// jar_xm.h // // ORIGINAL LICENSE - FOR LIBXM: // // Author: Romain "Artefact2" Dalmaso // Contributor: Dan Spencer // Repackaged into jar_xm.h By: Joshua Adam Reisenauer // This program is free software. It comes without any warranty, to the // extent permitted by applicable law. You can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To Public // License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/wtfpl/COPYING for more details. // // HISTORY: // v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 // v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) // v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) // v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop // v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability // v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments // v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation // v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code // v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments // // USAGE: // // In ONE source file, put: // // #define JAR_XM_IMPLEMENTATION // #include "jar_xm.h" // // Other source files should just include jar_xm.h // // SAMPLE CODE: // // jar_xm_context_t *musicptr; // float musicBuffer[48000 / 60]; // int intro_load(void) // { // jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM"); // return 1; // } // int intro_unload(void) // { // jar_xm_free_context(musicptr); // return 1; // } // int intro_tick(long counter) // { // jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2); // if(IsKeyDown(KEY_ENTER)) // return 1; // return 0; // } // #ifndef INCLUDE_JAR_XM_H #define INCLUDE_JAR_XM_H #include #define JAR_XM_DEBUG 0 #define JAR_XM_DEFENSIVE 1 //#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension // Allow custom memory allocators #ifndef JARXM_MALLOC #define JARXM_MALLOC(sz) malloc(sz) #endif #ifndef JARXM_FREE #define JARXM_FREE(p) free(p) #endif //------------------------------------------------------------------------------- struct jar_xm_context_s; typedef struct jar_xm_context_s jar_xm_context_t; #ifdef __cplusplus extern "C" { #endif //** Create a XM context. // * @param moddata the contents of the module // * @param rate play rate in Hz, recommended value of 48000 // * @returns 0 on success // * @returns 1 if module data is not sane // * @returns 2 if memory allocation failed // * @returns 3 unable to open input file // * @returns 4 fseek() failed // * @returns 5 fread() failed // * @returns 6 unkown error // * @deprecated This function is unsafe! // * @see jar_xm_create_context_safe() int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); //** Create a XM context. // * @param moddata the contents of the module // * @param rate play rate in Hz, recommended value of 48000 // * @returns 0 on success // * @returns 1 if module data is not sane // * @returns 2 if memory allocation failed // * @deprecated This function is unsafe! // * @see jar_xm_create_context_safe() int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); //** Create a XM context. // * @param moddata the contents of the module // * @param moddata_length the length of the contents of the module, in bytes // * @param rate play rate in Hz, recommended value of 48000 // * @returns 0 on success // * @returns 1 if module data is not sane // * @returns 2 if memory allocation failed int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); //** Free a XM context created by jar_xm_create_context(). */ void jar_xm_free_context(jar_xm_context_t* ctx); //** Play the module and put the sound samples in an output buffer. // * @param output buffer of 2*numsamples elements (A left and right value for each sample) // * @param numsamples number of samples to generate void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); //** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. // * @param output buffer of 2*numsamples elements (A left and right value for each sample) // * @param numsamples number of samples to generate void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); jar_xm_generate_samples(ctx, musicBuffer, numsamples); if(output){ for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int } JARXM_FREE(musicBuffer); } //** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. // * @param output buffer of 2*numsamples elements (A left and right value for each sample) // * @param numsamples number of samples to generate void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); jar_xm_generate_samples(ctx, musicBuffer, numsamples); if(output){ for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit } JARXM_FREE(musicBuffer); } //** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). // * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); //** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); //** Mute or unmute a channel. // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). // * @return whether the channel was muted. bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); //** Mute or unmute an instrument. // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). // * @return whether the instrument was muted. bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); //** Get the module name as a NUL-terminated string. const char* jar_xm_get_module_name(jar_xm_context_t* ctx); //** Get the tracker name as a NUL-terminated string. const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); //** Get the number of channels. uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); //** Get the module length (in patterns). uint16_t jar_xm_get_module_length(jar_xm_context_t*); //** Get the number of patterns. uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); //** Get the number of rows of a pattern. // * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); //** Get the number of instruments. uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); //** Get the number of samples of an instrument. // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); //** Get the current module speed. // * @param bpm will receive the current BPM // * @param tempo will receive the current tempo (ticks per line) void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); //** Get the current position in the module being played. // * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) // * @param pattern if not NULL, will receive the current pattern number // * @param row if not NULL, will receive the current row // * @param samples if not NULL, will receive the total number of // * generated samples (divide by sample rate to get seconds of generated audio) void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); //** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); //** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). // * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); //** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); //** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. // * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. // * @note This function is very slow and should only be run once, if at all. uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); #ifdef __cplusplus } #endif //------------------------------------------------------------------------------- #ifdef JAR_XM_IMPLEMENTATION #include #include #include #include #include #if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0 #include #define DEBUG(fmt, ...) do { \ fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \ fflush(stderr); \ } while(0) #else #define DEBUG(...) #endif #if jar_xm_BIG_ENDIAN #error "Big endian platforms are not yet supported, sorry" /* Make sure the compiler stops, even if #error is ignored */ extern int __fail[-1]; #endif /* ----- XM constants ----- */ #define SAMPLE_NAME_LENGTH 22 #define INSTRUMENT_NAME_LENGTH 22 #define MODULE_NAME_LENGTH 20 #define TRACKER_NAME_LENGTH 20 #define PATTERN_ORDER_TABLE_LENGTH 256 #define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 #define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max #define MAX_NUM_ROWS 256 #define jar_xm_SAMPLE_RAMPING_POINTS 8 /* ----- Data types ----- */ enum jar_xm_waveform_type_e { jar_xm_SINE_WAVEFORM = 0, jar_xm_RAMP_DOWN_WAVEFORM = 1, jar_xm_SQUARE_WAVEFORM = 2, jar_xm_RANDOM_WAVEFORM = 3, jar_xm_RAMP_UP_WAVEFORM = 4, }; typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t; enum jar_xm_loop_type_e { jar_xm_NO_LOOP, jar_xm_FORWARD_LOOP, jar_xm_PING_PONG_LOOP, }; typedef enum jar_xm_loop_type_e jar_xm_loop_type_t; enum jar_xm_frequency_type_e { jar_xm_LINEAR_FREQUENCIES, jar_xm_AMIGA_FREQUENCIES, }; typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t; struct jar_xm_envelope_point_s { uint16_t frame; uint16_t value; }; typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t; struct jar_xm_envelope_s { jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS]; uint8_t num_points; uint8_t sustain_point; uint8_t loop_start_point; uint8_t loop_end_point; bool enabled; bool sustain_enabled; bool loop_enabled; }; typedef struct jar_xm_envelope_s jar_xm_envelope_t; struct jar_xm_sample_s { char name[SAMPLE_NAME_LENGTH + 1]; int8_t bits; /* Either 8 or 16 */ int8_t stereo; uint32_t length; uint32_t loop_start; uint32_t loop_length; uint32_t loop_end; float volume; int8_t finetune; jar_xm_loop_type_t loop_type; float panning; int8_t relative_note; uint64_t latest_trigger; float* data; }; typedef struct jar_xm_sample_s jar_xm_sample_t; struct jar_xm_instrument_s { char name[INSTRUMENT_NAME_LENGTH + 1]; uint16_t num_samples; uint8_t sample_of_notes[NUM_NOTES]; jar_xm_envelope_t volume_envelope; jar_xm_envelope_t panning_envelope; jar_xm_waveform_type_t vibrato_type; uint8_t vibrato_sweep; uint8_t vibrato_depth; uint8_t vibrato_rate; uint16_t volume_fadeout; uint64_t latest_trigger; bool muted; jar_xm_sample_t* samples; }; typedef struct jar_xm_instrument_s jar_xm_instrument_t; struct jar_xm_pattern_slot_s { uint8_t note; /* 1-96, 97 = Key Off note */ uint8_t instrument; /* 1-128 */ uint8_t volume_column; uint8_t effect_type; uint8_t effect_param; }; typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t; struct jar_xm_pattern_s { uint16_t num_rows; jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */ }; typedef struct jar_xm_pattern_s jar_xm_pattern_t; struct jar_xm_module_s { char name[MODULE_NAME_LENGTH + 1]; char trackername[TRACKER_NAME_LENGTH + 1]; uint16_t length; uint16_t restart_position; uint16_t num_channels; uint16_t num_patterns; uint16_t num_instruments; uint16_t linear_interpolation; uint16_t ramping; jar_xm_frequency_type_t frequency_type; uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; jar_xm_pattern_t* patterns; jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ }; typedef struct jar_xm_module_s jar_xm_module_t; struct jar_xm_channel_context_s { float note; float orig_note; /* The original note before effect modifications, as read in the pattern. */ jar_xm_instrument_t* instrument; /* Could be NULL */ jar_xm_sample_t* sample; /* Could be NULL */ jar_xm_pattern_slot_t* current; float sample_position; float period; float frequency; float step; bool ping; /* For ping-pong samples: true is -->, false is <-- */ float volume; /* Ideally between 0 (muted) and 1 (loudest) */ float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */ uint16_t autovibrato_ticks; bool sustained; float fadeout_volume; float volume_envelope_volume; float panning_envelope_panning; uint16_t volume_envelope_frame_count; uint16_t panning_envelope_frame_count; float autovibrato_note_offset; bool arp_in_progress; uint8_t arp_note_offset; uint8_t volume_slide_param; uint8_t fine_volume_slide_param; uint8_t global_volume_slide_param; uint8_t panning_slide_param; uint8_t portamento_up_param; uint8_t portamento_down_param; uint8_t fine_portamento_up_param; uint8_t fine_portamento_down_param; uint8_t extra_fine_portamento_up_param; uint8_t extra_fine_portamento_down_param; uint8_t tone_portamento_param; float tone_portamento_target_period; uint8_t multi_retrig_param; uint8_t note_delay_param; uint8_t pattern_loop_origin; /* Where to restart a E6y loop */ uint8_t pattern_loop_count; /* How many loop passes have been done */ bool vibrato_in_progress; jar_xm_waveform_type_t vibrato_waveform; bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */ uint8_t vibrato_param; uint16_t vibrato_ticks; /* Position in the waveform */ float vibrato_note_offset; jar_xm_waveform_type_t tremolo_waveform; bool tremolo_waveform_retrigger; uint8_t tremolo_param; uint8_t tremolo_ticks; float tremolo_volume; uint8_t tremor_param; bool tremor_on; uint64_t latest_trigger; bool muted; //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. float target_panning; float target_volume; unsigned long frame_count; float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; float curr_left; float curr_right; float actual_panning; float actual_volume; }; typedef struct jar_xm_channel_context_s jar_xm_channel_context_t; struct jar_xm_context_s { void* allocated_memory; jar_xm_module_t module; uint32_t rate; uint16_t default_tempo; // Number of ticks per row uint16_t default_bpm; float default_global_volume; uint16_t tempo; // Number of ticks per row uint16_t bpm; float global_volume; float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ float panning_ramp; /* Same for panning. */ uint8_t current_table_index; uint8_t current_row; uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */ float remaining_samples_in_tick; uint64_t generated_samples; bool position_jump; bool pattern_break; uint8_t jump_dest; uint8_t jump_row; uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ uint8_t loop_count; uint8_t max_loop_count; jar_xm_channel_context_t* channels; }; #if JAR_XM_DEFENSIVE //** Check the module data for errors/inconsistencies. // * @returns 0 if everything looks OK. Module should be safe to load. int jar_xm_check_sanity_preload(const char*, size_t); //** Check a loaded module for errors/inconsistencies. // * @returns 0 if everything looks OK. int jar_xm_check_sanity_postload(jar_xm_context_t*); #endif //** Get the number of bytes needed to store the module data in a dynamically allocated blank context. // * Things that are dynamically allocated: // * - sample data // * - sample structures in instruments // * - pattern data // * - row loop count arrays // * - pattern structures in module // * - instrument structures in module // * - channel contexts // * - context structure itself // * @returns 0 if everything looks OK. size_t jar_xm_get_memory_needed_for_context(const char*, size_t); //** Populate the context from module data. // * @returns pointer to the memory pool char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate); } #define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1)) #define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1)) int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) { #if JAR_XM_DEFENSIVE int ret; #endif size_t bytes_needed; char* mempool; jar_xm_context_t* ctx; #if JAR_XM_DEFENSIVE if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) { DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret); return 1; } #endif bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); mempool = JARXM_MALLOC(bytes_needed); if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); return 2; } /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */ memset(mempool, 0, bytes_needed); ctx = (*ctxp = (jar_xm_context_t *)mempool); ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */ mempool += sizeof(jar_xm_context_t); ctx->rate = rate; mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool); mempool = ALIGN_PTR(mempool, 16); ctx->channels = (jar_xm_channel_context_t*)mempool; mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); mempool = ALIGN_PTR(mempool, 16); ctx->default_global_volume = 1.f; ctx->global_volume = ctx->default_global_volume; ctx->volume_ramp = (1.f / 128.f); ctx->panning_ramp = (1.f / 128.f); for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_channel_context_t *ch = ctx->channels + i; ch->ping = true; ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; ch->vibrato_waveform_retrigger = true; ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; ch->tremolo_waveform_retrigger = true; ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; ch->panning = ch->panning_envelope_panning = .5f; ch->actual_volume = .0f; ch->actual_panning = .5f; } mempool = ALIGN_PTR(mempool, 16); ctx->row_loop_count = (uint8_t *)mempool; mempool += MAX_NUM_ROWS * sizeof(uint8_t); #if JAR_XM_DEFENSIVE if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); jar_xm_free_context(ctx); return 1; } #endif return 0; } void jar_xm_free_context(jar_xm_context_t *ctx) { if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } } void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { ctx->max_loop_count = loopcnt; } uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { return ctx->loop_count; } bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { bool old = ctx->channels[channel - 1].muted; ctx->channels[channel - 1].muted = mute; return old; } bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { bool old = ctx->module.instruments[instr - 1].muted; ctx->module.instruments[instr - 1].muted = mute; return old; } const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { return ctx->module.name; } const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { return ctx->module.trackername; } uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { return ctx->module.num_channels; } uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { return ctx->module.length; } uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { return ctx->module.num_patterns; } uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { return ctx->module.patterns[pattern].num_rows; } uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { return ctx->module.num_instruments; } uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { return ctx->module.instruments[instrument - 1].num_samples; } void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { if(bpm) *bpm = ctx->bpm; if(tempo) *tempo = ctx->tempo; } void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { if(pattern_index) *pattern_index = ctx->current_table_index; if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; if(row) *row = ctx->current_row; if(samples) *samples = ctx->generated_samples; } uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { return ctx->module.instruments[instr - 1].latest_trigger; } uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; } uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { return ctx->channels[chn - 1].latest_trigger; } //* .xm files are little-endian. (XXX: Are they really?) //* Bound reader macros. //* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. #define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) #define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) #define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) #define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { uint8_t *dst_c = dst; const uint8_t *src_c = src; /* how many bytes can be copied without overrunning `src` */ size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes; memcpy(dst_c, src_c + offset, copy_bytes); /* padded bytes */ memset(dst_c + copy_bytes, 0, dst_len - copy_bytes); } #if JAR_XM_DEFENSIVE int jar_xm_check_sanity_preload(const char* module, size_t module_length) { if(module_length < 60) { return 4; } if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } if(module[37] != 0x1A) { return 2; } if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ return 0; } int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { /* Check the POT */ for(uint8_t i = 0; i < ctx->module.length; ++i) { if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { if(i+1 == ctx->module.length && ctx->module.length > 1) { DEBUG("trimming invalid POT at pos %X", i); --ctx->module.length; } else { DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); return 1; } } } return 0; } #endif size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { size_t memory_needed = 0; size_t offset = 60; /* 60 = Skip the first header */ uint16_t num_channels; uint16_t num_patterns; uint16_t num_instruments; /* Read the module header */ num_channels = READ_U16(offset + 8); num_patterns = READ_U16(offset + 10); memory_needed += num_patterns * sizeof(jar_xm_pattern_t); memory_needed = ALIGN(memory_needed, 16); num_instruments = READ_U16(offset + 12); memory_needed += num_instruments * sizeof(jar_xm_instrument_t); memory_needed = ALIGN(memory_needed, 16); memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ offset += READ_U32(offset); /* Header size */ /* Read pattern headers */ for(uint16_t i = 0; i < num_patterns; ++i) { uint16_t num_rows; num_rows = READ_U16(offset + 5); memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ } memory_needed = ALIGN(memory_needed, 16); /* Read instrument headers */ for(uint16_t i = 0; i < num_instruments; ++i) { uint16_t num_samples; uint32_t sample_header_size = 0; uint32_t sample_size_aggregate = 0; num_samples = READ_U16(offset + 27); memory_needed += num_samples * sizeof(jar_xm_sample_t); if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } offset += READ_U32(offset); /* Instrument header size */ for(uint16_t j = 0; j < num_samples; ++j) { uint32_t sample_size; uint8_t flags; sample_size = READ_U32(offset); flags = READ_U8(offset + 14); sample_size_aggregate += sample_size; if(flags & (1 << 4)) { /* 16 bit sample */ memory_needed += sample_size * (sizeof(float) >> 1); } else { /* 8 bit sample */ memory_needed += sample_size * sizeof(float); } offset += sample_header_size; } offset += sample_size_aggregate; } memory_needed += num_channels * sizeof(jar_xm_channel_context_t); memory_needed += sizeof(jar_xm_context_t); return memory_needed; } char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) { size_t offset = 0; jar_xm_module_t* mod = &(ctx->module); /* Read XM header */ READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH); READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH); offset += 60; /* Read module header */ uint32_t header_size = READ_U32(offset); mod->length = READ_U16(offset + 4); mod->restart_position = READ_U16(offset + 6); mod->num_channels = READ_U16(offset + 8); mod->num_patterns = READ_U16(offset + 10); mod->num_instruments = READ_U16(offset + 12); mod->patterns = (jar_xm_pattern_t*)mempool; mod->linear_interpolation = 1; // Linear interpolation can be set after loading mod->ramping = 1; // ramping can be set after loading mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); mempool = ALIGN_PTR(mempool, 16); mod->instruments = (jar_xm_instrument_t*)mempool; mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); mempool = ALIGN_PTR(mempool, 16); uint16_t flags = READ_U32(offset + 14); mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; ctx->default_tempo = READ_U16(offset + 16); ctx->default_bpm = READ_U16(offset + 18); ctx->tempo =ctx->default_tempo; ctx->bpm = ctx->default_bpm; READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); offset += header_size; /* Read patterns */ for(uint16_t i = 0; i < mod->num_patterns; ++i) { uint16_t packed_patterndata_size = READ_U16(offset + 7); jar_xm_pattern_t* pat = mod->patterns + i; pat->num_rows = READ_U16(offset + 5); pat->slots = (jar_xm_pattern_slot_t*)mempool; mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); offset += READ_U32(offset); /* Pattern header length */ if(packed_patterndata_size == 0) { /* No pattern data is present */ memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); } else { /* This isn't your typical for loop */ for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { uint8_t note = READ_U8(offset + j); jar_xm_pattern_slot_t* slot = pat->slots + k; if(note & (1 << 7)) { /* MSB is set, this is a compressed packet */ ++j; if(note & (1 << 0)) { /* Note follows */ slot->note = READ_U8(offset + j); ++j; } else { slot->note = 0; } if(note & (1 << 1)) { /* Instrument follows */ slot->instrument = READ_U8(offset + j); ++j; } else { slot->instrument = 0; } if(note & (1 << 2)) { /* Volume column follows */ slot->volume_column = READ_U8(offset + j); ++j; } else { slot->volume_column = 0; } if(note & (1 << 3)) { /* Effect follows */ slot->effect_type = READ_U8(offset + j); ++j; } else { slot->effect_type = 0; } if(note & (1 << 4)) { /* Effect parameter follows */ slot->effect_param = READ_U8(offset + j); ++j; } else { slot->effect_param = 0; } } else { /* Uncompressed packet */ slot->note = note; slot->instrument = READ_U8(offset + j + 1); slot->volume_column = READ_U8(offset + j + 2); slot->effect_type = READ_U8(offset + j + 3); slot->effect_param = READ_U8(offset + j + 4); j += 5; } } } offset += packed_patterndata_size; } mempool = ALIGN_PTR(mempool, 16); /* Read instruments */ for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) { uint32_t sample_header_size = 0; jar_xm_instrument_t* instr = mod->instruments + i; READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH); instr->num_samples = READ_U16(offset + 27); if(instr->num_samples > 0) { /* Read extra header properties */ sample_header_size = READ_U32(offset + 29); READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES); instr->volume_envelope.num_points = READ_U8(offset + 225); instr->panning_envelope.num_points = READ_U8(offset + 226); for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) { instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j); instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2); } for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) { instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j); instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2); } instr->volume_envelope.sustain_point = READ_U8(offset + 227); instr->volume_envelope.loop_start_point = READ_U8(offset + 228); instr->volume_envelope.loop_end_point = READ_U8(offset + 229); instr->panning_envelope.sustain_point = READ_U8(offset + 230); instr->panning_envelope.loop_start_point = READ_U8(offset + 231); instr->panning_envelope.loop_end_point = READ_U8(offset + 232); uint8_t flags = READ_U8(offset + 233); instr->volume_envelope.enabled = flags & (1 << 0); instr->volume_envelope.sustain_enabled = flags & (1 << 1); instr->volume_envelope.loop_enabled = flags & (1 << 2); flags = READ_U8(offset + 234); instr->panning_envelope.enabled = flags & (1 << 0); instr->panning_envelope.sustain_enabled = flags & (1 << 1); instr->panning_envelope.loop_enabled = flags & (1 << 2); instr->vibrato_type = READ_U8(offset + 235); if(instr->vibrato_type == 2) { instr->vibrato_type = 1; } else if(instr->vibrato_type == 1) { instr->vibrato_type = 2; } instr->vibrato_sweep = READ_U8(offset + 236); instr->vibrato_depth = READ_U8(offset + 237); instr->vibrato_rate = READ_U8(offset + 238); instr->volume_fadeout = READ_U16(offset + 239); instr->samples = (jar_xm_sample_t*)mempool; mempool += instr->num_samples * sizeof(jar_xm_sample_t); } else { instr->samples = NULL; } /* Instrument header size */ offset += READ_U32(offset); for(int j = 0; j < instr->num_samples; ++j) { /* Read sample header */ jar_xm_sample_t* sample = instr->samples + j; sample->length = READ_U32(offset); sample->loop_start = READ_U32(offset + 4); sample->loop_length = READ_U32(offset + 8); sample->loop_end = sample->loop_start + sample->loop_length; sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; if (sample->volume > 1.0f) {sample->volume = 1.f;}; sample->finetune = (int8_t)READ_U8(offset + 13); uint8_t flags = READ_U8(offset + 14); switch (flags & 3) { case 2: case 3: sample->loop_type = jar_xm_PING_PONG_LOOP; case 1: sample->loop_type = jar_xm_FORWARD_LOOP; break; default: sample->loop_type = jar_xm_NO_LOOP; break; }; sample->bits = (flags & 0x10) ? 16 : 8; sample->stereo = (flags & 0x20) ? 1 : 0; sample->panning = (float)READ_U8(offset + 15) / 255.f; sample->relative_note = (int8_t)READ_U8(offset + 16); READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); sample->data = (float*)mempool; if(sample->bits == 16) { /* 16 bit sample */ mempool += sample->length * (sizeof(float) >> 1); sample->loop_start >>= 1; sample->loop_length >>= 1; sample->loop_end >>= 1; sample->length >>= 1; } else { /* 8 bit sample */ mempool += sample->length * sizeof(float); } // Adjust loop points to reflect half of the reported length (stereo) if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { div_t lstart = div(READ_U32(offset + 4), 2); sample->loop_start = lstart.quot; div_t llength = div(READ_U32(offset + 8), 2); sample->loop_length = llength.quot; sample->loop_end = sample->loop_start + sample->loop_length; }; offset += sample_header_size; } // Read all samples and convert them to float values for(int j = 0; j < instr->num_samples; ++j) { /* Read sample data */ jar_xm_sample_t* sample = instr->samples + j; int length = sample->length; if (sample->stereo) { // Since it is stereo, we cut the sample in half (treated as single channel) div_t result = div(sample->length, 2); if(sample->bits == 16) { int16_t v = 0; for(int k = 0; k < length; ++k) { if (k == result.quot) { v = 0;}; v = v + (int16_t)READ_U16(offset + (k << 1)); sample->data[k] = (float) v / 32768.f ;//* sign; if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; } offset += sample->length << 1; } else { int8_t v = 0; for(int k = 0; k < length; ++k) { if (k == result.quot) { v = 0;}; v = v + (int8_t)READ_U8(offset + k); sample->data[k] = (float)v / 128.f ;//* sign; if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; } offset += sample->length; }; sample->length = result.quot; } else { if(sample->bits == 16) { int16_t v = 0; for(int k = 0; k < length; ++k) { v = v + (int16_t)READ_U16(offset + (k << 1)); sample->data[k] = (float) v / 32768.f ;//* sign; if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; } offset += sample->length << 1; } else { int8_t v = 0; for(int k = 0; k < length; ++k) { v = v + (int8_t)READ_U8(offset + k); sample->data[k] = (float)v / 128.f ;//* sign; if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; } offset += sample->length; } } }; }; return mempool; }; //------------------------------------------------------------------------------- //THE FOLLOWING IS FOR PLAYING static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*); static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float); static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t); static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t); static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t); static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*); static void jar_xm_envelopes(jar_xm_channel_context_t*); static float jar_xm_linear_period(float); static float jar_xm_linear_frequency(float); static float jar_xm_amiga_period(float); static float jar_xm_amiga_frequency(float); static float jar_xm_period(jar_xm_context_t*, float); static float jar_xm_frequency(jar_xm_context_t*, float, float); static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*); static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*); static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags); static void jar_xm_cut_note(jar_xm_channel_context_t*); static void jar_xm_key_off(jar_xm_channel_context_t*); static void jar_xm_post_pattern_change(jar_xm_context_t*); static void jar_xm_row(jar_xm_context_t*); static void jar_xm_tick(jar_xm_context_t*); static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); #define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) #define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) #define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; #define jar_xm_CLAMP_UP1F(vol, limit) do { \ if((vol) > (limit)) (vol) = (limit); \ } while(0) #define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f) #define jar_xm_CLAMP_DOWN1F(vol, limit) do { \ if((vol) < (limit)) (vol) = (limit); \ } while(0) #define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f) #define jar_xm_CLAMP2F(vol, up, down) do { \ if((vol) > (up)) (vol) = (up); \ else if((vol) < (down)) (vol) = (down); \ } while(0) #define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f) #define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \ if((val) > (goal)) { \ (val) -= (incr); \ jar_xm_CLAMP_DOWN1F((val), (goal)); \ } else if((val) < (goal)) { \ (val) += (incr); \ jar_xm_CLAMP_UP1F((val), (goal)); \ } \ } while(0) #define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u))) #define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u))) #define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \ || (s)->effect_type == 5 \ || ((s)->volume_column >> 4) == 0xF) #define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \ && (s)->effect_param != 0) #define HAS_VIBRATO(s) ((s)->effect_type == 4 \ || (s)->effect_param == 6 \ || ((s)->volume_column >> 4) == 0xB) #define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) #define NOTE_OFF 97 static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { static unsigned int next_rand = 24492; step %= 0x40; switch(waveform) { case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ return -sinf(2.f * 3.141592f * (float)step / (float)0x40); case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ return (float)(0x20 - step) / 0x20; case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ return (step >= 0x20) ? 