// SHAPES :: https://github.com/prideout/par // Simple C library for creation and manipulation of triangle meshes. // // The API is divided into three sections: // // - Generators. Create parametric surfaces, platonic solids, etc. // - Queries. Ask a mesh for its axis-aligned bounding box, etc. // - Transforms. Rotate a mesh, merge it with another, add normals, etc. // // In addition to the comment block above each function declaration, the API // has informal documentation here: // // https://prideout.net/shapes // // For our purposes, a "mesh" is a list of points and a list of triangles; the // former is a flattened list of three-tuples (32-bit floats) and the latter is // also a flattened list of three-tuples (16-bit uints). Triangles are always // oriented such that their front face winds counter-clockwise. // // Optionally, meshes can contain 3D normals (one per vertex), and 2D texture // coordinates (one per vertex). That's it! If you need something fancier, // look elsewhere. // // Distributed under the MIT License, see bottom of file. #ifndef PAR_SHAPES_H #define PAR_SHAPES_H #ifdef __cplusplus extern "C" { #endif #include // Ray (@raysan5): Commented to avoid conflict with raylib bool /* #if !defined(_MSC_VER) # include #else // MSVC # if _MSC_VER >= 1800 # include # else // stdbool.h missing prior to MSVC++ 12.0 (VS2013) # define bool int # define true 1 # define false 0 # endif #endif */ #ifndef PAR_SHAPES_T #define PAR_SHAPES_T uint16_t #endif typedef struct par_shapes_mesh_s { float* points; // Flat list of 3-tuples (X Y Z X Y Z...) int npoints; // Number of points PAR_SHAPES_T* triangles; // Flat list of 3-tuples (I J K I J K...) int ntriangles; // Number of triangles float* normals; // Optional list of 3-tuples (X Y Z X Y Z...) float* tcoords; // Optional list of 2-tuples (U V U V U V...) } par_shapes_mesh; void par_shapes_free_mesh(par_shapes_mesh*); // Generators ------------------------------------------------------------------ // Instance a cylinder that sits on the Z=0 plane using the given tessellation // levels across the UV domain. Think of "slices" like a number of pizza // slices, and "stacks" like a number of stacked rings. Height and radius are // both 1.0, but they can easily be changed with par_shapes_scale. par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks); // Cone is similar to cylinder but the radius diminishes to zero as Z increases. // Again, height and radius are 1.0, but can be changed with par_shapes_scale. par_shapes_mesh* par_shapes_create_cone(int slices, int stacks); // Create a disk of radius 1.0 with texture coordinates and normals by squashing // a cone flat on the Z=0 plane. par_shapes_mesh* par_shapes_create_parametric_disk(int slices, int stacks); // Create a donut that sits on the Z=0 plane with the specified inner radius. // The outer radius can be controlled with par_shapes_scale. par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius); // Create a sphere with texture coordinates and small triangles near the poles. par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks); // Approximate a sphere with a subdivided icosahedron, which produces a nice // distribution of triangles, but no texture coordinates. Each subdivision // level scales the number of triangles by four, so use a very low number. par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubdivisions); // More parametric surfaces. par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks); par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, float radius); par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks); par_shapes_mesh* par_shapes_create_plane(int slices, int stacks); // Create a parametric surface from a callback function that consumes a 2D // point in [0,1] and produces a 3D point. typedef void (*par_shapes_fn)(float const*, float*, void*); par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn, int slices, int stacks, void* userdata); // Generate points for a 20-sided polyhedron that fits in the unit sphere. // Texture coordinates and normals are not generated. par_shapes_mesh* par_shapes_create_icosahedron(); // Generate points for a 12-sided polyhedron that fits in the unit sphere. // Again, texture coordinates and normals are not generated. par_shapes_mesh* par_shapes_create_dodecahedron(); // More platonic solids. par_shapes_mesh* par_shapes_create_octahedron(); par_shapes_mesh* par_shapes_create_tetrahedron(); par_shapes_mesh* par_shapes_create_cube(); // Generate an orientable disk shape in 3-space. Does not include normals or // texture coordinates. par_shapes_mesh* par_shapes_create_disk(float radius, int slices, float const* center, float const* normal); // Create an empty shape. Useful for building scenes with merge_and_free. par_shapes_mesh* par_shapes_create_empty(); // Generate a rock shape that sits on the Y=0 plane, and sinks into it a bit. // This includes smooth normals but no texture coordinates. Each subdivision // level scales the number of triangles by four, so use a very low number. par_shapes_mesh* par_shapes_create_rock(int seed, int nsubdivisions); // Create trees or vegetation by executing a recursive turtle graphics program. // The program is a list of command-argument pairs. See the unit test for // an example. Texture coordinates and normals are not generated. par_shapes_mesh* par_shapes_create_lsystem(char const* program, int slices, int maxdepth); // Queries --------------------------------------------------------------------- // Dump out a text file conforming to the venerable OBJ format. void par_shapes_export(par_shapes_mesh const*, char const* objfile); // Take a pointer to 6 floats and set them to min xyz, max xyz. void par_shapes_compute_aabb(par_shapes_mesh const* mesh, float* aabb); // Make a deep copy of a mesh. To make a brand new copy, pass null to "target". // To avoid memory churn, pass an existing mesh to "target". par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, par_shapes_mesh* target); // Transformations ------------------------------------------------------------- void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src); void par_shapes_translate(par_shapes_mesh*, float x, float y, float z); void par_shapes_rotate(par_shapes_mesh*, float radians, float const* axis); void par_shapes_scale(par_shapes_mesh*, float x, float y, float z); void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src); // Reverse the winding of a run of faces. Useful when drawing the inside of // a Cornell Box. Pass 0 for nfaces to reverse every face in the mesh. void par_shapes_invert(par_shapes_mesh*, int startface, int nfaces); // Remove all triangles whose area is less than minarea. void par_shapes_remove_degenerate(par_shapes_mesh*, float minarea); // Dereference the entire index buffer and replace the point list. // This creates an inefficient structure, but is useful for drawing facets. // If create_indices is true, a trivial "0 1 2 3..." index buffer is generated. void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices); // Merge colocated verts, build a new index buffer, and return the // optimized mesh. Epsilon is the maximum distance to consider when // welding vertices. The mapping argument can be null, or a pointer to // npoints integers, which gets filled with the mapping from old vertex // indices to new