -- fixity (filled in by the renamer), for forms that -- were converted from OpApp's by the renamer [LHsCmdTop id] -- argument commands | HsCmdApp (XCmdApp id) (LHsCmd id) (LHsExpr id) | HsCmdLam (XCmdLam id) (MatchGroup id (LHsCmd id)) -- kappa -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam', -- 'GHC.Parser.Annotation.AnnRarrow', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdPar (XCmdPar id) (LHsCmd id) -- parenthesised command -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@, -- 'GHC.Parser.Annotation.AnnClose' @')'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdCase (XCmdCase id) (LHsExpr id) (MatchGroup id (LHsCmd id)) -- bodies are HsCmd's -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase', -- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnClose' @'}'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdLamCase (XCmdLamCase id) (MatchGroup id (LHsCmd id)) -- bodies are HsCmd's -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam', -- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnClose' @'}'@ -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdIf (XCmdIf id) (SyntaxExpr id) -- cond function (LHsExpr id) -- predicate (LHsCmd id) -- then part (LHsCmd id) -- else part -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf', -- 'GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnElse', -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdLet (XCmdLet id) (HsLocalBinds id) -- let(rec) (LHsCmd id) -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet', -- 'GHC.Parser.Annotation.AnnOpen' @'{'@, -- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | HsCmdDo (XCmdDo id) -- Type of the whole expression (XRec id [CmdLStmt id]) -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo', -- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi', -- 'GHC.Parser.Annotation.AnnVbar', -- 'GHC.Parser.Annotation.AnnClose' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | XCmd !(XXCmd id) -- Note [Trees that Grow] extension point -- | Haskell Array Application Type data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp deriving Data {- | Top-level command, introducing a new arrow. This may occur inside a proc (where the stack is empty) or as an argument of a command-forming operator. -} -- | Located Haskell Top-level Command type LHsCmdTop p = XRec p (HsCmdTop p) -- | Haskell Top-level Command data HsCmdTop p = HsCmdTop (XCmdTop p) (LHsCmd p) | XCmdTop !(XXCmdTop p) -- Note [Trees that Grow] extension point ----------------------- {- ************************************************************************ * * \subsection{Record binds} * * ************************************************************************ -} -- | Haskell Record Bindings type HsRecordBinds p = HsRecFields p (LHsExpr p) {- ************************************************************************ * * \subsection{@Match@, @GRHSs@, and @GRHS@ datatypes} * * ************************************************************************ @Match@es are sets of pattern bindings and right hand sides for functions, patterns or case branches. For example, if a function @g@ is defined as: \begin{verbatim} g (x,y) = y g ((x:ys),y) = y+1, \end{verbatim} then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@. It is always the case that each element of an @[Match]@ list has the same number of @pats@s inside it. This corresponds to saying that a function defined by pattern matching must have the same number of patterns in each equation. -} data MatchGroup p body = MG { mg_ext :: XMG p body -- Post-typechecker, types of args and result , mg_alts :: XRec p [LMatch p body] -- The alternatives , mg_origin :: Origin } -- The type is the type of the entire group -- t1 -> ... -> tn -> tr -- where there are n patterns | XMatchGroup !