1.f : -1.f; case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ next_rand = next_rand * 1103515245 + 12345; return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ return (float)(step - 0x20) / 0x20; default: break; } return .0f; } static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; jar_xm_instrument_t* instr = ch->instrument; float sweep = 1.f; if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; jar_xm_update_frequency(ctx, ch); } static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { unsigned int step = pos * (param >> 4); ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; jar_xm_update_frequency(ctx, ch); } static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { unsigned int step = pos * (param >> 4); ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; } static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { switch(tick % 3) { case 0: ch->arp_in_progress = false; ch->arp_note_offset = 0; break; case 2: ch->arp_in_progress = true; ch->arp_note_offset = param >> 4; break; case 1: ch->arp_in_progress = true; ch->arp_note_offset = param & 0x0F; break; } jar_xm_update_frequency(ctx, ch); } static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { /* 3xx called without a note, wait until we get an actual target note. */ if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ if(ch->period != ch->tone_portamento_target_period) { jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); jar_xm_update_frequency(ctx, ch); } } static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */ if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } ch->period += period_offset; jar_xm_CLAMP_DOWN(ch->period); /* XXX: upper bound of period ? */ jar_xm_update_frequency(ctx, ch); } static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; }; static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; }; static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { /* Linear interpolation between two envelope points */ if(pos <= a->frame) return a->value; else if(pos >= b->frame) return b->value; else { float p = (float)(pos - a->frame) / (float)(b->frame - a->frame); return a->value * (1 - p) + b->value * p; } } static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { /* Loop if necessary */ if(ctx->current_table_index >= ctx->module.length) { ctx->current_table_index = ctx->module.restart_position; ctx->tempo =ctx->default_tempo; // reset to file default value ctx->bpm = ctx->default_bpm; // reset to file default value ctx->global_volume = ctx->default_global_volume; // reset to file default value } } static float jar_xm_linear_period(float note) { return 7680.f - note * 64.f; } static float jar_xm_linear_frequency(float period) { return 8363.f * powf(2.f, (4608.f - period) / 768.f); } static float jar_xm_amiga_period(float note) { unsigned int intnote = note; uint8_t a = intnote % 12; int8_t octave = note / 12.f - 2; uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; if(octave > 0) { p1 >>= octave; p2 >>= octave; } else if(octave < 0) { p1 <<= -octave; p2 <<= -octave; } return jar_xm_LERP(p1, p2, note - intnote); } static float jar_xm_amiga_frequency(float period) { if(period == .0f) return .0f; return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ } static float jar_xm_period(jar_xm_context_t* ctx, float note) { switch(ctx->module.frequency_type) { case jar_xm_LINEAR_FREQUENCIES: return jar_xm_linear_period(note); case jar_xm_AMIGA_FREQUENCIES: return jar_xm_amiga_period(note); } return .0f; } static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { switch(ctx->module.frequency_type) { case jar_xm_LINEAR_FREQUENCIES: return jar_xm_linear_frequency(period - 64.f * note_offset); case jar_xm_AMIGA_FREQUENCIES: if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; int8_t octave; float note; uint16_t p1, p2; uint8_t a = octave = 0; /* Find the octave of the current period */ if(period > amiga_frequencies[0]) { --octave; while(period > (amiga_frequencies[0] << -octave)) --octave; } else if(period < amiga_frequencies[12]) { ++octave; while(period < (amiga_frequencies[12] >> octave)) ++octave; } /* Find the smallest note closest to the current period */ for(uint8_t i = 0; i < 12; ++i) { p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; if(octave > 0) { p1 >>= octave; p2 >>= octave; } else if(octave < 0) { p1 <<= (-octave); p2 <<= (-octave); } if(p2 <= period && period <= p1) { a = i; break; } } if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); } return .0f; } static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); ch->step = ch->frequency / ctx->rate; } static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { jar_xm_module_t* mod = &(ctx->module); if(s->instrument > 0) { if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); } else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ jar_xm_cut_note(ch); ch->instrument = NULL; ch->sample = NULL; } else { ch->instrument = ctx->module.instruments + (s->instrument - 1); if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ /* Sample position is kept, but envelopes are reset */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); } } } if(NOTE_IS_VALID(s->note)) { // note value is s->note -1 jar_xm_instrument_t* instr = ch->instrument; if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { /* Tone portamento in effect */ ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); } else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ jar_xm_cut_note(ch); } else { if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { if (mod->ramping) { for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { jar_xm_next_of_sample(ctx, ch, i); } ch->frame_count = 0; }; ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; if(s->instrument > 0) { jar_xm_trigger_note(ctx, ch, 0); } else { /* Ghost note: keep old volume */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); } } else { jar_xm_cut_note(ch); } } } else if(s->note == NOTE_OFF) { jar_xm_key_off(ch); } // Interpret Effect column switch(s->effect_type) { case 1: /* 1xx: Portamento up */ if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } break; case 2: /* 2xx: Portamento down */ if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } break; case 3: /* 3xx: Tone portamento */ if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } break; case 4: /* 4xy: Vibrato */ if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ break; case 5: /* 5xy: Tone portamento + Volume slide */ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; case 6: /* 6xy: Vibrato + Volume slide */ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; case 7: /* 7xy: Tremolo */ if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ break; case 8: /* 8xx: Set panning */ ch->panning = (float)s->effect_param / 255.f; break; case 9: /* 9xx: Sample offset */ if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); switch (ch->sample->loop_type) { case jar_xm_NO_LOOP: if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ ch->sample_position = -1; } else { ch->sample_position = final_offset; } break; case jar_xm_FORWARD_LOOP: if (final_offset >= ch->sample->loop_end) { ch->sample_position -= ch->sample->loop_length; } else if(final_offset >= ch->sample->length) { ch->sample_position = ch->sample->loop_start; } else { ch->sample_position = final_offset; } break; case jar_xm_PING_PONG_LOOP: if(final_offset >= ch->sample->loop_end) { ch->ping = false; ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; } else if(final_offset >= ch->sample->length) { ch->ping = false; ch->sample_position -= ch->sample->length - 1; } else { ch->sample_position = final_offset; }; break; } } break; case 0xA: /* Axy: Volume slide */ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; case 0xB: /* Bxx: Position jump */ if(s->effect_param < ctx->module.length) { ctx->position_jump = true; ctx->jump_dest = s->effect_param; } break; case 0xC: /* Cxx: Set volume */ ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; break; case 0xD: /* Dxx: Pattern break */ /* Jump after playing this line */ ctx->pattern_break = true; ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); break; case 0xE: /* EXy: Extended command */ switch(s->effect_param >> 4) { case 1: /* E1y: Fine portamento up */ if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); break; case 2: /* E2y: Fine portamento down */ if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); break; case 4: /* E4y: Set vibrato control */ ch->vibrato_waveform = s->effect_param & 3; ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); break; case 5: /* E5y: Set finetune */ if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; ch->period = jar_xm_period(ctx, ch->note); jar_xm_update_frequency(ctx, ch); } break; case 6: /* E6y: Pattern loop */ if(s->effect_param & 0x0F) { if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ ch->pattern_loop_count = 0; ctx->position_jump = false; } else { /* Jump to the beginning of the loop */ ch->pattern_loop_count++; ctx->position_jump = true; ctx->jump_row = ch->pattern_loop_origin; ctx->jump_dest = ctx->current_table_index; } } else { ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ } break; case 7: /* E7y: Set tremolo control */ ch->tremolo_waveform = s->effect_param & 3; ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); break; case 0xA: /* EAy: Fine volume slide up */ if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); break; case 0xB: /* EBy: Fine volume slide down */ if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } jar_xm_volume_slide(ch, ch->fine_volume_slide_param); break; case 0xD: /* EDy: Note delay */ /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */ if(s->note == 0 && s->instrument == 0) { unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; if(ch->current->effect_param & 0x0F) { ch->note = ch->orig_note; jar_xm_trigger_note(ctx, ch, flags); } else { jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); } } break; case 0xE: /* EEy: Pattern delay */ ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; break; default: break; } break; case 0xF: /* Fxx: Set tempo/BPM */ if(s->effect_param > 0) { if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) ctx->tempo = s->effect_param; } else { //32 and greater values adjust the BPM ctx->bpm = s->effect_param; } } break; case 16: /* Gxx: Set global volume */ ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; break; case 17: /* Hxy: Global volume slide */ if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } break; case 21: /* Lxx: Set envelope position */ ch->volume_envelope_frame_count = s->effect_param; ch->panning_envelope_frame_count = s->effect_param; break; case 25: /* Pxy: Panning slide */ if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } break; case 27: /* Rxy: Multi retrig note */ if(s->effect_param > 0) { if((s->effect_param >> 4) == 0) { /* Keep previous x value */ ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); } else { ch->multi_retrig_param = s->effect_param; } } break; case 29: /* Txy: Tremor */ if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ break; case 33: /* Xxy: Extra stuff */ switch(s->effect_param >> 4) { case 1: /* X1y: Extra fine portamento up */ if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); break; case 2: /* X2y: Extra fine portamento down */ if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); break; default: break; } break; default: break; } } static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { ch->sample_position = 0.f; ch->ping = true; }; if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { if(ch->sample != NULL) { ch->volume = ch->sample->volume; }; }; ch->panning = ch->sample->panning; ch->sustained = true; ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; ch->panning_envelope_panning = .5f; ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0; ch->vibrato_note_offset = 0.f; ch->tremolo_volume = 0.f; ch->tremor_on = false; ch->autovibrato_ticks = 0; if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { ch->period = jar_xm_period(ctx, ch->note); jar_xm_update_frequency(ctx, ch); } ch->latest_trigger = ctx->generated_samples; if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } } static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { ch->volume = .0f; /* NB: this is not the same as Key Off */ // ch->curr_left = .0f; // ch->curr_right = .0f; } static void jar_xm_key_off(jar_xm_channel_context_t* ch) { ch->sustained = false; /* Key Off */ if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ } static void jar_xm_row(jar_xm_context_t* ctx) { if(ctx->position_jump) { ctx->current_table_index = ctx->jump_dest; ctx->current_row = ctx->jump_row; ctx->position_jump = false; ctx->pattern_break = false; ctx->jump_row = 0; jar_xm_post_pattern_change(ctx); } else if(ctx->pattern_break) { ctx->current_table_index++; ctx->current_row = ctx->jump_row; ctx->pattern_break = false; ctx->jump_row = 0; jar_xm_post_pattern_change(ctx); } jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; bool in_a_loop = false; /* Read notes information for all channels into temporary pattern slot */ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; jar_xm_channel_context_t* ch = ctx->channels + i; ch->current = s; // If there is no note delay effect (0xED) then... if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { //********** Process the channel slot information ********** jar_xm_handle_note_and_instrument(ctx, ch, s); } else { // read the note delay information ch->note_delay_param = s->effect_param & 0x0F; } if(!in_a_loop && ch->pattern_loop_count > 0) { // clarify if in a loop or not in_a_loop = true; } } if(!in_a_loop) { /* No E6y loop is in effect (or we are in the first pass) */ ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); } /// Move to next row ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { ctx->current_table_index++; ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ ctx->jump_row = 0; jar_xm_post_pattern_change(ctx); } } static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { if(env->num_points < 2) { if(env->num_points == 1) { *outval = (float)env->points[0].value / (float)0x40; if(*outval > 1) { *outval = 1; }; } else {; return; }; } else { if(env->loop_enabled) { uint16_t loop_start = env->points[env->loop_start_point].frame; uint16_t loop_end = env->points[env->loop_end_point].frame; uint16_t loop_length = loop_end - loop_start; if(*counter >= loop_end) { *counter -= loop_length; }; }; for(uint8_t j = 0; j < (env->num_points - 1); ++j) { if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; break; }; }; /* Make sure it is safe to increment frame count */ if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; }; }; static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { if(ch->instrument != NULL) { if(ch->instrument->volume_envelope.enabled) { if(!ch->sustained) { ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; jar_xm_CLAMP_DOWN(ch->fadeout_volume); }; jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); }; if(ch->instrument->panning_envelope.enabled) { jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); }; }; }; static void jar_xm_tick(jar_xm_context_t* ctx) { if(ctx->current_tick == 0) { jar_xm_row(ctx); // We have processed all ticks and we run the row } jar_xm_module_t* mod = &(ctx->module); for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_channel_context_t* ch = ctx->channels + i; jar_xm_envelopes(ch); jar_xm_autovibrato(ctx, ch); if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { ch->arp_in_progress = false; ch->arp_note_offset = 0; jar_xm_update_frequency(ctx, ch); } if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) { ch->vibrato_in_progress = false; ch->vibrato_note_offset = 0.f; jar_xm_update_frequency(ctx, ch); } // Effects in volumne column mostly handled on a per tick basis switch(ch->current->volume_column & 0xF0) { case 0x50: // Checks for volume = 64 if(ch->current->volume_column != 0x50) break; case 0x10: // Set volume 0-15 case 0x20: // Set volume 16-32 case 0x30: // Set volume 32-48 case 0x40: // Set volume 48-64 ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; break; case 0x60: // Volume slide down jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); break; case 0x70: // Volume slide up jar_xm_volume_slide(ch, ch->current->volume_column << 4); break; case 0x80: // Fine volume slide down jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); break; case 0x90: // Fine volume slide up jar_xm_volume_slide(ch, ch->current->volume_column << 4); break; case 0xA0: // Set vibrato speed ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); break; case 0xB0: // Vibrato ch->vibrato_in_progress = false; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); break; case 0xC0: // Set panning if(!ctx->current_tick ) { ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; } break; case 0xD0: // Panning slide left jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); break; case 0xE0: // Panning slide right jar_xm_panning_slide(ch, ch->current->volume_column << 4); break; case 0xF0: // Tone portamento if(!ctx->current_tick ) { if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } }; jar_xm_tone_portamento(ctx, ch); break; default: break; } // Only some standard effects handled on a per tick basis // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis switch(ch->current->effect_type) { case 0: /* 0xy: Arpeggio */ if(ch->current->effect_param > 0) { char arp_offset = ctx->tempo % 3; switch(arp_offset) { case 2: /* 0 -> x -> 0 -> y -> x -> … */ if(ctx->current_tick == 1) { ch->arp_in_progress = true; ch->arp_note_offset = ch->current->effect_param >> 4; jar_xm_update_frequency(ctx, ch); break; } /* No break here, this is intended */ case 1: /* 0 -> 0 -> y -> x -> … */ if(ctx->current_tick == 0) { ch->arp_in_progress = false; ch->arp_note_offset = 0; jar_xm_update_frequency(ctx, ch); break; } /* No break here, this is intended */ case 0: /* 0 -> y -> x -> … */ jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset); default: break; } } break; case 1: /* 1xx: Portamento up */ if(ctx->current_tick == 0) break; jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); break; case 2: /* 2xx: Portamento down */ if(ctx->current_tick == 0) break; jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); break; case 3: /* 3xx: Tone portamento */ if(ctx->current_tick == 0) break; jar_xm_tone_portamento(ctx, ch); break; case 4: /* 4xy: Vibrato */ if(ctx->current_tick == 0) break; ch->vibrato_in_progress = true; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); break; case 5: /* 5xy: Tone portamento + Volume slide */ if(ctx->current_tick == 0) break; jar_xm_tone_portamento(ctx, ch); jar_xm_volume_slide(ch, ch->volume_slide_param); break; case 6: /* 6xy: Vibrato + Volume slide */ if(ctx->current_tick == 0) break; ch->vibrato_in_progress = true; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); jar_xm_volume_slide(ch, ch->volume_slide_param); break; case 7: /* 7xy: Tremolo */ if(ctx->current_tick == 0) break; jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); break; case 8: /* 8xy: Set panning */ break; case 9: /* 9xy: Sample offset */ break; case 0xA: /* Axy: Volume slide */ if(ctx->current_tick == 0) break; jar_xm_volume_slide(ch, ch->volume_slide_param); break; case 0xE: /* EXy: Extended command */ switch(ch->current->effect_param >> 4) { case 0x9: /* E9y: Retrigger note */ if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { jar_xm_trigger_note(ctx, ch, 0); jar_xm_envelopes(ch); } } break; case 0xC: /* ECy: Note cut */ if((ch->current->effect_param & 0x0F) == ctx->current_tick) { jar_xm_cut_note(ch); } break; case 0xD: /* EDy: Note delay */ if(ch->note_delay_param == ctx->current_tick) { jar_xm_handle_note_and_instrument(ctx, ch, ch->current); jar_xm_envelopes(ch); } break; default: break; } break; case 16: /* Fxy: Set tempo/BPM */ break; case 17: /* Hxy: Global volume slide */ if(ctx->current_tick == 0) break; if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; ctx->global_volume += f; jar_xm_CLAMP_UP(ctx->global_volume); } else { /* Global slide down */ float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; ctx->global_volume -= f; jar_xm_CLAMP_DOWN(ctx->global_volume); }; break; case 20: /* Kxx: Key off */ if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; break; case 21: /* Lxx: Set envelope position */ break; case 25: /* Pxy: Panning slide */ if(ctx->current_tick == 0) break; jar_xm_panning_slide(ch, ch->panning_slide_param); break; case 27: /* Rxy: Multi retrig note */ if(ctx->current_tick == 0) break; if(((ch->multi_retrig_param) & 0x0F) == 0) break; if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) { float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4] + multi_retrig_add[ch->multi_retrig_param >> 4]; jar_xm_CLAMP(v); jar_xm_trigger_note(ctx, ch, 0); ch->volume = v; }; break; case 29: /* Txy: Tremor */ if(ctx->current_tick == 0) break; ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); break; default: break; }; float panning, volume; panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; if(ch->tremor_on) { volume = .0f; } else { volume = ch->volume + ch->tremolo_volume; jar_xm_CLAMP(volume); volume *= ch->fadeout_volume * ch->volume_envelope_volume; }; if (mod->ramping) { ch->target_panning = panning; ch->target_volume = volume; } else { ch->actual_panning = panning; ch->actual_volume = volume; }; }; ctx->current_tick++; // ok so we understand that ticks increment within the row if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { // This means it reached the end of the row and we reset ctx->current_tick = 0; ctx->extra_ticks = 0; }; // Number of ticks / second = BPM * 0.4 ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); }; static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { jar_xm_module_t* mod = &(ctx->module); // ch->curr_left = 0.f; // ch->curr_right = 0.f; if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { ch->curr_left = 0.f; ch->curr_right = 0.f; if (mod->ramping) { if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { if (previous > -1) { ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); } else { ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); }; }; }; return; }; if(ch->sample->length == 0) { return; }; float t = 0.f; uint32_t b = 0; if(mod->linear_interpolation) { b = ch->sample_position + 1; t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ }; float u_left, u_right; u_left = ch->sample->data[(uint32_t)ch->sample_position]; if (ch->sample->stereo) { u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; } else { u_right = u_left; }; float v_left = 0.f, v_right = 0.f; switch(ch->sample->loop_type) { case jar_xm_NO_LOOP: if(mod->linear_interpolation) { v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; if (ch->sample->stereo) { v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; } else { v_right = v_left; }; }; ch->sample_position += ch->step; if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample break; case jar_xm_FORWARD_LOOP: if(mod->linear_interpolation) { v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; if (ch->sample->stereo) { v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; } else { v_right = v_left; }; }; ch->sample_position += ch->step; if (ch->sample_position >= ch->sample->loop_end) { ch->sample_position -= ch->sample->loop_length; }; if(ch->sample_position >= ch->sample->length) { ch->sample_position = ch->sample->loop_start; }; break; case jar_xm_PING_PONG_LOOP: if(ch->ping) { if(mod->linear_interpolation) { v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; if (ch->sample->stereo) { v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; } else { v_right = v_left; }; }; ch->sample_position += ch->step; if(ch->sample_position >= ch->sample->loop_end) { ch->ping = false; ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; }; if(ch->sample_position >= ch->sample->length) { ch->ping = false; ch->sample_position -= ch->sample->length - 1; }; } else { if(mod->linear_interpolation) { v_left = u_left; v_right = u_right; u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; if (ch->sample->stereo) { u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; } else { u_right = u_left; }; }; ch->sample_position -= ch->step; if(ch->sample_position <= ch->sample->loop_start) { ch->ping = true; ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; }; if (ch->sample_position <= .0f) { ch->ping = true; ch->sample_position = .0f; }; }; break; default: v_left = .0f; v_right = .0f; break; }; float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; if (mod->ramping) { if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { /* Smoothly transition between old and new sample. */ if (previous > -1) { ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); } else { ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); }; }; }; if (previous > -1) { ch->end_of_previous_sample_left[previous] = endval_left; ch->end_of_previous_sample_right[previous] = endval_right; } else { ch->curr_left = endval_left; ch->curr_right = endval_right; }; }; // gather all channel audio into stereo float static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { jar_xm_module_t* mod = &(ctx->module); if(ctx->remaining_samples_in_tick <= 0) { jar_xm_tick(ctx); }; ctx->remaining_samples_in_tick--; *left = 0.f; *right = 0.f; if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_channel_context_t* ch = ctx->channels + i; if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { jar_xm_next_of_sample(ctx, ch, -1); if(!ch->muted && !ch->instrument->muted) { *left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); *right += ch->curr_right * ch->actual_volume * ch->actual_panning; }; if (mod->ramping) { ch->frame_count++; jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); }; }; }; if (ctx->global_volume != 1.0f) { *left *= ctx->global_volume; *right *= ctx->global_volume; }; // experimental // float counter = (float)ctx->generated_samples * 0.0001f // *left = tan(&left + sin(counter)); // *right = tan(&right + cos(counter)); // apply brick wall limiter when audio goes beyond bounderies if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; }; void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { if(ctx && output) { ctx->generated_samples += numsamples; for(size_t i = 0; i < numsamples; i++) { jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); }; }; }; uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { uint64_t total = 0; uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); jar_xm_set_max_loop_count(ctx, 0); while(jar_xm_get_loop_count(ctx) == currentLoopCount) { total += ctx->remaining_samples_in_tick; ctx->remaining_samples_in_tick = 0; jar_xm_tick(ctx); } ctx->loop_count = currentLoopCount; return total; } //-------------------------------------------- //FILE LOADER - TODO - NEEDS TO BE CLEANED UP //-------------------------------------------- #undef DEBUG #define DEBUG(...) do { \ fprintf(stderr, __VA_ARGS__); \ fflush(stderr); \ } while(0) #define DEBUG_ERR(...) do { \ fprintf(stderr, __VA_ARGS__); \ fflush(stderr); \ } while(0) #define FATAL(...) do { \ fprintf(stderr, __VA_ARGS__); \ fflush(stderr); \ exit(1); \ } while(0) #define FATAL_ERR(...) do { \ fprintf(stderr, __VA_ARGS__); \ fflush(stderr); \ exit(1); \ } while(0) int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) { FILE* xmf; int size; int ret; xmf = fopen(filename, "rb"); if(xmf == NULL) { DEBUG_ERR("Could not open input file"); *ctx = NULL; return 3; } fseek(xmf, 0, SEEK_END); size = ftell(xmf); rewind(xmf); if(size == -1) { fclose(xmf); DEBUG_ERR("fseek() failed"); *ctx = NULL; return 4; } char* data = JARXM_MALLOC(size + 1); if(!data || fread(data, 1, size, xmf) < size) { fclose(xmf); DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed"); JARXM_FREE(data); *ctx = NULL; return 5; } fclose(xmf); ret = jar_xm_create_context_safe(ctx, data, size, rate); JARXM_FREE(data); switch(ret) { case 0: break; case 1: DEBUG("could not create context: module is not sane\n"); *ctx = NULL; return 1; break; case 2: FATAL("could not create context: malloc failed\n"); return 2; break; default: FATAL("could not create context: unknown error\n"); return 6; break; } return 0; } // not part of the original library void jar_xm_reset(jar_xm_context_t* ctx) { for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { jar_xm_cut_note(&ctx->channels[i]); } ctx->generated_samples = 0; ctx->current_row = 0; ctx->current_table_index = 0; ctx->current_tick = 0; ctx->tempo =ctx->default_tempo; // reset to file default value ctx->bpm = ctx->default_bpm; // reset to file default value ctx->global_volume = ctx->default_global_volume; // reset to file default value } void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { if (ctx->module.linear_interpolation) { ctx->module.linear_interpolation = 0; } else { ctx->module.linear_interpolation = 1; } } void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { jar_xm_cut_note(&ctx->channels[i]); } ctx->current_row = 0; ctx->current_tick = 0; if(table_ptr > 0 && table_ptr < ctx->module.length) { ctx->current_table_index = table_ptr; ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track } else { ctx->current_table_index = 0; ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track ctx->tempo =ctx->default_tempo; // reset to file default value ctx->bpm = ctx->default_bpm; // reset to file default value ctx->global_volume = ctx->default_global_volume; // reset to file default value }; } // TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) const char* xm_note_chr(int number) { if (number == NOTE_OFF) { return "=="; }; number = number % 12; switch(number) { case 1: return "C-"; case 2: return "C#"; case 3: return "D-"; case 4: return "D#"; case 5: return "E-"; case 6: return "F-"; case 7: return "F#"; case 8: return "G-"; case 9: return "G#"; case 10: return "A-"; case 11: return "A#"; case 12: return "B-"; }; return "??"; }; const char* xm_octave_chr(int number) { if (number == NOTE_OFF) { return "="; }; int number2 = number - number % 12; int result = floor(number2 / 12) + 1; switch(result) { case 1: return "1"; case 2: return "2"; case 3: return "3"; case 4: return "4"; case 5: return "5"; case 6: return "6"; case 7: return "7"; case 8: return "8"; default: return "?"; /* UNKNOWN */ }; }; // TRANSLATE NOTE EFFECT CODE INTO USER VALUE const char* xm_effect_chr(int fx) { switch(fx) { case 0: return "0"; /* ZERO = NO EFFECT */ case 1: return "1"; /* 1xx: Portamento up */ case 2: return "2"; /* 2xx: Portamento down */ case 3: return "3"; /* 3xx: Tone portamento */ case 4: return "4"; /* 4xy: Vibrato */ case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ case 6: return "6"; /* 6xy: Vibrato + Volume slide */ case 7: return "7"; /* 7xy: Tremolo */ case 8: return "8"; /* 8xx: Set panning */ case 9: return "9"; /* 9xx: Sample offset */ case 0xA: return "A";/* Axy: Volume slide */ case 0xB: return "B";/* Bxx: Position jump */ case 0xC: return "C";/* Cxx: Set volume */ case 0xD: return "D";/* Dxx: Pattern break */ case 0xE: return "E";/* EXy: Extended command */ case 0xF: return "F";/* Fxx: Set tempo/BPM */ case 16: return "G"; /* Gxx: Set global volume */ case 17: return "H"; /* Hxy: Global volume slide */ case 21: return "L"; /* Lxx: Set envelope position */ case 25: return "P"; /* Pxy: Panning slide */ case 27: return "R"; /* Rxy: Multi retrig note */ case 29: return "T"; /* Txy: Tremor */ case 33: return "X"; /* Xxy: Extra stuff */ default: return "?"; /* UNKNOWN */ }; } #ifdef JAR_XM_RAYLIB #include "raylib.h" // Need RayLib API calls for the DEBUG display void jar_xm_debug(jar_xm_context_t *ctx) { int size=40; int x = 0, y = 0; // DEBUG VARIABLES y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); x = size * 12; y = 0; y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); y += size * 7; x = 0; size=16; // TIMELINE OF MODULE for (int i=0; i < ctx->module.length; i++) { if (i == ctx->jump_dest) { if (ctx->position_jump) { DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); } else { DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); }; }; if (i == ctx->current_table_index) { // DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); DrawRectangle(i * size * 2, y, size * 2, size, RED); DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); } else { DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); }; DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); }; y += size; jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; /* DISPLAY CURRENTLY PLAYING PATTERN */ x += 2 * size; for(uint8_t i = 0; i < ctx->module.num_channels; i++) { DrawRectangle(x, y, 8 * size, size, PURPLE); DrawText("N", x, y, size, YELLOW); DrawText("I", x + size * 2, y, size, YELLOW); DrawText("V", x + size * 4, y, size, YELLOW); DrawText("FX", x + size * 6, y, size, YELLOW); x += 9 * size; }; x += size; for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { y += size; x = 0; if (j >=0 && j < (cur->num_rows)) { DrawRectangle(x, y, size * 2, size, BROWN); DrawText(TextFormat("%02X",j), x, y, size, WHITE); x += 2 * size; for(uint8_t i = 0; i < ctx->module.num_channels; i++) { if (j==(ctx->current_row)) { DrawRectangle(x, y, 8 * size, size, DARKGREEN); } else { DrawRectangle(x, y, 8 * size, size, DARKGRAY); }; jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; // jar_xm_channel_context_t *ch = ctx->channels + i; if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; if (s->instrument > 0) { DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); if (s->volume_column == 0) { DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); }; } else { DrawText("..", x + size * 2, y, size, GRAY); if (s->volume_column == 0) { DrawText("..", x + size * 4, y, size, GRAY); }; }; if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; x += 9 * size; }; }; }; } #endif // RayLib extension #endif//end of JAR_XM_IMPLEMENTATION //------------------------------------------------------------------------------- #endif//end of INCLUDE_JAR_XM_H