indices. par_shapes_mesh* par_shapes_weld(par_shapes_mesh const*, float epsilon, PAR_SHAPES_T* mapping); // Compute smooth normals by averaging adjacent facet normals. void par_shapes_compute_normals(par_shapes_mesh* m); // Global Config --------------------------------------------------------------- void par_shapes_set_epsilon_welded_normals(float epsilon); void par_shapes_set_epsilon_degenerate_sphere(float epsilon); // Advanced -------------------------------------------------------------------- void par_shapes__compute_welded_normals(par_shapes_mesh* m); void par_shapes__connect(par_shapes_mesh* scene, par_shapes_mesh* cylinder, int slices); #ifndef PAR_PI #define PAR_PI (3.14159265359) #define PAR_MIN(a, b) (a > b ? b : a) #define PAR_MAX(a, b) (a > b ? a : b) #define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v)) #define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; } #define PAR_SQR(a) ((a) * (a)) #endif #ifndef PAR_MALLOC #define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T))) #define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1)) #define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N))) #define PAR_FREE(BUF) free(BUF) #endif #ifdef __cplusplus } #endif // ----------------------------------------------------------------------------- // END PUBLIC API // ----------------------------------------------------------------------------- #ifdef PAR_SHAPES_IMPLEMENTATION #include #include #include #include #include #include #include static float par_shapes__epsilon_welded_normals = 0.001; static float par_shapes__epsilon_degenerate_sphere = 0.0001; static void par_shapes__sphere(float const* uv, float* xyz, void*); static void par_shapes__hemisphere(float const* uv, float* xyz, void*); static void par_shapes__plane(float const* uv, float* xyz, void*); static void par_shapes__klein(float const* uv, float* xyz, void*); static void par_shapes__cylinder(float const* uv, float* xyz, void*); static void par_shapes__cone(float const* uv, float* xyz, void*); static void par_shapes__torus(float const* uv, float* xyz, void*); static void par_shapes__trefoil(float const* uv, float* xyz, void*); struct osn_context; static int par__simplex_noise(int64_t seed, struct osn_context** ctx); static void par__simplex_noise_free(struct osn_context* ctx); static double par__simplex_noise2(struct osn_context* ctx, double x, double y); static void par_shapes__copy3(float* result, float const* a) { result[0] = a[0]; result[1] = a[1]; result[2] = a[2]; } static float par_shapes__dot3(float const* a, float const* b) { return b[0] * a[0] + b[1] * a[1] + b[2] * a[2]; } static void par_shapes__transform3(float* p, float const* x, float const* y, float const* z) { float px = par_shapes__dot3(p, x); float py = par_shapes__dot3(p, y); float pz = par_shapes__dot3(p, z); p[0] = px; p[1] = py; p[2] = pz; } static void par_shapes__cross3(float* result, float const* a, float const* b) { float x = (a[1] * b[2]) - (a[2] * b[1]); float y = (a[2] * b[0]) - (a[0] * b[2]); float z = (a[0] * b[1]) - (a[1] * b[0]); result[0] = x; result[1] = y; result[2] = z; } static void par_shapes__mix3(float* d, float const* a, float const* b, float t) { float x = b[0] * t + a[0] * (1 - t); float y = b[1] * t + a[1] * (1 - t); float z = b[2] * t + a[2] * (1 - t); d[0] = x; d[1] = y; d[2] = z; } static void par_shapes__scale3(float* result, float a) { result[0] *= a; result[1] *= a; result[2] *= a; } static void par_shapes__normalize3(float* v) { float lsqr = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); if (lsqr > 0) { par_shapes__scale3(v, 1.0f / lsqr); } } static void par_shapes__subtract3(float* result, float const* a) { result[0] -= a[0]; result[1] -= a[1]; result[2] -= a[2]; } static void par_shapes__add3(float* result, float const* a) { result[0] += a[0]; result[1] += a[1]; result[2] += a[2]; } static float par_shapes__sqrdist3(float const* a, float const* b) { float dx = a[0] - b[0]; float dy = a[1] - b[1]; float dz = a[2] - b[2]; return dx * dx + dy * dy + dz * dz; } void par_shapes__compute_welded_normals(par_shapes_mesh* m) { const float epsilon = par_shapes__epsilon_welded_normals; m->normals = PAR_MALLOC(float, m->npoints * 3); PAR_SHAPES_T* weldmap = PAR_MALLOC(PAR_SHAPES_T, m->npoints); par_shapes_mesh* welded = par_shapes_weld(m, epsilon, weldmap); par_shapes_compute_normals(welded); float* pdst = m->normals; for (int i = 0; i < m->npoints; i++, pdst += 3) { int d = weldmap[i]; float const* pnormal = welded->normals + d * 3; pdst[0] = pnormal[0]; pdst[1] = pnormal[1]; pdst[2] = pnormal[2]; } PAR_FREE(weldmap); par_shapes_free_mesh(welded); } par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks) { if (slices < 3 || stacks < 1) { return 0; } return par_shapes_create_parametric(par_shapes__cylinder, slices, stacks, 0); } par_shapes_mesh* par_shapes_create_cone(int slices, int stacks) { if (slices < 3 || stacks < 1) { return 0; } return par_shapes_create_parametric(par_shapes__cone, slices, stacks, 0); } par_shapes_mesh* par_shapes_create_parametric_disk(int slices, int stacks) { par_shapes_mesh* m = par_shapes_create_cone(slices, stacks); if (m) { par_shapes_scale(m, 1.0f, 1.0f, 0.0f); } return m; } par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks) { if (slices < 3 || stacks < 3) { return 0; } par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__sphere, slices, stacks, 0); par_shapes_remove_degenerate(m, par_shapes__epsilon_degenerate_sphere); return m; } par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks) { if (slices < 3 || stacks < 3) { return 0; } par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__hemisphere, slices, stacks, 0); par_shapes_remove_degenerate(m, par_shapes__epsilon_degenerate_sphere); return m; } par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius) { if (slices < 3 || stacks < 3) { return 0; } assert(radius <= 1.0 && "Use smaller radius to avoid self-intersection."); assert(radius >= 0.1 && "Use larger radius to avoid self-intersection."); void* userdata = (void*) &radius; return par_shapes_create_parametric(par_shapes__torus, slices, stacks, userdata); } par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks) { if (slices < 3 || stacks < 3) { return 0; } par_shapes_mesh* mesh = par_shapes_create_parametric( par_shapes__klein, slices, stacks, 0); int face = 0; for (int stack = 0; stack < stacks; stack++) { for (int slice = 0; slice < slices; slice++, face += 2) { if (stack < 27 * stacks / 32) { par_shapes_invert(mesh, face, 2); } } } par_shapes__compute_welded_normals(mesh); return mesh; } par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, float radius) { if (slices < 3 || stacks < 3) { return 0; } assert(radius <= 3.0 && "Use smaller radius to avoid self-intersection."); assert(radius >= 0.5 && "Use larger radius to avoid self-intersection."); void* userdata = (void*) &radius; return par_shapes_create_parametric(par_shapes__trefoil, slices, stacks, userdata); } par_shapes_mesh* par_shapes_create_plane(int slices, int stacks) { if (slices < 1 || stacks < 1) { return 0; } return par_shapes_create_parametric(par_shapes__plane, slices, stacks, 0); } par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn fn, int slices, int stacks, void* userdata) { par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); // Generate verts. mesh->npoints = (slices + 1) * (stacks + 1); mesh->points = PAR_CALLOC(float, 