{-# LANGUAGE TupleSections #-} module Data.GPS.Core ( -- * Types Distance , Heading , Speed , Vector , Trail , Circle , Arc , Coordinate (..) -- * Constants , north , south , east , west , radiusOfEarth , circumferenceOfEarth -- * Coordinate Functions , heading , distance , speed , getVector , addVector , getRadianPair , getDMSPair , divideArea , interpolate , circleIntersectionPoints , intersectionArcsOf , maximumDistanceOfArc -- * IO helpers , writeGPX , readGPX , readGPXSegments -- * Utility , getUTCTime , module Data.Geo.GPX ) where import Data.Time import Data.Maybe import Data.List (sortBy) import Data.Ord (comparing) import Control.Monad import Text.XML.HXT.Core import Text.XML.XSD.DateTime(DateTime,toUTCTime) import Data.Geo.GPX import Data.Lens.Common class (LatL a, LonL a) => Coordinate a where lat :: a -> Double lat = runLatitude . (^. latL) lon :: a -> Double lon = runLongitude . (^. lonL) instance Coordinate Wpt instance Coordinate Pt -- |Distances are expressed in meters type Distance = Double -- |Angles are expressed in radians from North. -- 0 == North -- pi/2 == West -- pi == South -- (3/2)pi == East == - (pi / 2) type Heading = Double -- |Speed is hard coded as meters per second type Speed = Double type Vector = (Distance, Heading) -- | Genearlly a circle indicates a known area in which we are searching -- (so a center point and maximum possible distance from that point) type Circle a = (a, Distance) -- | An arc is represented as a circle, starting heading and ending heading type Arc a = (Circle a, Heading, Heading) type Trail a = [a] getUTCTime :: (TimeL a) => a -> Maybe UTCTime getUTCTime = fmap toUTCTime . (^. timeL) distance :: (Coordinate a, Coordinate b) => a -> b -> Distance distance x y = let (lat1,lon1) = getRadianPairD x (lat2,lon2) = getRadianPairD y deltaLat = lat2 - lat1 deltaLon = lon2 - lon1 a = (sin (deltaLat / 2))^2 + cos lat1 * cos lat2 * (sin (deltaLon / 2))^2 c = 2 * atan2 (a**0.5) ((1-a)**0.5) in radiusOfEarth * c -- | Direction two points aim toward (0 = North, pi/2 = West, pi = South, 3pi/2 = East) heading :: (Coordinate a, Coordinate b) => a -> b -> Heading heading a b = atan2 (sin (diffLon) * cos (lat2)) (cos(lat1) * sin (lat2) - sin(lat1) * cos lat2 * cos (diffLon)) where (lat1, lon1) = getRadianPairD a (lat2, lon2) = getRadianPairD b diffLon = lon2 - lon1 getVector :: (Coordinate a, Coordinate b) => a -> b -> Vector getVector a b = (distance a b, heading a b) -- |Given a vector and coordinate, computes a new coordinate. -- Within some epsilon it should hold that if -- -- @dest = addVector (dist,heading) start@ -- -- then -- -- @heading == heading start dest@ -- -- @dist == distance start dest@ addVector :: (Coordinate c) => Vector -> c -> c addVector (d,h) p = (lonL ^= longitude (toDegrees lon2)) . (latL ^= latitude (toDegrees lat2)) $ p where (lat,lon) = getRadianPairD p lat2 = asin (sin (lat) * cos (d / radiusOfEarth) + cos(lat) * sin(d/radiusOfEarth) * cos h) lon2 = lon + atan2 (sin h * sin (d / radiusOfEarth) * cos lat) (cos (d/radiusOfEarth) - sin lat * sin lat2) -- | Speed in meters per second, only if a 'Time' was recorded for each waypoint. speed :: (Coordinate loc, TimeL loc, Coordinate b, TimeL b) => loc -> b -> Maybe Speed speed a b = case (getUTCTime b, getUTCTime a) of (Just x, Just y) -> let timeDiff = realToFrac (diffUTCTime x y) in if timeDiff == 0 then Nothing else Just $ (distance a b) / timeDiff _ -> Nothing -- |radius of the earth in meters radiusOfEarth :: Double radiusOfEarth = 6378700 -- |Circumference of earth (meters) circumferenceOfEarth :: Double circumferenceOfEarth = radiusOfEarth * 2 * pi -- |North is 0 radians north :: Heading north = 0 -- |South, being 180 degrees from North, is pi. south :: Heading south = pi -- |East is 270 degrees (3 pi / 2) east :: Heading east = (3 / 2) * pi -- |West is 90 degrees (pi/2) west :: Heading west = pi / 2 toDegrees = (*) (180 / pi) getRadianPairD :: (Coordinate c) => c -> (Double,Double) getRadianPairD = (\(a,b) -> (realToFrac a, realToFrac b)) . getRadianPair getDMSPair :: (Coordinate c) => c -> (Latitude, Longitude) getDMSPair c = (c ^. latL, c ^. lonL) -- |Provides a lat/lon pair of doubles in radians getRadianPair :: (Coordinate p) => p -> (Latitude, Longitude) getRadianPair p = (toRadians (p ^. latL), toRadians (p ^. lonL)) toRadians :: Floating f => f -> f toRadians = (*) (pi / 180) -- | @interpolate c1 c2 w@ where @0 <= w <= 1@ Gives a point on the line -- between c1 and c2 equal to c1 when @w == 0@ (weighted linearly -- toward c2). interpolate :: (Coordinate a) => a -> a -> Double -> a interpolate c1 c2 w | w < 0 || w > 1 = error "Interpolate only works with a weight between zero and one" | otherwise = let (h,d) = (heading c1 c2, distance c1 c2) v = (d * w, h) in addVector v c1 -- | Compute the points at which two circles intersect (assumes a flat plain). If -- the circles do not intersect or are identical then the result is @Nothing@. circleIntersectionPoints :: (Coordinate a) => (a, Distance) -> (a, Distance) -> Maybe (a,a) circleIntersectionPoints (a,r1) (b,r2) | a ^. latL == b ^. latL && a ^. lonL == b ^. lonL && r1 == r2 = Nothing -- FIXME need approx eq | r1 + r2 < ab = Nothing | any isNaN (map (^. latL) pts) || any isNaN (map (^. lonL) pts) = Nothing | otherwise = Just (p1, p2) where ab = distance a b angABX = acos ( (r1^2 + ab^2 - r2^2) / (2 * r1 * ab) ) ang1 = heading a b + angABX ang2 = heading a b - angABX p1 = addVector (r1, ang1) a p2 = addVector (r1, ang2) a pts = [p1,p2] -- | Find the area in which all given circles intersect. The resulting -- area is described in terms of the bounding arcs. All cirlces must -- intersect at two points. intersectionArcsOf :: (Coordinate a) => [Circle a] -> [Arc a] intersectionArcsOf cs = let isArcWithinCircle circ arc = maximumDistanceOfArc (fst circ) arc <= (snd circ) isArcWithinAllCircles arc = all ($ arc) (map isArcWithinCircle cs) -- getArcs :: Circle a -> Circle a -> [Arc a] getArcs c1 c2 = concatMap (buildArcsFromPoints c1 c2) . maybeToList $ circleIntersectionPoints c1 c2 -- buildArcsFromPoints :: (a, a) -> [Arc a] buildArcsFromPoints c1 c2 (p1,p2) = let c1h1 = heading (fst c1) p1 c1h2 = heading (fst c1) p2 c2h1 = heading (fst c2) p1 c2h2 = heading (fst c2) p2 in [(c1,c1h1,c1h2), (c1,c1h2, c1h1), (c2,c2h1,c2h2), (c2,c2h2,c2h1)] in filter isArcWithinAllCircles . concatMap (uncurry getArcs) . choose2 $ cs maximumDistanceOfArc :: (Coordinate a) => a -> Arc a -> Distance maximumDistanceOfArc pnt ((c,r), h1, h2) = let pcHeading = heading pnt c in if ((pcHeading < h1 || pcHeading > h2) && h1 < h2) || ((pcHeading > h2 && pcHeading < h1) && h1 > h2) then max (distance pnt (addVector (r,h1) c)) (distance pnt (addVector (r,h2) c)) else distance pnt c + r choose2 :: [a] -> [(a,a)] choose2 [] = [] choose2 (x:xs) = map (x,) xs ++ choose2 xs -- |@divideArea vDist hDist nw se@ divides an area into a grid of equally -- spaced coordinates within the box drawn by the northwest point (nw) and -- southeast point (se). Because this uses floating point there might be a -- different number of points in some rows (the last might be too far east based -- on a heading from the se point). divideArea :: (Coordinate c) => Distance -> Distance -> c -> c -> [[c]] divideArea vDist hDist nw se = let (top,left) = (nw ^. latL, nw ^. lonL) (btm,right) = (se ^. latL, se ^. lonL) columnOne = takeWhile ( (<= west) . heading se) . iterate (addVector (vDist, south)) $ nw buildRow = takeWhile ((>= north) . heading se) . iterate (addVector (hDist, east)) in map buildRow columnOne -- |Reads a GPX file (using the GPX library) by simply concatenating all the -- tracks, segments, and points ('trkpts', 'trksegs', 'trks') into a single 'Trail'. readGPX :: FilePath -> IO (Trail Wpt) readGPX = liftM (concatMap (^. trkptsL). concatMap (^. trksegsL) . concatMap (^. trksL)) . readGpxFile writeGPX :: FilePath -> Trail Wpt -> IO () writeGPX fp ps = writeGpxFile fp $ gpx "1.0" "Haskell GPS Package (via the GPX package)" Nothing [] [] [trk Nothing Nothing Nothing Nothing [] Nothing Nothing Nothing [trkseg ps Nothing]] Nothing -- writeGpxFile should go in the GPX package writeGpxFile :: FilePath -> Gpx -> IO () writeGpxFile fp gpx = runX_ (constA gpx >>> xpickleDocument (xpickle :: PU Gpx) [] fp) runX_ t = runX t >> return () readGPXSegments :: FilePath -> IO [Trail Wpt] readGPXSegments = liftM (map (concatMap (^. trkptsL)) . map (^. trksegsL) . concatMap (^. trksL)) . readGpxFile readGpxFile :: FilePath -> IO [Gpx] readGpxFile = runX . xunpickleDocument (xpickle :: PU Gpx) [withRemoveWS yes, withValidate no]