(XXMatchGroup p body) data MatchGroupTc = MatchGroupTc { mg_arg_tys :: [Scaled Type] -- Types of the arguments, t1..tn , mg_res_ty :: Type -- Type of the result, tr } deriving Data -- | Located Match type LMatch id body = XRec id (Match id body) -- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a -- list -- For details on above see note [exact print annotations] in GHC.Parser.Annotation data Match p body = Match { m_ext :: XCMatch p body, m_ctxt :: HsMatchContext (NoGhcTc p), -- See note [m_ctxt in Match] m_pats :: [LPat p], -- The patterns m_grhss :: (GRHSs p body) } | XMatch !(XXMatch p body) {- Note [m_ctxt in Match] ~~~~~~~~~~~~~~~~~~~~~~ A Match can occur in a number of contexts, such as a FunBind, HsCase, HsLam and so on. In order to simplify tooling processing and pretty print output, the provenance is captured in an HsMatchContext. This is particularly important for the exact print annotations for a multi-equation FunBind. The parser initially creates a FunBind with a single Match in it for every function definition it sees. These are then grouped together by getMonoBind into a single FunBind, where all the Matches are combined. In the process, all the original FunBind fun_id's bar one are discarded, including the locations. This causes a problem for source to source conversions via exact print annotations, so the original fun_ids and infix flags are preserved in the Match, when it originates from a FunBind. Example infix function definition requiring individual exact print annotations (&&& ) [] [] = [] xs &&& [] = xs ( &&& ) [] ys = ys -} isInfixMatch :: Match id body -> Bool isInfixMatch match = case m_ctxt match of FunRhs {mc_fixity = Infix} -> True _ -> False -- | Guarded Right-Hand Sides -- -- GRHSs are used both for pattern bindings and for Matches -- -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar', -- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere', -- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose' -- 'GHC.Parser.Annotation.AnnRarrow','GHC.Parser.Annotation.AnnSemi' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation data GRHSs p body = GRHSs { grhssExt :: XCGRHSs p body, grhssGRHSs :: [LGRHS p body], -- ^ Guarded RHSs grhssLocalBinds :: HsLocalBinds p -- ^ The where clause } | XGRHSs !(XXGRHSs p body) -- | Located Guarded Right-Hand Side type LGRHS id body = XRec id (GRHS id body) -- | Guarded Right Hand Side. data GRHS p body = GRHS (XCGRHS p body) [GuardLStmt p] -- Guards body -- Right hand side | XGRHS !(XXGRHS p body) -- We know the list must have at least one @Match@ in it. {- ************************************************************************ * * \subsection{Do stmts and list comprehensions} * * ************************************************************************ -} -- | Located @do@ block Statement type LStmt id body = XRec id (StmtLR id id body) -- | Located Statement with separate Left and Right id's type LStmtLR idL idR body = XRec idL (StmtLR idL idR body) -- | @do@ block Statement type Stmt id body = StmtLR id id body -- | Command Located Statement type CmdLStmt id = LStmt id (LHsCmd id) -- | Command Statement type CmdStmt id = Stmt id (LHsCmd id) -- | Expression Located Statement type ExprLStmt id = LStmt id (LHsExpr id) -- | Expression Statement type ExprStmt id = Stmt id (LHsExpr id) -- | Guard Located Statement type GuardLStmt id = LStmt id (LHsExpr id) -- | Guard Statement type GuardStmt id = Stmt id (LHsExpr id) -- | Ghci Located Statement type GhciLStmt id = LStmt id (LHsExpr id) -- | Ghci Statement type GhciStmt id = Stmt id (LHsExpr id) -- The SyntaxExprs in here are used *only* for do-notation and monad -- comprehensions, which have rebindable syntax. Otherwise they are unused. -- | Exact print annotations when in qualifier lists or guards -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar', -- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnThen', -- 'GHC.Parser.Annotation.AnnBy','GHC.Parser.Annotation.AnnBy', -- 'GHC.Parser.Annotation.AnnGroup','GHC.Parser.Annotation.AnnUsing' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation data StmtLR idL idR body -- body should always be (LHs**** idR) = LastStmt -- Always the last Stmt in ListComp, MonadComp, -- and (after the renamer, see GHC.Rename.Expr.checkLastStmt) DoExpr, MDoExpr -- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff (XLastStmt idL idR body) body (Maybe Bool) -- Whether return was stripped -- Just True <=> return with a dollar was stripped by ApplicativeDo -- Just False <=> return without a dollar was stripped by ApplicativeDo -- Nothing <=> Nothing was stripped (SyntaxExpr idR) -- The return operator -- The return operator is used only for MonadComp -- For ListComp we use the baked-in 'return' -- For DoExpr, MDoExpr, we don't apply a 'return' at all -- See Note [Monad Comprehensions] -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLarrow' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | BindStmt (XBindStmt idL idR body) -- ^ Post renaming has optional fail and bind / (>>=) operator. -- Post typechecking, also has multiplicity of the argument -- and the result type of the function passed to bind; -- that is, (P, S) in (>>=) :: Q -> (R # P -> S) -> T -- See Note [The type of bind in Stmts] (LPat idL) body -- | 'ApplicativeStmt' represents an applicative expression built with -- '<$>' and '<*>'. It is generated by the renamer, and is desugared into the -- appropriate applicative expression by the desugarer, but it is intended -- to be invisible in error messages. -- -- For full details, see Note [ApplicativeDo] in "GHC.Rename.Expr" -- | ApplicativeStmt (XApplicativeStmt idL idR body) -- Post typecheck, Type of the body [ ( SyntaxExpr idR , ApplicativeArg idL) ] -- [(<$>, e1), (<*>, e2), ..., (<*>, en)] (Maybe (SyntaxExpr idR)) -- 'join', if necessary | BodyStmt (XBodyStmt idL idR body) -- Post typecheck, element type -- of the RHS (used for arrows) body -- See Note [BodyStmt] (SyntaxExpr idR) -- The (>>) operator (SyntaxExpr idR) -- The `guard` operator; used only in MonadComp -- See notes [Monad Comprehensions] -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet' -- 'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@, -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | LetStmt (XLetStmt idL idR body) (HsLocalBindsLR idL idR) -- ParStmts only occur in a list/monad comprehension | ParStmt (XParStmt idL idR body) -- Post typecheck, -- S in (>>=) :: Q -> (R -> S) -> T [ParStmtBlock idL idR] (HsExpr idR) -- Polymorphic `mzip` for monad comprehensions (SyntaxExpr idR) -- The `>>=` operator -- See notes [Monad Comprehensions] -- After renaming, the ids are the binders -- bound by the stmts and used after themp | TransStmt { trS_ext :: XTransStmt idL idR body, -- Post typecheck, -- R in (>>=) :: Q -> (R -> S) -> T trS_form :: TransForm, trS_stmts :: [ExprLStmt idL], -- Stmts to the *left* of the 'group' -- which generates the tuples to be grouped trS_bndrs :: [(IdP idR, IdP idR)], -- See Note [TransStmt binder map] trS_using :: LHsExpr idR, trS_by :: Maybe (LHsExpr idR), -- "by e" (optional) -- Invariant: if trS_form = GroupBy, then grp_by = Just e trS_ret :: SyntaxExpr idR, -- The monomorphic 'return' function for -- the inner monad comprehensions trS_bind :: SyntaxExpr idR, -- The '(>>=)' operator trS_fmap :: HsExpr idR -- The polymorphic 'fmap' function for desugaring -- Only for 'group' forms -- Just a simple HsExpr, because it's -- too polymorphic for tcSyntaxOp } -- See Note [Monad Comprehensions] -- Recursive statement (see Note [How RecStmt works] below) -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRec' -- For details on above see note [exact print annotations] in GHC.Parser.Annotation | RecStmt { recS_ext :: XRecStmt idL idR body , recS_stmts :: XRec idR [LStmtLR idL idR body] -- Assume XRec is the same for idL and idR, pick one arbitrarily -- The next two fields are only valid after renaming , recS_later_ids :: [IdP idR] -- The ids are a subset of the variables bound by the -- stmts that are used in stmts that follow the RecStmt , recS_rec_ids :: [IdP idR] -- Ditto, but these variables are the "recursive" ones, -- that are used before they are bound in the stmts of -- the RecStmt. -- An Id can be in both groups -- Both sets of Ids are (now) treated monomorphically -- See Note [How RecStmt works] for why they are separate -- Rebindable syntax , recS_bind_fn :: SyntaxExpr idR -- The bind function , recS_ret_fn :: SyntaxExpr idR -- The return function , recS_mfix_fn :: SyntaxExpr idR -- The mfix function } | XStmtLR !(XXStmtLR idL idR body) data TransForm -- The 'f' below is the 'using' function, 'e' is the by function = ThenForm -- then f or then f by e (depending on trS_by) | GroupForm -- then group using f or then group by e using f (depending on trS_by) deriving Data -- | Parenthesised Statement Block data ParStmtBlock idL idR = ParStmtBlock (XParStmtBlock idL idR) [ExprLStmt idL] [IdP idR] -- The variables to be returned (SyntaxExpr idR) -- The return operator | XParStmtBlock !(XXParStmtBlock idL idR) -- | The fail operator -- -- This is used for `.. <-` "bind statements" in do notation, including -- non-monadic "binds" in applicative. -- -- The fail operator is 'Just expr' if it potentially fail monadically. if the -- pattern match cannot fail, or shouldn't fail monadically (regular incomplete -- pattern exception), it is 'Nothing'. -- -- See Note [Monad fail : Rebindable syntax, overloaded strings] for the type of -- expression in the 'Just' case, and why it is so. -- -- See Note [Failing pattern matches in Stmts] for which contexts for -- '@BindStmt@'s should use the monadic fail and which shouldn't. type FailOperator id = Maybe (SyntaxExpr id) -- | Applicative Argument data ApplicativeArg idL = ApplicativeArgOne -- A single statement (BindStmt or BodyStmt) { xarg_app_arg_one :: XApplicativeArgOne idL -- ^ The fail operator, after renaming -- -- The fail operator is needed if this is a BindStmt -- where the pattern can fail. E.g.: -- (Just a) <- stmt -- The fail operator will be invoked if the pattern -- match fails. -- It is also used for guards in MonadComprehensions. -- The fail operator is Nothing -- if the pattern match can't fail , app_arg_pattern :: LPat idL -- WildPat if it was a BodyStmt (see below) , arg_expr :: LHsExpr idL , is_body_stmt :: Bool -- ^ True <=> was a BodyStmt, -- False <=> was a BindStmt. -- See Note [Applicative BodyStmt] } | ApplicativeArgMany -- do { stmts; return vars } { xarg_app_arg_many :: XApplicativeArgMany idL , app_stmts :: [ExprLStmt idL] -- stmts , final_expr :: HsExpr idL -- return (v1,..,vn), or just (v1,..,vn) , bv_pattern :: LPat idL -- (v1,...,vn) , stmt_context :: HsStmtContext (ApplicativeArgStmCtxPass idL) -- ^ context of the do expression, used in pprArg } | XApplicativeArg !