3 * mesh->npoints); float uv[2]; float xyz[3]; float* points = mesh->points; for (int stack = 0; stack < stacks + 1; stack++) { uv[0] = (float) stack / stacks; for (int slice = 0; slice < slices + 1; slice++) { uv[1] = (float) slice / slices; fn(uv, xyz, userdata); *points++ = xyz[0]; *points++ = xyz[1]; *points++ = xyz[2]; } } // Generate texture coordinates. mesh->tcoords = PAR_CALLOC(float, 2 * mesh->npoints); float* uvs = mesh->tcoords; for (int stack = 0; stack < stacks + 1; stack++) { uv[0] = (float) stack / stacks; for (int slice = 0; slice < slices + 1; slice++) { uv[1] = (float) slice / slices; *uvs++ = uv[0]; *uvs++ = uv[1]; } } // Generate faces. mesh->ntriangles = 2 * slices * stacks; mesh->triangles = PAR_CALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); int v = 0; PAR_SHAPES_T* face = mesh->triangles; for (int stack = 0; stack < stacks; stack++) { for (int slice = 0; slice < slices; slice++) { int next = slice + 1; *face++ = v + slice + slices + 1; *face++ = v + next; *face++ = v + slice; *face++ = v + slice + slices + 1; *face++ = v + next + slices + 1; *face++ = v + next; } v += slices + 1; } par_shapes__compute_welded_normals(mesh); return mesh; } void par_shapes_free_mesh(par_shapes_mesh* mesh) { PAR_FREE(mesh->points); PAR_FREE(mesh->triangles); PAR_FREE(mesh->normals); PAR_FREE(mesh->tcoords); PAR_FREE(mesh); } void par_shapes_export(par_shapes_mesh const* mesh, char const* filename) { FILE* objfile = fopen(filename, "wt"); float const* points = mesh->points; float const* tcoords = mesh->tcoords; float const* norms = mesh->normals; PAR_SHAPES_T const* indices = mesh->triangles; if (tcoords && norms) { for (int nvert = 0; nvert < mesh->npoints; nvert++) { fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); points += 3; norms += 3; tcoords += 2; } for (int nface = 0; nface < mesh->ntriangles; nface++) { int a = 1 + *indices++; int b = 1 + *indices++; int c = 1 + *indices++; fprintf(objfile, "f %d/%d/%d %d/%d/%d %d/%d/%d\n", a, a, a, b, b, b, c, c, c); } } else if (norms) { for (int nvert = 0; nvert < mesh->npoints; nvert++) { fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); points += 3; norms += 3; } for (int nface = 0; nface < mesh->ntriangles; nface++) { int a = 1 + *indices++; int b = 1 + *indices++; int c = 1 + *indices++; fprintf(objfile, "f %d//%d %d//%d %d//%d\n", a, a, b, b, c, c); } } else if (tcoords) { for (int nvert = 0; nvert < mesh->npoints; nvert++) { fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); points += 3; tcoords += 2; } for (int nface = 0; nface < mesh->ntriangles; nface++) { int a = 1 + *indices++; int b = 1 + *indices++; int c = 1 + *indices++; fprintf(objfile, "f %d/%d %d/%d %d/%d\n", a, a, b, b, c, c); } } else { for (int nvert = 0; nvert < mesh->npoints; nvert++) { fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); points += 3; } for (int nface = 0; nface < mesh->ntriangles; nface++) { int a = 1 + *indices++; int b = 1 + *indices++; int c = 1 + *indices++; fprintf(objfile, "f %d %d %d\n", a, b, c); } } fclose(objfile); } static void par_shapes__sphere(float const* uv, float* xyz, void* userdata) { float phi = uv[0] * PAR_PI; float theta = uv[1] * 2 * PAR_PI; xyz[0] = cosf(theta) * sinf(phi); xyz[1] = sinf(theta) * sinf(phi); xyz[2] = cosf(phi); } static void par_shapes__hemisphere(float const* uv, float* xyz, void* userdata) { float phi = uv[0] * PAR_PI; float theta = uv[1] * PAR_PI; xyz[0] = cosf(theta) * sinf(phi); xyz[1] = sinf(theta) * sinf(phi); xyz[2] = cosf(phi); } static void par_shapes__plane(float const* uv, float* xyz, void* userdata) { xyz[0] = uv[0]; xyz[1] = uv[1]; xyz[2] = 0; } static void par_shapes__klein(float const* uv, float* xyz, void* userdata) { float u = uv[0] * PAR_PI; float v = uv[1] * 2 * PAR_PI; u = u * 2; if (u < PAR_PI) { xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * cosf(u) * cosf(v); xyz[2] = -8 * sinf(u) - 2 * (1 - cosf(u) / 2) * sinf(u) * cosf(v); } else { xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * cosf(v + PAR_PI); xyz[2] = -8 * sinf(u); } xyz[1] = -2 * (1 - cosf(u) / 2) * sinf(v); } static void par_shapes__cylinder(float const* uv, float* xyz, void* userdata) { float theta = uv[1] * 2 * PAR_PI; xyz[0] = sinf(theta); xyz[1] = cosf(theta); xyz[2] = uv[0]; } static void par_shapes__cone(float const* uv, float* xyz, void* userdata) { float r = 1.0f - uv[0]; float theta = uv[1] * 2 * PAR_PI; xyz[0] = r * sinf(theta); xyz[1] = r * cosf(theta); xyz[2] = uv[0]; } static void par_shapes__torus(float const* uv, float* xyz, void* userdata) { float major = 1; float minor = *((float*) userdata); float theta = uv[0] * 2 * PAR_PI; float phi = uv[1] * 2 * PAR_PI; float beta = major + minor * cosf(phi); xyz[0] = cosf(theta) * beta; xyz[1] = sinf(theta) * beta; xyz[2] = sinf(phi) * minor; } static void par_shapes__trefoil(float const* uv, float* xyz, void* userdata) { float minor = *((float*) userdata); const float a = 0.5f; const float b = 0.3f; const float c = 0.5f; const float d = minor * 0.1f; const float u = (1 - uv[0]) * 4 * PAR_PI; const float v = uv[1] * 2 * PAR_PI; const float r = a + b * cos(1.5f * u); const float x = r * cos(u); const float y = r * sin(u); const float z = c * sin(1.5f * u); float q[3]; q[0] = -1.5f * b * sin(1.5f * u) * cos(u) - (a + b * cos(1.5f * u)) * sin(u); q[1] = -1.5f * b * sin(1.5f * u) * sin(u) + (a + b * cos(1.5f * u)) * cos(u); q[2] = 1.5f * c * cos(1.5f * u); par_shapes__normalize3(q); float qvn[3] = {q[1], -q[0], 0}; par_shapes__normalize3(qvn); float ww[3]; par_shapes__cross3(ww, q, qvn); xyz[0] = x + d * (qvn[0] * cos(v) + ww[0] * sin(v)); xyz[1] = y + d * (qvn[1] * cos(v) + ww[1] * sin(v)); xyz[2] = z + d * ww[2] * sin(v); } void par_shapes_set_epsilon_welded_normals(float epsilon) { par_shapes__epsilon_welded_normals = epsilon; } void par_shapes_set_epsilon_degenerate_sphere(float epsilon) { par_shapes__epsilon_degenerate_sphere = epsilon; } void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src) { PAR_SHAPES_T offset = dst->npoints; int npoints = dst->npoints + src->npoints; int vecsize = sizeof(float) * 3; dst->points = PAR_REALLOC(float, dst->points, 3 * npoints); memcpy(dst->points + 3 * dst->npoints, src->points, vecsize * src->npoints); dst->npoints = npoints; if (src->normals || dst->normals) { dst->normals = PAR_REALLOC(float, dst->normals, 3 * npoints); if (src->normals) { memcpy(dst->normals + 3 * offset, src->normals, vecsize * src->npoints); } } if (src->tcoords || dst->tcoords) { int uvsize = sizeof(float) * 2; dst->tcoords = PAR_REALLOC(float, dst->tcoords, 2 * npoints); if (src->tcoords) { memcpy(dst->tcoords + 2 * offset, src->tcoords, uvsize * src->npoints); } } int ntriangles = dst->ntriangles + src->ntriangles; dst->triangles = PAR_REALLOC(PAR_SHAPES_T, dst->triangles, 3 * ntriangles); PAR_SHAPES_T* ptriangles = dst->triangles + 3 * dst->ntriangles; PAR_SHAPES_T const* striangles = src->triangles; for (int i = 0; i < src->ntriangles; i++) { *ptriangles++ = offset + *striangles++; *ptriangles++ = offset + *striangles++; *ptriangles++ = offset + *striangles++; } dst->ntriangles = ntriangles; } par_shapes_mesh* par_shapes_create_disk(float radius, int slices, float const* center, float const* normal) { par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); mesh->npoints = slices + 1; mesh->points = PAR_MALLOC(float, 3 * mesh->npoints); float* points = mesh->points; *points++ = 0; *points++ = 0; *points++ = 0; for (int i = 0; i < slices; i++) { float theta = i * PAR_PI * 2 / slices; *points++ = radius * cos(theta); *points++ = radius * sin(theta); *points++ = 0; } float nnormal[3] = {normal[0], normal[1], normal[2]}; par_shapes__normalize3(nnormal); mesh->normals = PAR_MALLOC(float, 3 * mesh->npoints); float* norms = mesh->normals; for (int i = 0; i < mesh->npoints; i++) { *norms++ = nnormal[0]; *norms++ = nnormal[1]; *norms++ = nnormal[2]; } mesh->ntriangles = slices; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); PAR_SHAPES_T* triangles = mesh->triangles; for (int i = 0; i < slices; i++) { *triangles++ = 0; *triangles++ = 1 + i; *triangles++ = 1 + (i + 1) % slices; } float k[3] = {0, 0, -1}; float axis[3]; par_shapes__cross3(axis, nnormal, k); par_shapes__normalize3(axis); par_shapes_rotate(mesh, acos(nnormal[2]), axis); par_shapes_translate(mesh, center[0], center[1], center[2]); return mesh; } par_shapes_mesh* par_shapes_create_empty() { return PAR_CALLOC(par_shapes_mesh, 1); } void par_shapes_translate(par_shapes_mesh* m, float x, float y, float z) { float* points = m->points; for (int i = 0; i < m->npoints; i++) { *points++ += x; *points++ += y; *points++ += z; } } void par_shapes_rotate(par_shapes_mesh* mesh, float radians, float const* axis) { float s = sinf(radians); float c = cosf(radians); float x = axis[0]; float y = axis[1]; float z = axis[2]; float xy = x * y; float yz = y * z; float zx = z * x; float oneMinusC = 1.0f - c; float col0[3] = { (((x * x) * oneMinusC) + c), ((xy * oneMinusC) + (z * s)), ((zx * oneMinusC) - (y * s)) }; float col1[3] = { ((xy * oneMinusC) - (z * s)), (((y * y) * oneMinusC) + c), ((yz * oneMinusC) + (x * s)) }; float col2[3] = { ((zx * oneMinusC) + (y * s)), ((yz * oneMinusC) - (x * s)), (((z * z) * oneMinusC) + c) }; float* p = mesh->points; for (int i = 0; i < mesh->npoints; i++, p += 3) { float x = col0[0] * p[0] + col1[0] * p[1] + col2[0] * p[2]; float y = col0[1] * p[0] + col1[1] * p[1] + col2[1] * p[2]; float z = col0[2] * p[0] + col1[2] * p[1] + col2[2] * p[2]; p[0] = x; p[1] = y; p[2] = z; } float* n = mesh->normals; if (n) { for (int i = 0; i < mesh->npoints; i++, n += 3) { float x = col0[0] * n[0] + col1[0] * n[1] + col2[0] * n[2]; float y = col0[1] * n[0] + col1[1] * n[1] + col2[1] * n[2]; float z = col0[2] * n[0] + col1[2] * n[1] + col2[2] * n[2]; n[0] = x; n[1] = y; n[2] = z; } } } void par_shapes_scale(par_shapes_mesh* m, float x, float y, float z) { float* points = m->points; for (int i = 0; i < m->npoints; i++) { *points++ *= x; *points++ *= y; *points++ *= z; } float* n = m->normals; if (n && !(x == y && y == z)) { bool x_zero = x == 0; bool y_zero = y == 0; bool z_zero = z == 0; if (!x_zero && !y_zero && !z_zero) { x = 1.0f / x; y = 1.0f / y; z = 1.0f / z; } else { x = x_zero && !y_zero && !z_zero; y = y_zero && !x_zero && !z_zero; z = z_zero && !x_zero && !y_zero; } for (int i = 0; i < m->npoints; i++, n += 3) { n[0] *= x; n[1] *= y; n[2] *= z; par_shapes__normalize3(n); } } } void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src) { par_shapes_merge(dst, src); par_shapes_free_mesh(src); } void par_shapes_compute_aabb(par_shapes_mesh const* m, float* aabb) { float* points = m->points; aabb[0] = aabb[3] = points[0]; aabb[1] = aabb[4] = points[1]; aabb[2] = aabb[5] = points[2]; points += 3; for (int i = 1; i < m->npoints; i++, points += 3) { aabb[0] = PAR_MIN(points[0], aabb[0]); aabb[1] = PAR_MIN(points[1], aabb[1]); aabb[2] = PAR_MIN(points[2], aabb[2]); aabb[3] = PAR_MAX(points[0], aabb[3]); aabb[4] = PAR_MAX(points[1], aabb[4]); aabb[5] = PAR_MAX(points[2], aabb[5]); } } void par_shapes_invert(par_shapes_mesh* m, int face, int nfaces) { nfaces = nfaces ? nfaces : m->ntriangles; PAR_SHAPES_T* tri = m->triangles + face * 3; for (int i = 0; i < nfaces; i++) { PAR_SWAP(PAR_SHAPES_T, tri[0], tri[2]); tri += 3; } } par_shapes_mesh* par_shapes_create_icosahedron() { static float verts[] = { 0.000, 0.000, 1.000, 0.894, 0.000, 0.447, 0.276, 0.851, 0.447, -0.724, 0.526, 0.447, -0.724, -0.526, 0.447, 0.276, -0.851, 0.447, 0.724, 0.526, -0.447, -0.276, 0.851, -0.447, -0.894, 0.000, -0.447, -0.276, -0.851, -0.447, 0.724, -0.526, -0.447, 0.000, 0.000, -1.000 }; static PAR_SHAPES_T faces[] = { 0,1,2, 0,2,3, 0,3,4, 0,4,5, 0,5,1, 7,6,11, 8,7,11, 9,8,11, 10,9,11, 6,10,11, 6,2,1, 7,3,2, 8,4,3, 9,5,4, 10,1,5, 6,7,2, 7,8,3, 8,9,4, 9,10,5, 10,6,1 }; par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); mesh->npoints = sizeof(verts) / sizeof(verts[0]) / 3; mesh->points = PAR_MALLOC(float, sizeof(verts) / 4); memcpy(mesh->points, verts, sizeof(verts)); mesh->ntriangles = sizeof(faces) / sizeof(faces[0]) / 3; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, sizeof(faces) / 2); memcpy(mesh->triangles, faces, sizeof(faces)); return mesh; } par_shapes_mesh* par_shapes_create_dodecahedron() { static float verts[20 * 3] = { 0.607, 0.000, 0.795, 0.188, 0.577, 0.795, -0.491, 0.357, 0.795, -0.491, -0.357, 0.795, 0.188, -0.577, 0.795, 0.982, 0.000, 0.188, 0.304, 0.934, 0.188, -0.795, 0.577, 0.188, -0.795, -0.577, 0.188, 0.304, -0.934, 0.188, 0.795, 0.577, -0.188, -0.304, 0.934, -0.188, -0.982, 0.000, -0.188, -0.304, -0.934, -0.188, 0.795, -0.577, -0.188, 0.491, 0.357, -0.795, -0.188, 0.577, -0.795, -0.607, 0.000, -0.795, -0.188, -0.577, -0.795, 0.491, -0.357, -0.795, }; static PAR_SHAPES_T pentagons[12 * 5] = { 0,1,2,3,4, 5,10,6,1,0, 6,11,7,2,1, 7,12,8,3,2, 8,13,9,4,3, 9,14,5,0,4, 15,16,11,6,10, 16,17,12,7,11, 17,18,13,8,12, 18,19,14,9,13, 19,15,10,5,14, 19,18,17,16,15 }; int npentagons = sizeof(pentagons) / sizeof(pentagons[0]) / 5; par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; mesh->npoints = ncorners; mesh->points = PAR_MALLOC(float, mesh->npoints * 3); memcpy(mesh->points, verts, sizeof(verts)); PAR_SHAPES_T const* pentagon = pentagons; mesh->ntriangles = npentagons * 3; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* tris = mesh->triangles; for (int p = 0; p < npentagons; p++, pentagon += 5) { *tris++ = pentagon[0]; *tris++ = pentagon[1]; *tris++ = pentagon[2]; *tris++ = pentagon[0]; *tris++ = pentagon[2]; *tris++ = pentagon[3]; *tris++ = pentagon[0]; *tris++ = pentagon[3]; *tris++ = pentagon[4]; } return mesh; } par_shapes_mesh* par_shapes_create_octahedron() { static float verts[6 * 3] = { 0.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.000, -1.