{-# LANGUAGE RankNTypes #-} {-# OPTIONS_GHC -fno-warn-orphans #-} ----------------------------------------------------------------------------- -- | -- Module : Haddock.InterfaceFile -- Copyright : (c) David Waern 2006-2009 -- License : BSD-like -- -- Maintainer : haddock@projects.haskell.org -- Stability : experimental -- Portability : portable -- -- Reading and writing the .haddock interface file ----------------------------------------------------------------------------- module Haddock.InterfaceFile ( InterfaceFile(..), ifPackageId, readInterfaceFile, nameCacheFromGhc, freshNameCache, NameCacheAccessor, writeInterfaceFile, binaryInterfaceVersion ) where import Haddock.Types import Haddock.Utils hiding (out) import Control.Monad import Data.Array import Data.IORef import Data.List import qualified Data.Map as Map import Data.Map (Map) import Data.Word import BinIface (getSymtabName, getDictFastString) import Binary import FastMutInt import FastString import GHC hiding (NoLink) import GhcMonad (withSession) import HscTypes import IfaceEnv import Name import UniqFM import UniqSupply import Unique data InterfaceFile = InterfaceFile { ifLinkEnv :: LinkEnv, ifInstalledIfaces :: [InstalledInterface] } ifPackageId :: InterfaceFile -> PackageId ifPackageId if_ = case ifInstalledIfaces if_ of [] -> error "empty InterfaceFile" iface:_ -> modulePackageId $ instMod iface binaryInterfaceMagic :: Word32 binaryInterfaceMagic = 0xD0Cface -- Since datatypes in the GHC API might change between major versions, and -- because we store GHC datatypes in our interface files, we need to make sure -- we version our interface files accordingly. binaryInterfaceVersion :: Word16 #if __GLASGOW_HASKELL__ == 702 binaryInterfaceVersion = 20 #elif __GLASGOW_HASKELL__ == 703 binaryInterfaceVersion = 20 #elif __GLASGOW_HASKELL__ == 704 binaryInterfaceVersion = 20 #elif __GLASGOW_HASKELL__ == 705 binaryInterfaceVersion = 20 #else #error Unknown GHC version #endif initBinMemSize :: Int initBinMemSize = 1024*1024 writeInterfaceFile :: FilePath -> InterfaceFile -> IO () writeInterfaceFile filename iface = do bh0 <- openBinMem initBinMemSize put_ bh0 binaryInterfaceMagic put_ bh0 binaryInterfaceVersion -- remember where the dictionary pointer will go dict_p_p <- tellBin bh0 put_ bh0 dict_p_p -- remember where the symbol table pointer will go symtab_p_p <- tellBin bh0 put_ bh0 symtab_p_p -- Make some intial state symtab_next <- newFastMutInt writeFastMutInt symtab_next 0 symtab_map <- newIORef emptyUFM let bin_symtab = BinSymbolTable { bin_symtab_next = symtab_next, bin_symtab_map = symtab_map } dict_next_ref <- newFastMutInt writeFastMutInt dict_next_ref 0 dict_map_ref <- newIORef emptyUFM let bin_dict = BinDictionary { bin_dict_next = dict_next_ref, bin_dict_map = dict_map_ref } -- put the main thing let bh = setUserData bh0 $ newWriteState (putName bin_symtab) (putFastString bin_dict) put_ bh iface -- write the symtab pointer at the front of the file symtab_p <- tellBin bh putAt bh symtab_p_p symtab_p seekBin bh symtab_p -- write the symbol table itself symtab_next' <- readFastMutInt symtab_next symtab_map' <- readIORef symtab_map putSymbolTable bh symtab_next' symtab_map' -- write the dictionary pointer at the fornt of the file dict_p <- tellBin bh putAt bh dict_p_p dict_p seekBin bh dict_p -- write the dictionary itself dict_next <- readFastMutInt dict_next_ref dict_map <- readIORef dict_map_ref putDictionary bh dict_next dict_map -- and send the result to the file writeBinMem bh filename return () type NameCacheAccessor m = (m NameCache, NameCache -> m ()) nameCacheFromGhc :: NameCacheAccessor Ghc nameCacheFromGhc = ( read_from_session , write_to_session ) where read_from_session = do ref <- withSession (return . hsc_NC) liftIO $ readIORef ref write_to_session nc' = do ref <- withSession (return . hsc_NC) liftIO $ writeIORef ref nc' freshNameCache :: NameCacheAccessor IO freshNameCache = ( create_fresh_nc , \_ -> return () ) where create_fresh_nc = do u <- mkSplitUniqSupply 'a' -- ?? return (initNameCache u []) -- | Read a Haddock (@.haddock@) interface file. Return either an -- 'InterfaceFile' or an error message. -- -- This function can be called in two ways. Within a GHC session it will -- update the use and update the session's name cache. Outside a GHC session -- a new empty name cache is used. The function