(XXApplicativeArg idL) type family ApplicativeArgStmCtxPass idL {- Note [The type of bind in Stmts] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some Stmts, notably BindStmt, keep the (>>=) bind operator. We do NOT assume that it has type (>>=) :: m a -> (a -> m b) -> m b In some cases (see #303, #1537) it might have a more exotic type, such as (>>=) :: m i j a -> (a -> m j k b) -> m i k b So we must be careful not to make assumptions about the type. In particular, the monad may not be uniform throughout. Note [TransStmt binder map] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The [(idR,idR)] in a TransStmt behaves as follows: * Before renaming: [] * After renaming: [ (x27,x27), ..., (z35,z35) ] These are the variables bound by the stmts to the left of the 'group' and used either in the 'by' clause, or in the stmts following the 'group' Each item is a pair of identical variables. * After typechecking: [ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ] Each pair has the same unique, but different *types*. Note [BodyStmt] ~~~~~~~~~~~~~~~ BodyStmts are a bit tricky, because what they mean depends on the context. Consider the following contexts: A do expression of type (m res_ty) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E any_ty: do { ....; E; ... } E :: m any_ty Translation: E >> ... A list comprehensions of type [elt_ty] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E Bool: [ .. | .... E ] [ .. | ..., E, ... ] [ .. | .... | ..., E | ... ] E :: Bool Translation: if E then fail else ... A guard list, guarding a RHS of type rhs_ty ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E BooParStmtBlockl: f x | ..., E, ... = ...rhs... E :: Bool Translation: if E then fail else ... A monad comprehension of type (m res_ty) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E Bool: [ .. | .... E ] E :: Bool Translation: guard E >> ... Array comprehensions are handled like list comprehensions. Note [How RecStmt works] ~~~~~~~~~~~~~~~~~~~~~~~~ Example: HsDo [ BindStmt x ex , RecStmt { recS_rec_ids = [a, c] , recS_stmts = [ BindStmt b (return (a,c)) , LetStmt a = ...b... , BindStmt c ec ] , recS_later_ids = [a, b] , return (a b) ] Here, the RecStmt binds a,b,c; but - Only a,b are used in the stmts *following* the RecStmt, - Only a,c are used in the stmts *inside* the RecStmt *before* their bindings Why do we need *both* rec_ids and later_ids? For monads they could be combined into a single set of variables, but not for arrows. That follows from the types of the respective feedback operators: mfix :: MonadFix m => (a -> m a) -> m a loop :: ArrowLoop a => a (b,d) (c,d) -> a b c * For mfix, the 'a' covers the union of the later_ids and the rec_ids * For 'loop', 'c' is the later_ids and 'd' is the rec_ids Note [Typing a RecStmt] ~~~~~~~~~~~~~~~~~~~~~~~ A (RecStmt stmts) types as if you had written (v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) -> do { stmts ; return (v1,..vn, r1, ..., rm) }) where v1..vn are the later_ids r1..rm are the rec_ids Note [Monad Comprehensions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Monad comprehensions require separate functions like 'return' and '>>=' for desugaring. These functions are stored in the statements used in monad comprehensions. For example, the 'return' of the 'LastStmt' expression is used to lift the body of the monad comprehension: [ body | stmts ] => stmts >>= \bndrs -> return body In transform and grouping statements ('then ..' and 'then group ..') the 'return' function is required for nested monad comprehensions, for example: [ body | stmts, then f, rest ] => f [ env | stmts ] >>= \bndrs -> [ body | rest ] BodyStmts require the 'Control.Monad.guard' function for boolean expressions: [ body | exp, stmts ] => guard exp >> [ body | stmts ] Parallel statements require the 'Control.Monad.Zip.mzip' function: [ body | stmts1 | stmts2 | .. ] => mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body In any other context than 'MonadComp', the fields for most