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.000, 0.000, -1.000 }; static PAR_SHAPES_T triangles[8 * 3] = { 0,1,2, 0,2,3, 0,3,4, 0,4,1, 2,1,5, 3,2,5, 4,3,5, 1,4,5, }; int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; mesh->npoints = ncorners; mesh->points = PAR_MALLOC(float, mesh->npoints * 3); memcpy(mesh->points, verts, sizeof(verts)); PAR_SHAPES_T const* triangle = triangles; mesh->ntriangles = ntris; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* tris = mesh->triangles; for (int p = 0; p < ntris; p++) { *tris++ = *triangle++; *tris++ = *triangle++; *tris++ = *triangle++; } return mesh; } par_shapes_mesh* par_shapes_create_tetrahedron() { static float verts[4 * 3] = { 0.000, 1.333, 0, 0.943, 0, 0, -0.471, 0, 0.816, -0.471, 0, -0.816, }; static PAR_SHAPES_T triangles[4 * 3] = { 2,1,0, 3,2,0, 1,3,0, 1,2,3, }; int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; mesh->npoints = ncorners; mesh->points = PAR_MALLOC(float, mesh->npoints * 3); memcpy(mesh->points, verts, sizeof(verts)); PAR_SHAPES_T const* triangle = triangles; mesh->ntriangles = ntris; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* tris = mesh->triangles; for (int p = 0; p < ntris; p++) { *tris++ = *triangle++; *tris++ = *triangle++; *tris++ = *triangle++; } return mesh; } par_shapes_mesh* par_shapes_create_cube() { static float verts[8 * 3] = { 0, 0, 0, // 0 0, 1, 0, // 1 1, 1, 0, // 2 1, 0, 0, // 3 0, 0, 1, // 4 0, 1, 1, // 5 1, 1, 1, // 6 1, 0, 1, // 7 }; static PAR_SHAPES_T quads[6 * 4] = { 7,6,5,4, // front 0,1,2,3, // back 6,7,3,2, // right 5,6,2,1, // top 4,5,1,0, // left 7,4,0,3, // bottom }; int nquads = sizeof(quads) / sizeof(quads[0]) / 4; par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; mesh->npoints = ncorners; mesh->points = PAR_MALLOC(float, mesh->npoints * 3); memcpy(mesh->points, verts, sizeof(verts)); PAR_SHAPES_T const* quad = quads; mesh->ntriangles = nquads * 2; mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* tris = mesh->triangles; for (int p = 0; p < nquads; p++, quad += 4) { *tris++ = quad[0]; *tris++ = quad[1]; *tris++ = quad[2]; *tris++ = quad[2]; *tris++ = quad[3]; *tris++ = quad[0]; } return mesh; } typedef struct { char* cmd; char* arg; } par_shapes__command; typedef struct { char const* name; int weight; int ncommands; par_shapes__command* commands; } par_shapes__rule; typedef struct { int pc; float position[3]; float scale[3]; par_shapes_mesh* orientation; par_shapes__rule* rule; } par_shapes__stackframe; static par_shapes__rule* par_shapes__pick_rule(const char* name, par_shapes__rule* rules, int nrules) { par_shapes__rule* rule = 0; int total = 0; for (int i = 0; i < nrules; i++) { rule = rules + i; if (!strcmp(rule->name, name)) { total += rule->weight; } } float r = (float) rand() / RAND_MAX; float t = 0; for (int i = 0; i < nrules; i++) { rule = rules + i; if (!strcmp(rule->name, name)) { t += (float) rule->weight / total; if (t >= r) { return rule; } } } return rule; } static par_shapes_mesh* par_shapes__create_turtle() { const float xaxis[] = {1, 0, 0}; const float yaxis[] = {0, 1, 0}; const float zaxis[] = {0, 0, 1}; par_shapes_mesh* turtle = PAR_CALLOC(par_shapes_mesh, 1); turtle->npoints = 3; turtle->points = PAR_CALLOC(float, turtle->npoints * 3); par_shapes__copy3(turtle->points + 0, xaxis); par_shapes__copy3(turtle->points + 3, yaxis); par_shapes__copy3(turtle->points + 6, zaxis); return turtle; } static par_shapes_mesh* par_shapes__apply_turtle(par_shapes_mesh* mesh, par_shapes_mesh* turtle, float const* pos, float const* scale) { par_shapes_mesh* m = par_shapes_clone(mesh, 0); for (int p = 0; p < m->npoints; p++) { float* pt = m->points + p * 3; pt[0] *= scale[0]; pt[1] *= scale[1]; pt[2] *= scale[2]; par_shapes__transform3(pt, turtle->points + 0, turtle->points + 3, turtle->points + 6); pt[0] += pos[0]; pt[1] += pos[1]; pt[2] += pos[2]; } return m; } void par_shapes__connect(par_shapes_mesh* scene, par_shapes_mesh* cylinder, int slices) { int stacks = 1; int npoints = (slices + 1) * (stacks + 1); assert(scene->npoints >= npoints && "Cannot connect to empty scene."); // Create the new point list. npoints = scene->npoints + (slices + 1); float* points = PAR_MALLOC(float, npoints * 3); memcpy(points, scene->points, sizeof(float) * scene->npoints * 3); float* newpts = points + scene->npoints * 3; memcpy(newpts, cylinder->points + (slices + 1) * 3, sizeof(float) * (slices + 1) * 3); PAR_FREE(scene->points); scene->points = points; // Create the new triangle list. int ntriangles = scene->ntriangles + 2 * slices * stacks; PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, ntriangles * 3); memcpy(triangles, scene->triangles, sizeof(PAR_SHAPES_T) * scene->ntriangles * 3); int v = scene->npoints - (slices + 1); PAR_SHAPES_T* face = triangles + scene->ntriangles * 3; for (int stack = 0; stack < stacks; stack++) { for (int slice = 0; slice < slices; slice++) { int next = slice + 1; *face++ = v + slice + slices + 1; *face++ = v + next; *face++ = v + slice; *face++ = v + slice + slices + 1; *face++ = v + next + slices + 1; *face++ = v + next; } v += slices + 1; } PAR_FREE(scene->triangles); scene->triangles = triangles; scene->npoints = npoints; scene->ntriangles = ntriangles; } par_shapes_mesh* par_shapes_create_lsystem(char const* text, int slices, int maxdepth) { char* program; program = PAR_MALLOC(char, strlen(text) + 1); // The first pass counts the number of rules and commands. strcpy(program, text); char *cmd = strtok(program, " "); int nrules = 1; int ncommands = 0; while (cmd) { char *arg = strtok(0, " "); if (!arg) { puts("lsystem error: unexpected end of program."); break; } if (!strcmp(cmd, "rule")) { nrules++; } else { ncommands++; } cmd = strtok(0, " "); } // Allocate space. par_shapes__rule* rules = PAR_MALLOC(par_shapes__rule, nrules); par_shapes__command* commands = PAR_MALLOC(par_shapes__command, ncommands); // Initialize the entry rule. par_shapes__rule* current_rule = &rules[0]; par_shapes__command* current_command = &commands[0]; current_rule->name = "entry"; current_rule->weight = 1; current_rule->ncommands = 0; current_rule->commands = current_command; // The second pass fills in the structures. strcpy(program, text); cmd = strtok(program, " "); while (cmd) { char *arg = strtok(0, " "); if (!strcmp(cmd, "rule")) { current_rule++; // Split the argument into a rule name and weight. char* dot = strchr(arg, '.'); if (dot) { current_rule->weight = atoi(dot + 1); *dot = 0; } else { current_rule->weight = 1; } current_rule->name = arg; current_rule->ncommands = 0; current_rule->commands = current_command; } else { current_rule->ncommands++; current_command->cmd = cmd; current_command->arg = arg; current_command++; } cmd = strtok(0, " "); } // For testing purposes, dump out the parsed program. #ifdef TEST_PARSE for (int i = 0; i < nrules; i++) { par_shapes__rule rule = rules[i]; printf("rule %s.%d\n", rule.name, rule.weight); for (int c = 0; c < rule.ncommands; c++) { par_shapes__command cmd = rule.commands[c]; printf("\t%s %s\n", cmd.cmd, cmd.arg); } } #endif // Instantiate the aggregated shape and the template shapes. par_shapes_mesh* scene = PAR_CALLOC(par_shapes_mesh, 1); par_shapes_mesh* tube = par_shapes_create_cylinder(slices, 1); par_shapes_mesh* turtle = par_shapes__create_turtle(); // We're not attempting to support texture coordinates and normals // with L-systems, so remove them from the template shape. PAR_FREE(tube->normals); PAR_FREE(tube->tcoords); tube->normals = 0; tube->tcoords = 0; const float xaxis[] = {1, 0, 0}; const float yaxis[] = {0, 1, 0}; const float zaxis[] = {0, 0, 1}; const float units[] = {1, 1, 1}; // Execute the L-system program until the stack size is 0. par_shapes__stackframe* stack = PAR_CALLOC(par_shapes__stackframe, maxdepth); int stackptr = 0; stack[0].orientation = turtle; stack[0].rule = &rules[0]; par_shapes__copy3(stack[0].scale, units); while (stackptr >= 0) { par_shapes__stackframe* frame = &stack[stackptr]; par_shapes__rule* rule = frame->rule; par_shapes_mesh* turtle = frame->orientation; float* position = frame->position; float* scale = frame->scale; if (frame->pc >= rule->ncommands) { par_shapes_free_mesh(turtle); stackptr--; continue; } par_shapes__command* cmd = rule->commands + (frame->pc++); #ifdef DUMP_TRACE printf("%5s %5s %5s:%d %03d\n", cmd->cmd, cmd->arg, rule->name, frame->pc - 1, stackptr); #endif float value; if (!strcmp(cmd->cmd, "shape")) { par_shapes_mesh* m = par_shapes__apply_turtle(tube, turtle, position, scale); if (!strcmp(cmd->arg, "connect")) { par_shapes__connect(scene, m, slices); } else { par_shapes_merge(scene, m); } par_shapes_free_mesh(m); } else if (!strcmp(cmd->cmd, "call") && stackptr < maxdepth - 1) { rule = par_shapes__pick_rule(cmd->arg, rules, nrules); frame = &stack[++stackptr]; frame->rule = rule; frame->orientation = par_shapes_clone(turtle, 0); frame->pc = 0; par_shapes__copy3(frame->scale, scale); par_shapes__copy3(frame->position, position); continue; } else { value = atof(cmd->arg); if (!strcmp(cmd->cmd, "rx")) { par_shapes_rotate(turtle, value * PAR_PI / 180.0, xaxis); } else if (!strcmp(cmd->cmd, "ry")) { par_shapes_rotate(turtle, value * PAR_PI / 180.0, yaxis); } else if (!strcmp(cmd->cmd, "rz")) { par_shapes_rotate(turtle, value * PAR_PI / 180.0, zaxis); } else if (!strcmp(cmd->cmd, "tx")) { float vec[3] = {value, 0, 0}; float t[3] = { par_shapes__dot3(turtle->points + 0, vec), par_shapes__dot3(turtle->points + 3, vec), par_shapes__dot3(turtle->points + 6, vec) }; par_shapes__add3(position, t); } else if (!strcmp(cmd->cmd, "ty")) { float vec[3] = {0, value, 0}; float t[3] = { par_shapes__dot3(turtle->points + 0, vec), par_shapes__dot3(turtle->points + 3, vec), par_shapes__dot3(turtle->points + 6, vec) }; par_shapes__add3(position, t); } else if (!strcmp(cmd->cmd, "tz")) { float vec[3] = {0, 0, value}; float t[3] = { par_shapes__dot3(turtle->points + 0, vec), par_shapes__dot3(turtle->points + 3, vec), par_shapes__dot3(turtle->points + 6, vec) }; par_shapes__add3(position, t); } else if (!strcmp(cmd->cmd, "sx")) { scale[0] *= value; } else if (!strcmp(cmd->cmd, "sy")) { scale[1] *= value; } else if (!strcmp(cmd->cmd, "sz")) { scale[2] *= value; } else if (!strcmp(cmd->cmd, "sa")) { scale[0] *= value; scale[1] *= value; scale[2] *= value; } } } PAR_FREE(stack); PAR_FREE(program); PAR_FREE(rules); PAR_FREE(commands); return scene; } void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices) { int npoints = mesh->ntriangles * 3; float* points = PAR_MALLOC(float, 3 * npoints); float* dst = points; PAR_SHAPES_T const* index = mesh->triangles; for (int i = 0; i < npoints; i++) { float const* src = mesh->points + 3 * (*index++); *dst++ = src[0]; *dst++ = src[1]; *dst++ = src[2]; } PAR_FREE(mesh->points); mesh->points = points; mesh->npoints = npoints; if (create_indices) { PAR_SHAPES_T* tris = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); PAR_SHAPES_T* index = tris; for (int i = 0; i < mesh->ntriangles * 3; i++) { *index++ = i; } PAR_FREE(mesh->triangles); mesh->triangles = tris; } } void par_shapes_compute_normals(par_shapes_mesh* m) { PAR_FREE(m->normals); m->normals = PAR_CALLOC(float, m->npoints * 3); PAR_SHAPES_T const* triangle = m->triangles; float next[3], prev[3], cp[3]; for (int f = 0; f < m->ntriangles; f++, triangle += 3) { float const* pa = m->points + 3 * triangle[0]; float const* pb = m->points + 3 * triangle[1]; float const* pc = m->points + 3 * triangle[2]; par_shapes__copy3(next, pb); par_shapes__subtract3(next, pa); par_shapes__copy3(prev, pc); par_shapes__subtract3(prev, pa); par_shapes__cross3(cp, next, prev); par_shapes__add3(m->normals + 3 * triangle[0], cp); par_shapes__copy3(next, pc); par_shapes__subtract3(next, pb); par_shapes__copy3(prev, pa); par_shapes__subtract3(prev, pb); par_shapes__cross3(cp, next, prev); par_shapes__add3(m->normals + 3 * triangle[1], cp); par_shapes__copy3(next, pa); par_shapes__subtract3(next, pc); par_shapes__copy3(prev, pb); par_shapes__subtract3(prev, pc); par_shapes__cross3(cp, next, prev); par_shapes__add3(m->normals + 3 * triangle[2], cp); } float* normal = m->normals; for (int p = 0; p < m->npoints; p++, normal += 3) { par_shapes__normalize3(normal); } } static void par_shapes__subdivide(par_shapes_mesh* mesh) { assert(mesh->npoints == mesh->ntriangles * 3 && "Must be unwelded."); int ntriangles = mesh->ntriangles * 4; int npoints = ntriangles * 3; float* points = PAR_CALLOC(float, npoints * 3); float* dpoint = points; float const* spoint = mesh->points; for (int t = 0; t < mesh->ntriangles; t++, spoint += 9, dpoint += 3) { float const* a = spoint; float const* b = spoint + 3; float const* c = spoint + 6; float const* p0 = dpoint; float const* p1 = dpoint + 3; float const* p2 = dpoint + 6; par_shapes__mix3(dpoint, a, b, 0.5); par_shapes__mix3(dpoint += 3, b, c, 0.5); par_shapes__mix3(dpoint += 3, a, c, 0.5); par_shapes__add3(dpoint += 3, a); par_shapes__add3(dpoint += 3, p0); par_shapes__add3(dpoint += 3, p2); par_shapes__add3(dpoint += 3, p0); par_shapes__add3(dpoint += 3, b); par_shapes__add3(dpoint += 3, p1); par_shapes__add3(dpoint += 3, p2); par_shapes__add3(dpoint += 3, p1); par_shapes__add3(dpoint += 3, c); } PAR_FREE(mesh->points); mesh->points = points; mesh->npoints = npoints; mesh->ntriangles = ntriangles; } par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubd) { par_shapes_mesh* mesh = par_shapes_create_icosahedron(); par_shapes_unweld(mesh, false); PAR_FREE(mesh->triangles); mesh->triangles = 0; while (nsubd--) { par_shapes__subdivide(mesh); } for (int i = 0; i < mesh->npoints; i++) { par_shapes__normalize3(mesh->points + i * 3); } mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); for (int i = 0; i < mesh->ntriangles * 3; i++) { mesh->triangles[i] = i; } par_shapes_mesh* tmp = mesh; mesh = par_shapes_weld(mesh, 0.01, 0); par_shapes_free_mesh(tmp); par_shapes_compute_normals(mesh); return mesh; } par_shapes_mesh* par_shapes_create_rock(int seed, int subd) { par_shapes_mesh* mesh = par_shapes_create_subdivided_sphere(subd); struct osn_context* ctx; par__simplex_noise(seed, &ctx); for (int p = 0; p < mesh->npoints; p++) { float* pt = mesh->points + p * 3; float a = 0.25, f = 1.0; double n = a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); a *= 0.5; f *= 2; n += a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); pt[0] *= 1 + 2 * n; pt[1] *= 1 + n; pt[2] *= 1 + 2 * n; if (pt[1] < 0) { pt[1] = -pow(-pt[1], 0.5) / 2; } } par__simplex_noise_free(ctx); par_shapes_compute_normals(mesh); return mesh; } par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, par_shapes_mesh* clone) { if (!clone) { clone = PAR_CALLOC(par_shapes_mesh, 1); } clone->npoints = mesh->npoints; clone->points = PAR_REALLOC(float, clone->points, 3 * clone->npoints); memcpy(clone->points, mesh->points, sizeof(float) * 3 * clone->npoints); clone->ntriangles = mesh->ntriangles; clone->triangles = PAR_REALLOC(PAR_SHAPES_T, clone->triangles, 3 * clone->ntriangles); memcpy(clone->triangles, mesh->triangles, sizeof(PAR_SHAPES_T) * 3 * clone->ntriangles); if (mesh->normals) { clone->normals = PAR_REALLOC(float, clone->normals, 3 * clone->npoints); memcpy(clone->normals, mesh->normals, sizeof(float) * 3 * clone->npoints); } if (mesh->tcoords) { clone->tcoords = PAR_REALLOC(float, clone->tcoords, 2 * clone->npoints); memcpy(clone->tcoords, mesh->tcoords, sizeof(float) * 2 * clone->npoints); } return clone; } static struct { float const* points; int gridsize; } par_shapes__sort_context; static int par_shapes__cmp1(const void *arg0, const void *arg1) { const int g = par_shapes__sort_context.gridsize; // Convert arg0 into a flattened grid index. PAR_SHAPES_T d0 = *(const PAR_SHAPES_T*) arg0; float const* p0 = par_shapes__sort_context.points + d0 * 3; int i0 = (int) p0[0]; int j0 = (int) p0[1]; int k0 = (int) p0[2]; int index0 = i0 + g * j0 + g * g * k0; // Convert arg1 into a flattened grid index. PAR_SHAPES_T d1 = *(const PAR_SHAPES_T*) arg1; float const* p1 = par_shapes__sort_context.points + d1 * 3; int i1 = (int) p1[0]; int j1 = (int) p1[1]; int k1 = (int) p1[2]; int index1 = i1 + g * j1 + g * g * k1; // Return the ordering. if (index0 < index1) return -1; if (index0 > index1) return 1; return 0; } static void par_shapes__sort_points(par_shapes_mesh* mesh, int gridsize, PAR_SHAPES_T* sortmap) { // Run qsort over a list of consecutive integers that get deferenced // within the comparator function; this creates a reorder mapping. for (int i = 0; i < mesh->npoints; i++) { sortmap[i] = i; } par_shapes__sort_context.gridsize = gridsize; par_shapes__sort_context.points = mesh->points; qsort(sortmap, mesh->npoints, sizeof(PAR_SHAPES_T), par_shapes__cmp1); // Apply the reorder mapping to the XYZ coordinate data. float* newpts = PAR_MALLOC(float, mesh->npoints * 3); PAR_SHAPES_T* invmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); float* dstpt = newpts; for (int i = 0; i < mesh->npoints; i++) { invmap[sortmap[i]] = i; float const* srcpt = mesh->points + 3 * sortmap[i]; *dstpt++ = *srcpt++; *dstpt++ = *srcpt++; *dstpt++ = *srcpt++; } PAR_FREE(mesh->points); mesh->points = newpts; // Apply the inverse reorder mapping to the triangle indices. PAR_SHAPES_T* newinds = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* dstind = newinds; PAR_SHAPES_T const* srcind = mesh->triangles; for (int i = 0; i < mesh->ntriangles * 3; i++) { *dstind++ = invmap[*srcind++]; } PAR_FREE(mesh->triangles); mesh->triangles = newinds; // Cleanup. memcpy(sortmap, invmap, sizeof(PAR_SHAPES_T) * mesh->npoints); PAR_FREE(invmap); } static void par_shapes__weld_points(par_shapes_mesh* mesh, int gridsize, float epsilon, PAR_SHAPES_T* weldmap) { // Each bin contains a "pointer" (really an index) to its first point. // We add 1 because 0 is reserved to mean that the bin is empty. // Since the points are spatially sorted, there's no need to store // a point count in each bin. PAR_SHAPES_T* bins = PAR_CALLOC(PAR_SHAPES_T, gridsize * gridsize * gridsize); int prev_binindex = -1; for (int p = 0; p < mesh->npoints; p++) { float const* pt = mesh->points + p * 3; int i = (int) pt[0]; int j = (int) pt[1]; int k = (int) pt[2]; int this_binindex = i + gridsize * j + gridsize * gridsize * k; if (this_binindex != prev_binindex) { bins[this_binindex] = 1 + p; } prev_binindex = this_binindex; } // Examine all bins that intersect the epsilon-sized cube centered at each // point, and check for colocated points within those bins. float const* pt = mesh->points; int nremoved = 0; for (int p = 0; p < mesh->npoints; p++, pt += 3) { // Skip if this point has already been welded. if (weldmap[p] != p) { continue; } // Build a list of bins that intersect the epsilon-sized cube. int nearby[8]; int nbins = 0; int minp[3], maxp[3]; for (int c = 0; c < 3; c++) { minp[c] = (int) (pt[c] - epsilon); maxp[c] = (int) (pt[c] + epsilon); } for (int i = minp[0]; i <= maxp[0]; i++) { for (int j = minp[1]; j <= maxp[1]; j++) { for (int k = minp[2]; k <= maxp[2]; k++) { int binindex = i + gridsize * j + gridsize * gridsize * k; PAR_SHAPES_T binvalue = *(bins + binindex); if (binvalue > 0) { if (nbins == 8) { printf("Epsilon value is too large.\n"); break; } nearby[nbins++] = binindex; } } } } // Check for colocated points in each nearby bin. for (int b = 0; b < nbins; b++) { int binindex = nearby[b]; PAR_SHAPES_T binvalue = bins[binindex]; PAR_SHAPES_T nindex = binvalue - 1; assert(nindex < mesh->npoints); while (true) { // If this isn't "self" and it's colocated, then weld it! if (nindex != p && weldmap[nindex] == nindex) { float const* thatpt = mesh->points + nindex * 3; float dist2 = par_shapes__sqrdist3(thatpt, pt); if (dist2 < epsilon) { weldmap[nindex] = p; nremoved++; } } // Advance to the next point if possible. if (++nindex >= mesh->npoints) { break; } // If the next point is outside the bin, then we're done. float const* nextpt = mesh->points + nindex * 3; int i = (int) nextpt[0]; int j = (int) nextpt[1]; int k = (int) nextpt[2]; int nextbinindex = i + gridsize * j + gridsize * gridsize * k; if (nextbinindex != binindex) { break; } } } } PAR_FREE(bins); // Apply the weldmap to the vertices. int npoints = mesh->npoints - nremoved; float* newpts = PAR_MALLOC(float, 3 * npoints); float* dst = newpts; PAR_SHAPES_T* condensed_map = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); PAR_SHAPES_T* cmap = condensed_map; float const* src = mesh->points; int ci = 0; for (int p = 0; p < mesh->npoints; p++, src += 3) { if (weldmap[p] == p) { *dst++ = src[0]; *dst++ = src[1]; *dst++ = src[2]; *cmap++ = ci++; } else { *cmap++ = condensed_map[weldmap[p]]; } } assert(ci == npoints); PAR_FREE(mesh->points); memcpy(weldmap, condensed_map, mesh->npoints * sizeof(PAR_SHAPES_T)); PAR_FREE(condensed_map); mesh->points = newpts; mesh->npoints = npoints; // Apply the weldmap to the triangle indices and skip the degenerates. PAR_SHAPES_T const* tsrc = mesh->triangles; PAR_SHAPES_T* tdst = mesh->triangles; int ntriangles = 0; for (int i = 0; i < mesh->ntriangles; i++, tsrc += 3) { PAR_SHAPES_T a = weldmap[tsrc[0]]; PAR_SHAPES_T b = weldmap[tsrc[1]]; PAR_SHAPES_T c = weldmap[tsrc[2]]; if (a != b && a != c && b != c) { assert(a < mesh->npoints); assert(b < mesh->npoints); assert(c < mesh->npoints); *tdst++ = a; *tdst++ = b; *tdst++ = c; ntriangles++; } } mesh->ntriangles = ntriangles; } par_shapes_mesh* par_shapes_weld(par_shapes_mesh const* mesh, float epsilon, PAR_SHAPES_T* weldmap) { par_shapes_mesh* clone = par_shapes_clone(mesh, 0); float aabb[6]; int gridsize = 20; float maxcell = gridsize - 1; par_shapes_compute_aabb(clone, aabb); float scale[3] = { aabb[3] == aabb[0] ? 1.0f : maxcell / (aabb[3] - aabb[0]), aabb[4] == aabb[1] ? 1.0f : maxcell / (aabb[4] - aabb[1]), aabb[5] == aabb[2] ? 1.0f : maxcell / (aabb[5] - aabb[2]), }; par_shapes_translate(clone, -aabb[0], -aabb[1], -aabb[2]); par_shapes_scale(clone, scale[0], scale[1], scale[2]); PAR_SHAPES_T* sortmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); par_shapes__sort_points(clone, gridsize, sortmap); bool owner = false; if (!weldmap) { owner = true; weldmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); } for (int i = 0; i < mesh->npoints; i++) { weldmap[i] = i; } par_shapes__weld_points(clone, gridsize, epsilon, weldmap); if (owner) { PAR_FREE(weldmap); } else { PAR_SHAPES_T* newmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); for (int i = 0; i < mesh->npoints; i++) { newmap[i] = weldmap[sortmap[i]]; } memcpy(weldmap, newmap, sizeof(PAR_SHAPES_T) * mesh->npoints); PAR_FREE(newmap); } PAR_FREE(sortmap); par_shapes_scale(clone, 1.0 / scale[0], 1.0 / scale[1], 1.0 / scale[2]); par_shapes_translate(clone, aabb[0], aabb[1], aabb[2]); return clone; } // ----------------------------------------------------------------------------- // BEGIN OPEN SIMPLEX NOISE // ----------------------------------------------------------------------------- #define STRETCH_CONSTANT_2D (-0.211324865405187) // (1 / sqrt(2 + 1) - 1 ) / 2; #define SQUISH_CONSTANT_2D (0.366025403784439) // (sqrt(2 + 1) -1) / 2; #define STRETCH_CONSTANT_3D (-1.0 / 6.0) // (1 / sqrt(3 + 1) - 1) / 3; #define