is therefore generic in the -- monad being used. The exact monad is whichever monad the first -- argument, the getter and setter of the name cache, requires. -- readInterfaceFile :: forall m. MonadIO m => NameCacheAccessor m -> FilePath -> m (Either String InterfaceFile) readInterfaceFile (get_name_cache, set_name_cache) filename = do bh0 <- liftIO $ readBinMem filename magic <- liftIO $ get bh0 version <- liftIO $ get bh0 case () of _ | magic /= binaryInterfaceMagic -> return . Left $ "Magic number mismatch: couldn't load interface file: " ++ filename | version /= binaryInterfaceVersion -> return . Left $ "Interface file is of wrong version: " ++ filename | otherwise -> with_name_cache $ \update_nc -> do dict <- get_dictionary bh0 -- read the symbol table so we are capable of reading the actual data bh1 <- do let bh1 = setUserData bh0 $ newReadState (error "getSymtabName") (getDictFastString dict) symtab <- update_nc (get_symbol_table bh1) return $ setUserData bh1 $ newReadState (getSymtabName (NCU (\f -> update_nc (return . f))) dict symtab) (getDictFastString dict) -- load the actual data iface <- liftIO $ get bh1 return (Right iface) where with_name_cache :: forall a. ((forall n b. MonadIO n => (NameCache -> n (NameCache, b)) -> n b) -> m a) -> m a with_name_cache act = do nc_var <- get_name_cache >>= (liftIO . newIORef) x <- act $ \f -> do nc <- liftIO $ readIORef nc_var (nc', x) <- f nc liftIO $ writeIORef nc_var nc' return x liftIO (readIORef nc_var) >>= set_name_cache return x get_dictionary bin_handle = liftIO $ do dict_p <- get bin_handle data_p <- tellBin bin_handle seekBin bin_handle dict_p dict <- getDictionary bin_handle seekBin bin_handle data_p return dict get_symbol_table bh1 theNC = liftIO $ do symtab_p <- get bh1 data_p' <- tellBin bh1 seekBin bh1 symtab_p (nc', symtab) <- getSymbolTable bh1 theNC seekBin bh1 data_p' return (nc', symtab) ------------------------------------------------------------------------------- -- * Symbol table ------------------------------------------------------------------------------- putName :: BinSymbolTable -> BinHandle -> Name -> IO () putName BinSymbolTable{ bin_symtab_map = symtab_map_ref, bin_symtab_next = symtab_next } bh name = do symtab_map <- readIORef symtab_map_ref case lookupUFM symtab_map name of Just (off,_) -> put_ bh (fromIntegral off :: Word32) Nothing -> do off <- readFastMutInt symtab_next writeFastMutInt symtab_next (off+1) writeIORef symtab_map_ref $! addToUFM symtab_map name (off,name) put_ bh (fromIntegral off :: Word32) data BinSymbolTable = BinSymbolTable { bin_symtab_next :: !FastMutInt, -- The next index to use bin_symtab_map :: !(IORef (UniqFM (Int,Name))) -- indexed by Name } putFastString :: BinDictionary -> BinHandle -> FastString -> IO () putFastString BinDictionary { bin_dict_next = j_r, bin_dict_map = out_r} bh f = do out <- readIORef out_r let unique = getUnique f case lookupUFM out unique of Just (j, _) -> put_ bh (fromIntegral j :: Word32) Nothing -> do j <- readFastMutInt j_r put_ bh (fromIntegral j :: Word32) writeFastMutInt j_r (j + 1) writeIORef out_r $! addToUFM out unique (j, f) data BinDictionary = BinDictionary { bin_dict_next :: !FastMutInt, -- The next index to use bin_dict_map :: !(IORef (UniqFM (Int,FastString))) -- indexed by FastString } putSymbolTable :: BinHandle -> Int -> UniqFM (Int,Name) -> IO () putSymbolTable bh next_off symtab = do put_ bh next_off let names = elems (array (0,next_off-1) (eltsUFM symtab)) mapM_ (\n -> serialiseName bh n symtab) names getSymbolTable :: BinHandle -> NameCache -> IO (NameCache, Array Int Name) getSymbolTable bh namecache = do sz <- get bh od_names <- replicateM sz (get bh) let arr = listArray (0,sz-1) names (namecache', names) = mapAccumR (fromOnDiskName arr) namecache od_names return (namecache', arr) type OnDiskName = (PackageId, ModuleName, OccName) fromOnDiskName :: Array Int Name -> NameCache -> OnDiskName -> (NameCache, Name) fromOnDiskName _ nc (pid, mod_name, occ) = let modu = mkModule pid mod_name cache = nsNames nc in case lookupOrigNameCache cache modu occ of Just name -> (nc, name) Nothing -> let us = nsUniqs nc u = uniqFromSupply us name = mkExternalName u modu occ noSrcSpan new_cache = extendNameCache cache modu occ name in case splitUniqSupply us of { (us',_) -> ( nc{ nsUniqs = us', nsNames = new_cache }, name ) } serialiseName :: BinHandle -> Name -> UniqFM (Int,Name) -> IO () serialiseName bh name _ = do let modu = nameModule name put_ bh (modulePackageId modu, moduleName modu, nameOccName name) ------------------------------------------------------------------------------- -- * GhcBinary instances ------------------------------------------------------------------------------- instance (Ord k, Binary k, Binary v) => Binary (Map k v) where put_ bh m = put_ bh (Map.toList m) get bh = fmap (Map.fromList) (get bh) instance Binary InterfaceFile where put_ bh (InterfaceFile env ifaces) = do put_ bh env put_ bh ifaces get bh = do env <- get bh ifaces <- get bh return (InterfaceFile env ifaces) instance Binary InstalledInterface where put_ bh (InstalledInterface modu info docMap argMap exps visExps opts subMap) = do put_ bh modu put_ bh info put_ bh docMap put_ bh argMap put_ bh exps put_ bh visExps put_ bh opts put_ bh subMap get bh = do modu <- get bh info <- get bh docMap <- get bh argMap <- get bh exps <- get bh visExps <- get bh opts <- get bh subMap <- get bh return (InstalledInterface modu info docMap argMap exps visExps opts subMap) instance Binary DocOption where put_ bh OptHide = do putByte bh 0 put_ bh OptPrune = do putByte bh 1 put_ bh OptIgnoreExports = do putByte bh 2 put_ bh OptNotHome = do putByte bh 3 get bh = do h <- getByte bh case h of 0 -> do return OptHide 1 -> do return OptPrune 2 -> do return OptIgnoreExports 3 -> do return OptNotHome _ -> fail "invalid binary data found" instance Binary Example where put_ bh (Example expression result) = do put_ bh expression put_ bh result get bh = do expression <- get bh result <- get bh return (Example expression result) {-* Generated by DrIFT : Look, but Don't Touch. *-} instance (Binary id) => Binary (Doc id) where put_ bh DocEmpty = do putByte bh 0 put_ bh (DocAppend aa ab) = do putByte bh 1 put_ bh aa put_ bh ab put_ bh (DocString ac) = do putByte bh 2 put_ bh ac put_ bh (DocParagraph ad) = do putByte bh 3 put_ bh ad put_ bh (DocIdentifier ae) = do putByte bh 4 put_ bh ae put_ bh (DocModule af) = do putByte bh 5 put_ bh af put_ bh (DocEmphasis ag) = do putByte bh 6 put_ bh ag put_ bh (DocMonospaced ah) = do putByte bh 7 put_ bh ah put_ bh (DocUnorderedList ai) = do putByte bh 8 put_ bh ai put_ bh (DocOrderedList aj) = do putByte bh 9 put_ bh aj put_ bh (DocDefList ak) = do putByte bh 10 put_ bh ak put_ bh (DocCodeBlock al) = do putByte bh 11 put_ bh al put_ bh (DocURL am) = do putByte bh 12 put_ bh am put_ bh (DocPic x) = do putByte bh 13 put_ bh x put_ bh (DocAName an) = do putByte bh 14 put_ bh an put_ bh (DocExamples ao) = do putByte bh 15 put_ bh ao put_ bh (DocIdentifierUnchecked x) = do putByte bh 16 put_ bh x put_ bh (DocWarning ag) = do putByte bh 17 put_ bh ag get bh = do h <- getByte bh case h of 0 -> do return DocEmpty 1 -> do aa <- get bh ab <- get bh return (DocAppend aa ab) 2 -> do ac <- get bh return (DocString ac) 3 -> do ad <- get bh return (DocParagraph ad) 4 -> do ae <- get bh return (DocIdentifier ae) 5 -> do af <- get bh return (DocModule af) 6 -> do ag <- get bh return (DocEmphasis ag) 7 -> do ah <- get bh return (DocMonospaced ah) 8 -> do ai <- get bh return (DocUnorderedList ai) 9 -> do aj <- get bh return (DocOrderedList aj) 10 -> do ak <- get bh return (DocDefList ak) 11 -> do al <- get bh return (DocCodeBlock al) 12 -> do am <- get bh return (DocURL am) 13 -> do x <- get bh return (DocPic x) 14 -> do an <- get bh return (DocAName an) 15 -> do ao <- get bh return (DocExamples ao) 16 -> do x <- get bh return (DocIdentifierUnchecked x) 17 -> do ag <- get bh return (DocWarning ag) _ -> fail "invalid binary data found" instance Binary name => Binary (HaddockModInfo name) where put_ bh hmi = do put_ bh (hmi_description hmi) put_ bh (hmi_portability hmi) put_ bh (hmi_stability hmi) put_ bh (hmi_maintainer hmi) put_ bh (hmi_safety hmi) get bh = do descr <- get bh porta <- get bh stabi <- get bh maint <- get bh safet <- get bh return (HaddockModInfo descr porta stabi maint safet) instance Binary DocName where put_ bh (Documented name modu) = do putByte bh 0 put_ bh name put_ bh modu put_ bh (Undocumented name) = do putByte bh 1 put_ bh name get bh = do h <- getByte bh case h of 0 -> do name <- get bh modu <- get bh return (Documented name modu) 1 -> do name <- get bh return (Undocumented name) _ -> error "get DocName: Bad h"