of these 'SyntaxExpr's stay bottom. Note [Applicative BodyStmt] (#12143) For the purposes of ApplicativeDo, we treat any BodyStmt as if it was a BindStmt with a wildcard pattern. For example, do x <- A B return x is transformed as if it were do x <- A _ <- B return x so it transforms to (\(x,_) -> x) <$> A <*> B But we have to remember when we treat a BodyStmt like a BindStmt, because in error messages we want to emit the original syntax the user wrote, not our internal representation. So ApplicativeArgOne has a Bool flag that is True when the original statement was a BodyStmt, so that we can pretty-print it correctly. -} {- ************************************************************************ * * Template Haskell quotation brackets * * ************************************************************************ -} -- | Haskell Splice data HsSplice id = HsTypedSplice -- $$z or $$(f 4) (XTypedSplice id) SpliceDecoration -- Whether $$( ) variant found, for pretty printing (IdP id) -- A unique name to identify this splice point (LHsExpr id) -- See Note [Pending Splices] | HsUntypedSplice -- $z or $(f 4) (XUntypedSplice id) SpliceDecoration -- Whether $( ) variant found, for pretty printing (IdP id) -- A unique name to identify this splice point (LHsExpr id) -- See Note [Pending Splices] | HsQuasiQuote -- See Note [Quasi-quote overview] in GHC.Tc.Gen.Splice (XQuasiQuote id) (IdP id) -- Splice point (IdP id) -- Quoter SrcSpan -- The span of the enclosed string FastString -- The enclosed string -- AZ:TODO: use XSplice instead of HsSpliced | HsSpliced -- See Note [Delaying modFinalizers in untyped splices] in -- GHC.Rename.Splice. -- This is the result of splicing a splice. It is produced by -- the renamer and consumed by the typechecker. It lives only -- between the two. (XSpliced id) ThModFinalizers -- TH finalizers produced by the splice. (HsSplicedThing id) -- The result of splicing | XSplice !(XXSplice id) -- Note [Trees that Grow] extension point -- | A splice can appear with various decorations wrapped around it. This data -- type captures explicitly how it was originally written, for use in the pretty -- printer. data SpliceDecoration = DollarSplice -- ^ $splice or $$splice | BareSplice -- ^ bare splice deriving (Data, Eq, Show) instance Outputable SpliceDecoration where ppr x = text $ show x isTypedSplice :: HsSplice id -> Bool isTypedSplice (HsTypedSplice {}) = True isTypedSplice _ = False -- Quasi-quotes are untyped splices -- | Finalizers produced by a splice with -- 'Language.Haskell.TH.Syntax.addModFinalizer' -- -- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice. For how -- this is used. -- newtype ThModFinalizers = ThModFinalizers [ForeignRef (TH.Q ())] -- A Data instance which ignores the argument of 'ThModFinalizers'. instance Data ThModFinalizers where gunfold _ z _ = z $ ThModFinalizers [] toConstr a = mkConstr (dataTypeOf a) "ThModFinalizers" [] Data.Prefix dataTypeOf a = mkDataType "HsExpr.ThModFinalizers" [toConstr a] -- | Haskell Spliced Thing -- -- Values that can result from running a splice. data HsSplicedThing id = HsSplicedExpr (HsExpr id) -- ^ Haskell Spliced Expression | HsSplicedTy (HsType id) -- ^ Haskell Spliced Type | HsSplicedPat (Pat id) -- ^ Haskell Spliced Pattern -- See Note [Pending Splices] type SplicePointName = Name data UntypedSpliceFlavour = UntypedExpSplice | UntypedPatSplice | UntypedTypeSplice | UntypedDeclSplice deriving Data -- | Haskell Bracket data HsBracket p = ExpBr (XExpBr p) (LHsExpr p) -- [| expr |] | PatBr (XPatBr p) (LPat p) -- [p| pat |] | DecBrL (XDecBrL p) [LHsDecl p] -- [d| decls |]; result of parser | DecBrG (XDecBrG p) (HsGroup p) -- [d| decls |]; result of renamer | TypBr (XTypBr p) (LHsType p) -- [t| type |] | VarBr (XVarBr p) Bool (LIdP p) -- True: 'x, False: ''T -- (The Bool flag is used only in pprHsBracket) | TExpBr (XTExpBr p) (LHsExpr p) -- [|| expr ||] | XBracket !(XXBracket p) -- Note [Trees that Grow] extension point isTypedBracket :: HsBracket id -> Bool isTypedBracket (TExpBr {}) = True isTypedBracket _ = False {- ************************************************************************ * * \subsection{Enumerations and list comprehensions} * * ************************************************************************ -} -- | Arithmetic Sequence Information data ArithSeqInfo id = From (LHsExpr id) | FromThen (LHsExpr id) (LHsExpr id) | FromTo (LHsExpr id) (LHsExpr id) | FromThenTo (LHsExpr id) (LHsExpr id) (LHsExpr id) -- AZ: Should ArithSeqInfo have a TTG extension? {- ************************************************************************ * * \subsection{HsMatchCtxt} * * ************************************************************************ -} -- | Haskell Match Context -- -- Context of a pattern match. This is more subtle than it would seem. See Note -- [Varieties of pattern matches]. data HsMatchContext p = FunRhs { mc_fun :: LIdP p -- ^ function binder of @f@ , mc_fixity :: LexicalFixity -- ^ fixing of @f@ , mc_strictness :: SrcStrictness -- ^ was @f@ banged? -- See Note [FunBind vs PatBind] } -- ^A pattern matching on an argument of a -- function binding | LambdaExpr -- ^Patterns of a lambda | CaseAlt -- ^Patterns and guards on a case alternative | IfAlt -- ^Guards of a multi-way if alternative | ArrowMatchCtxt -- ^A pattern match inside arrow notation HsArrowMatchContext | PatBindRhs -- ^A pattern binding eg [y] <- e = e | PatBindGuards -- ^Guards of pattern bindings, e.g., -- (Just b) | Just _ <- x = e -- | otherwise = e' | RecUpd -- ^Record update [used only in GHC.HsToCore.Expr to -- tell matchWrapper what sort of -- runtime error message to generate] | StmtCtxt (HsStmtContext p) -- ^Pattern of a do-stmt, list comprehension, -- pattern guard, etc | ThPatSplice -- ^A Template Haskell pattern splice | ThPatQuote -- ^A Template Haskell pattern quotation [p| (a,b) |] | PatSyn -- ^A pattern synonym declaration isPatSynCtxt :: HsMatchContext p -> Bool isPatSynCtxt ctxt = case ctxt of PatSyn -> True _ -> False -- | Haskell Statement Context. data HsStmtContext p = ListComp | MonadComp | DoExpr (Maybe ModuleName) -- ^[ModuleName.]do { ... } | MDoExpr (Maybe ModuleName) -- ^[ModuleName.]mdo { ... } ie recursive do-expression | ArrowExpr -- ^do-notation in an arrow-command context | GhciStmtCtxt -- ^A command-line Stmt in GHCi pat <- rhs | PatGuard (HsMatchContext p) -- ^Pattern guard for specified thing | ParStmtCtxt (HsStmtContext p) -- ^A branch of a parallel stmt | TransStmtCtxt (HsStmtContext p) -- ^A branch of a transform stmt -- | Haskell arrow match context. data HsArrowMatchContext = ProcExpr -- ^ A proc expression | ArrowCaseAlt -- ^ A case alternative inside arrow notation | KappaExpr -- ^ An arrow kappa abstraction qualifiedDoModuleName_maybe :: HsStmtContext p -> Maybe ModuleName qualifiedDoModuleName_maybe ctxt = case ctxt of DoExpr m -> m MDoExpr m -> m _ -> Nothing isComprehensionContext :: HsStmtContext id -> Bool -- Uses comprehension syntax [ e | quals ] isComprehensionContext ListComp = True isComprehensionContext MonadComp = True isComprehensionContext (ParStmtCtxt c) = isComprehensionContext c isComprehensionContext (TransStmtCtxt c) = isComprehensionContext c isComprehensionContext _ = False -- | Is this a monadic context? isMonadStmtContext :: HsStmtContext id -> Bool isMonadStmtContext MonadComp = True isMonadStmtContext DoExpr{} = True isMonadStmtContext MDoExpr{} = True isMonadStmtContext GhciStmtCtxt = True isMonadStmtContext (ParStmtCtxt ctxt) = isMonadStmtContext ctxt isMonadStmtContext (TransStmtCtxt ctxt) = isMonadStmtContext ctxt isMonadStmtContext _ = False -- ListComp, PatGuard, ArrowExpr isMonadCompContext :: HsStmtContext id -> Bool isMonadCompContext MonadComp = True isMonadCompContext _ = False matchSeparator :: HsMatchContext p -> SDoc matchSeparator (FunRhs {}) = text "=" matchSeparator CaseAlt = text "->" matchSeparator IfAlt = text "->" matchSeparator LambdaExpr = text "->" matchSeparator (ArrowMatchCtxt{})= text "->" matchSeparator PatBindRhs = text "=" matchSeparator PatBindGuards = text "=" matchSeparator (StmtCtxt _) = text "<-" matchSeparator RecUpd = text "=" -- This can be printed by the pattern -- match checker trace matchSeparator ThPatSplice = panic "unused" matchSeparator ThPatQuote = panic "unused" matchSeparator PatSyn = panic "unused" pprMatchContext :: (Outputable (IdP p), UnXRec p) => HsMatchContext p -> SDoc pprMatchContext ctxt | want_an ctxt = text "an" <+> pprMatchContextNoun ctxt | otherwise = text "a" <+> pprMatchContextNoun ctxt where want_an (FunRhs {}) = True -- Use "an" in front want_an (ArrowMatchCtxt ProcExpr) = True want_an (ArrowMatchCtxt KappaExpr) = True want_an _ = False pprMatchContextNoun :: forall p. (Outputable (IdP p), UnXRec p) => HsMatchContext p -> SDoc pprMatchContextNoun (FunRhs {mc_fun=fun}) = text "equation for" <+> quotes (ppr (unXRec @p fun)) pprMatchContextNoun CaseAlt = text "case alternative" pprMatchContextNoun IfAlt = text "multi-way if alternative" pprMatchContextNoun RecUpd = text "record-update construct" pprMatchContextNoun ThPatSplice = text "Template Haskell pattern splice" pprMatchContextNoun ThPatQuote = text "Template Haskell pattern quotation" pprMatchContextNoun PatBindRhs = text "pattern binding" pprMatchContextNoun PatBindGuards = text "pattern binding guards" pprMatchContextNoun LambdaExpr = text "lambda abstraction" pprMatchContextNoun (ArrowMatchCtxt c)= pprArrowMatchContextNoun c pprMatchContextNoun (StmtCtxt ctxt) = text "pattern binding in" $$ pprAStmtContext ctxt pprMatchContextNoun PatSyn = text "pattern synonym declaration" pprArrowMatchContextNoun :: HsArrowMatchContext -> SDoc pprArrowMatchContextNoun ProcExpr = text "arrow proc pattern" pprArrowMatchContextNoun ArrowCaseAlt = text "case alternative within arrow notation" pprArrowMatchContextNoun KappaExpr = text "arrow kappa abstraction" ----------------- pprAStmtContext, pprStmtContext :: (Outputable (IdP p), UnXRec p) => HsStmtContext p -> SDoc pprAStmtContext ctxt = article <+> pprStmtContext ctxt where pp_an = text "an" pp_a = text "a" article = case ctxt of MDoExpr Nothing -> pp_an GhciStmtCtxt -> pp_an _ -> pp_a ----------------- pprStmtContext GhciStmtCtxt = text "interactive GHCi command" pprStmtContext (DoExpr m) = prependQualified m (text "'do' block") pprStmtContext (MDoExpr m) = prependQualified m (text "'mdo' block") pprStmtContext ArrowExpr = text "'do' block in an arrow command" pprStmtContext ListComp = text "list comprehension" pprStmtContext MonadComp = text "monad comprehension" pprStmtContext (PatGuard ctxt) = text "pattern guard for" $$ pprMatchContext ctxt -- Drop the inner contexts when reporting errors, else we get -- Unexpected transform statement -- in a transformed branch of -- transformed branch of -- transformed branch of monad comprehension pprStmtContext (ParStmtCtxt c) = ifPprDebug (sep [text "parallel branch of", pprAStmtContext c]) (pprStmtContext c) pprStmtContext (TransStmtCtxt c) = ifPprDebug (sep [text "transformed branch of", pprAStmtContext c]) (pprStmtContext c) prependQualified :: Maybe ModuleName -> SDoc -> SDoc prependQualified Nothing t = t prependQualified (Just _) t = text "qualified" <+> t