SQUISH_CONSTANT_3D (1.0 / 3.0) // (sqrt(3+1)-1)/3; #define STRETCH_CONSTANT_4D (-0.138196601125011) // (1 / sqrt(4 + 1) - 1) / 4; #define SQUISH_CONSTANT_4D (0.309016994374947) // (sqrt(4 + 1) - 1) / 4; #define NORM_CONSTANT_2D (47.0) #define NORM_CONSTANT_3D (103.0) #define NORM_CONSTANT_4D (30.0) #define DEFAULT_SEED (0LL) struct osn_context { int16_t* perm; int16_t* permGradIndex3D; }; #define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0])) /* * Gradients for 2D. They approximate the directions to the * vertices of an octagon from the center. */ static const int8_t gradients2D[] = { 5, 2, 2, 5, -5, 2, -2, 5, 5, -2, 2, -5, -5, -2, -2, -5, }; /* * Gradients for 3D. They approximate the directions to the * vertices of a rhombicuboctahedron from the center, skewed so * that the triangular and square facets can be inscribed inside * circles of the same radius. */ static const signed char gradients3D[] = { -11, 4, 4, -4, 11, 4, -4, 4, 11, 11, 4, 4, 4, 11, 4, 4, 4, 11, -11, -4, 4, -4, -11, 4, -4, -4, 11, 11, -4, 4, 4, -11, 4, 4, -4, 11, -11, 4, -4, -4, 11, -4, -4, 4, -11, 11, 4, -4, 4, 11, -4, 4, 4, -11, -11, -4, -4, -4, -11, -4, -4, -4, -11, 11, -4, -4, 4, -11, -4, 4, -4, -11, }; /* * Gradients for 4D. They approximate the directions to the * vertices of a disprismatotesseractihexadecachoron from the center, * skewed so that the tetrahedral and cubic facets can be inscribed inside * spheres of the same radius. */ static const signed char gradients4D[] = { 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, }; static double extrapolate2( struct osn_context* ctx, int xsb, int ysb, double dx, double dy) { int16_t* perm = ctx->perm; int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; return gradients2D[index] * dx + gradients2D[index + 1] * dy; } static inline int fastFloor(double x) { int xi = (int) x; return x < xi ? xi - 1 : xi; } static int allocate_perm(struct osn_context* ctx, int nperm, int ngrad) { PAR_FREE(ctx->perm); PAR_FREE(ctx->permGradIndex3D); ctx->perm = PAR_MALLOC(int16_t, nperm); if (!ctx->perm) { return -ENOMEM; } ctx->permGradIndex3D = PAR_MALLOC(int16_t, ngrad); if (!ctx->permGradIndex3D) { PAR_FREE(ctx->perm); return -ENOMEM; } return 0; } static int par__simplex_noise(int64_t seed, struct osn_context** ctx) { int rc; int16_t source[256]; int i; int16_t* perm; int16_t* permGradIndex3D; *ctx = PAR_MALLOC(struct osn_context, 1); if (!(*ctx)) { return -ENOMEM; } (*ctx)->perm = NULL; (*ctx)->permGradIndex3D = NULL; rc = allocate_perm(*ctx, 256, 256); if (rc) { PAR_FREE(*ctx); return rc; } perm = (*ctx)->perm; permGradIndex3D = (*ctx)->permGradIndex3D; for (i = 0; i < 256; i++) { source[i] = (int16_t) i; } seed = seed * 6364136223846793005LL + 1442695040888963407LL; seed = seed * 6364136223846793005LL + 1442695040888963407LL; seed = seed * 6364136223846793005LL + 1442695040888963407LL; for (i = 255; i >= 0; i--) { seed = seed * 6364136223846793005LL + 1442695040888963407LL; int r = (int) ((seed + 31) % (i + 1)); if (r < 0) r += (i + 1); perm[i] = source[r]; permGradIndex3D[i] = (short) ((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3); source[r] = source[i]; } return 0; } static void par__simplex_noise_free(struct osn_context* ctx) { if (!ctx) return; if (ctx->perm) { PAR_FREE(ctx->perm); ctx->perm = NULL; } if (ctx->permGradIndex3D) { PAR_FREE(ctx->permGradIndex3D); ctx->permGradIndex3D = NULL; } PAR_FREE(ctx); } static double par__simplex_noise2(struct osn_context* ctx, double x, double y) { // Place input coordinates onto grid. double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; double xs = x + stretchOffset; double ys = y + stretchOffset; // Floor to get grid coordinates of rhombus (stretched square) super-cell // origin. int xsb = fastFloor(xs); int ysb = fastFloor(ys); // Skew out to get actual coordinates of rhombus origin. We'll need these // later. double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D; double xb = xsb + squishOffset; double yb = ysb + squishOffset; // Compute grid coordinates relative to rhombus origin. double xins = xs - xsb; double yins = ys - ysb; // Sum those together to get a value that determines which region we're in. double inSum = xins + yins; // Positions relative to origin point. double dx0 = x - xb; double dy0 = y - yb; // We'll be defining these inside the next block and using them afterwards. double dx_ext, dy_ext; int xsv_ext, ysv_ext; double value = 0; // Contribution (1,0) double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; double attn1 = 2 - dx1 * dx1 - dy1 * dy1; if (attn1 > 0) { attn1 *= attn1; value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1); } // Contribution (0,1) double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; double attn2 = 2 - dx2 * dx2 - dy2 * dy2; if (attn2 > 0) { attn2 *= attn2; value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2); } if (inSum <= 1) { // We're inside the triangle (2-Simplex) at (0,0) double zins = 1 - inSum; if (zins > xins || zins > yins) { if (xins > yins) { xsv_ext = xsb + 1; ysv_ext = ysb - 1; dx_ext = dx0 - 1; dy_ext = dy0 + 1; } else { xsv_ext = xsb - 1; ysv_ext = ysb + 1; dx_ext = dx0 + 1; dy_ext = dy0 - 1; } } else { //(1,0) and (0,1) are the closest two vertices. xsv_ext = xsb + 1; ysv_ext = ysb + 1; dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; } } else { // We're inside the triangle (2-Simplex) at (1,1) double zins = 2 - inSum; if (zins < xins || zins < yins) { if (xins > yins) { xsv_ext = xsb + 2; ysv_ext = ysb + 0; dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; } else { xsv_ext = xsb + 0; ysv_ext = ysb + 2; dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; } } else { //(1,0) and (0,1) are the closest two vertices. dx_ext = dx0; dy_ext = dy0; xsv_ext = xsb; ysv_ext = ysb; } xsb += 1; ysb += 1; dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; } // Contribution (0,0) or (1,1) double attn0 = 2 - dx0 * dx0 - dy0 * dy0; if (attn0 > 0) { attn0 *= attn0; value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0); } // Extra Vertex double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; if (attn_ext > 0) { attn_ext *= attn_ext; value += attn_ext * attn_ext * extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext); } return value / NORM_CONSTANT_2D; } void par_shapes_remove_degenerate(par_shapes_mesh* mesh, float mintriarea) { int ntriangles = 0; PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); PAR_SHAPES_T* dst = triangles; PAR_SHAPES_T const* src = mesh->triangles; float next[3], prev[3], cp[3]; float mincplen2 = (mintriarea * 2) * (mintriarea * 2); for (int f = 0; f < mesh->ntriangles; f++, src += 3) { float const* pa = mesh->points + 3 * src[0]; float const* pb = mesh->points + 3 * src[1]; float const* pc = mesh->points + 3 * src[2]; par_shapes__copy3(next, pb); par_shapes__subtract3(next, pa); par_shapes__copy3(prev, pc); par_shapes__subtract3(prev, pa); par_shapes__cross3(cp, next, prev); float cplen2 = par_shapes__dot3(cp, cp); if (cplen2 >= mincplen2) { *dst++ = src[0]; *dst++ = src[1]; *dst++ = src[2]; ntriangles++; } } mesh->ntriangles = ntriangles; PAR_FREE(mesh->triangles); mesh->triangles = triangles; } #endif // PAR_SHAPES_IMPLEMENTATION #endif // PAR_SHAPES_H // par_shapes is distributed under the MIT license: // // Copyright (c) 2019 Philip Rideout // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE.