{-# LANGUAGE BangPatterns #-} {-# LANGUAGE MagicHash #-} {-| A basic open-addressing hash table using linear probing. Use this hash table if you... * want the fastest possible lookups, and very fast inserts. * don't care about wasting a little bit of memory to get it. * don't care that a table resize might pause for a long time to rehash all of the key-value mappings. /Details:/ Of the hash tables in this collection, this hash table has the best insert and lookup performance, with the following caveats. /Space overhead/ This table is not especially memory-efficient; firstly, the table has a maximum load factor of 0.83 and will be resized if load exceeds this value. Secondly, to improve insert and lookup performance, we store the hash code for each key in the table. Each hash table entry requires three words, two for the pointers to the key and value and one for the hash code. We don't count key and value pointers as overhead, because they have to be there -- so the overhead for a full slot is one word -- but empty slots in the hash table count for a full three words of overhead. Define @m@ as the number of slots in the table and @n@ as the number of key value mappings. If the load factor is @k=n\/m@, the amount of space wasted is: @ w(n) = 1*n + 3(m-n) @ Since @m=n\/k@, @ w(n) = n + 3(n\/k - n) = n (3\/k-2) @ Solving for @k=0.83@, the maximum load factor, gives a /minimum/ overhead of 2 words per mapping. If @k=0.5@, under normal usage the /maximum/ overhead situation, then the overhead would be 4 words per mapping. /Space overhead: experimental results/ In randomized testing (see @test\/compute-overhead\/ComputeOverhead.hs@ in the source distribution), mean overhead (that is, the number of words needed to store the key-value mapping over and above the two words necessary for the key and the value pointers) is approximately 2.29 machine words per key-value mapping with a standard deviation of about 0.44 words, and 3.14 words per mapping at the 95th percentile. /Expensive resizes/ If enough elements are inserted into the table to make it exceed the maximum load factor, the table is resized. A resize involves a complete rehash of all the elements in the table, which means that any given call to 'insert' might take /O(n)/ time in the size of the table, with a large constant factor. If a long pause waiting for the table to resize is unacceptable for your application, you should choose the included linear hash table instead. /References:/ * Knuth, Donald E. /The Art of Computer Programming/, vol. 3 Sorting and Searching. Addison-Wesley Publishing Company, 1973. -} module Data.HashTable.ST.Basic ( HashTable , new , newSized , delete , lookup , insert , mapM_ , foldM , computeOverhead ) where ------------------------------------------------------------------------------ import Control.Monad hiding (mapM_, foldM) import Control.Monad.ST import Data.Hashable (Hashable) import qualified Data.Hashable as H import Data.Maybe import Data.STRef import GHC.Exts import Prelude hiding (lookup, read, mapM_) ------------------------------------------------------------------------------ import Data.HashTable.Internal.Array import qualified Data.HashTable.Internal.IntArray as U import Data.HashTable.Internal.CacheLine import Data.HashTable.Internal.Utils import qualified Data.HashTable.Class as C ------------------------------------------------------------------------------ -- | An open addressing hash table using linear probing. newtype HashTable s k v = HT (STRef s (HashTable_ s k v)) data HashTable_ s k v = HashTable { _size :: {-# UNPACK #-} !Int , _load :: !(U.IntArray s) -- ^ prefer unboxed vector here to STRef -- because I know it will be appropriately -- strict , _hashes :: !(U.IntArray s) , _keys :: {-# UNPACK #-} !(MutableArray s k) , _values :: {-# UNPACK #-} !(MutableArray s v) } ------------------------------------------------------------------------------ instance C.HashTable HashTable where new = new newSized = newSized insert = insert delete = delete lookup = lookup foldM = foldM mapM_ = mapM_ computeOverhead = computeOverhead ------------------------------------------------------------------------------ instance Show (HashTable s k v) where show _ = "" ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:new". new :: ST s (HashTable s k v) new = newSized 30 {-# INLINE new #-} ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:newSized". newSized :: Int -> ST s (HashTable s k v) newSized n = do let m = nextBestPrime $ ceiling (fromIntegral n / maxLoad) ht <- newSizedReal m newRef ht {-# INLINE newSized #-} ------------------------------------------------------------------------------ newSizedReal :: Int -> ST s (HashTable_ s k v) newSizedReal m = do -- make sure the hash array is a multiple of cache-line sized so we can -- always search a whole cache line at once let m' = ((m + numWordsInCacheLine - 1) `div` numWordsInCacheLine) * numWordsInCacheLine h <- U.newArray m' k <- newArray m undefined v <- newArray m undefined ld <- U.newArray 1 return $! HashTable m ld h k v ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:delete". delete :: (Hashable k, Eq k) => (HashTable s k v) -> k -> ST s () delete htRef k = do ht <- readRef htRef _ <- delete' ht True k h return () where !h = hash k {-# INLINE delete #-} ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:lookup". lookup :: (Eq k, Hashable k) => (HashTable s k v) -> k -> ST s (Maybe v) lookup htRef !k = do ht <- readRef htRef lookup' ht where lookup' (HashTable sz _ hashes keys values) = do let !b = whichBucket h sz debug $ "lookup sz=" ++ show sz ++ " h=" ++ show h ++ " b=" ++ show b go b where !h = hash k go !b = {-# SCC "lookup/go" #-} do idx <- forwardSearch2 hashes b sz h emptyMarker debug $ "forwardSearch2 returned " ++ show idx h0 <- U.readArray hashes idx debug $ "h0 was " ++ show h0 if recordIsEmpty h0 then return Nothing else do k' <- readArray keys idx if k == k' then do debug $ "value found at " ++ show idx v <- readArray values idx return $! Just v else go $! idx + 1 {-# INLINE lookup #-} ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:insert". insert :: (Eq k, Hashable k) => (HashTable s k v) -> k -> v -> ST s () insert htRef !k !v = do ht <- readRef htRef !ht' <- insert' ht writeRef htRef ht' where insert' ht = do debug "insert': calling delete'" b <- delete' ht False k h debug $ "insert': writing h=" ++ show h ++ " b=" ++ show b U.writeArray hashes b h writeArray keys b k writeArray values b v checkOverflow ht where !h = hash k hashes = _hashes ht keys = _keys ht values = _values ht {-# INLINE insert #-} ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:foldM". foldM :: (a -> (k,v) -> ST s a) -> a -> HashTable s k v -> ST s a foldM f seed0 htRef = readRef htRef >>= work where work (HashTable sz _ hashes keys values) = go 0 seed0 where go !i !seed | i >= sz = return seed | otherwise = do h <- U.readArray hashes i if recordIsEmpty h || recordIsDeleted h then go (i+1) seed else do k <- readArray keys i v <- readArray values i !seed' <- f seed (k, v) go (i+1) seed' ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:mapM_". mapM_ :: ((k,v) -> ST s b) -> HashTable s k v -> ST s () mapM_ f htRef = readRef htRef >>= work where work (HashTable sz _ hashes keys values) = go 0 where go !i | i >= sz = return () | otherwise = do h <- U.readArray hashes i if recordIsEmpty h || recordIsDeleted h then go (i+1) else do k <- readArray keys i v <- readArray values i _ <- f (k, v) go (i+1) ------------------------------------------------------------------------------ -- | See the documentation for this function in -- "Data.HashTable.Class#v:computeOverhead". computeOverhead :: HashTable s k v -> ST s Double computeOverhead htRef = readRef htRef >>= work where work (HashTable sz' loadRef _ _ _) = do !ld <- U.readArray loadRef 0 let k = fromIntegral ld / sz return $ constOverhead / sz + overhead k where sz = fromIntegral sz' -- Change these if you change the representation constOverhead = 10 overhead k = 3 / k - 2 ------------------------------ -- Private functions follow -- ------------------------------ ------------------------------------------------------------------------------ {-# INLINE insertRecord #-} insertRecord :: Int -> U.IntArray s -> MutableArray s k -> MutableArray s v -> Int -> k -> v -> ST s () insertRecord !sz !hashes !keys !values !h !key !value = do let !b = whichBucket h sz debug $ "insertRecord sz=" ++ show sz ++ "h=" ++ show h ++ " b=" ++ show b probe b where probe !i = {-# SCC "insertRecord/probe" #-} do !idx <- forwardSearch2 hashes i sz emptyMarker deletedMarker debug $ "forwardSearch2 returned " ++ show idx U.writeArray hashes idx h writeArray keys idx key writeArray values idx value ------------------------------------------------------------------------------ checkOverflow :: (Eq k, Hashable k) => (HashTable_ s k v) -> ST s (HashTable_ s k v) checkOverflow ht@(HashTable sz ldRef _ _ _) = do !ld <- U.readArray ldRef 0 let !ld' = ld + 1 U.writeArray ldRef 0 ld' if fromIntegral ld / fromIntegral sz > maxLoad then growTable ht else return ht ------------------------------------------------------------------------------ growTable :: Hashable k => HashTable_ s k v -> ST s (HashTable_ s k v) growTable (HashTable sz loadRef hashes keys values) = do let !sz' = bumpSize sz ht' <- newSizedReal sz' let (HashTable _ loadRef' newHashes newKeys newValues) = ht' U.readArray loadRef 0 >>= U.writeArray loadRef' 0 rehash sz' newHashes newKeys newValues return ht' where rehash sz' newHashes newKeys newValues = go 0 where go !i | i >= sz = return () | otherwise = {-# SCC "growTable/rehash" #-} do h0 <- U.readArray hashes i when (not (recordIsEmpty h0 || recordIsDeleted h0)) $ do k <- readArray keys i v <- readArray values i insertRecord sz' newHashes newKeys newValues (hash k) k v go $ i+1 ------------------------------------------------------------------------------ -- Returns the slot in the array where it would be safe to write the given key. delete' :: (Hashable k, Eq k) => (HashTable_ s k v) -> Bool -> k -> Int -> ST s Int delete' (HashTable sz loadRef hashes keys values) clearOut k h = do let !b = whichBucket h sz debug $ "delete': sz=" ++ show sz ++ " h=" ++ show h ++ " b=" ++ show b (found,b') <- go Nothing b when found $ do !ld <- U.readArray loadRef 0 let !ld' = ld - 1 U.writeArray loadRef 0 ld' return b' where delPlace !fp !b = maybe (Just b) (const fp) fp choosePlace !fp !b = fromMaybe b fp samePlace !fp !b = maybe (True) (== b) fp go !fp !b = do debug $ "go: fp=" ++ show fp ++ " b=" ++ show b !idx <- forwardSearch3 hashes b sz h emptyMarker deletedMarker debug $ "forwardSearch3 returned " ++ show idx h0 <- U.readArray hashes idx debug $ "h0 was " ++ show h0 if recordIsEmpty h0 then do let pl = choosePlace fp idx debug $ "empty, returning " ++ show pl return (False, pl) else if recordIsDeleted h0 then do let pl = delPlace fp idx debug $ "deleted, cont with pl=" ++ show pl go pl $ idx + 1 else if h == h0 then do k' <- readArray keys idx if k == k' then do debug $ "found at " ++ show idx debug $ "clearout=" ++ show clearOut debug $ "sp? " ++ show (samePlace fp idx) -- "clearOut" is set if we intend to write a new -- element into the slot. If we're doing an update and -- we found the old key, instead of writing "deleted" -- and then re-writing the new element there, we can -- just write the new element. This only works if we -- were planning on writing the new element here. when (clearOut || not (samePlace fp idx)) $ do U.writeArray hashes idx 1 writeArray keys idx undefined writeArray values idx undefined return (True, choosePlace fp idx) else go fp $ idx + 1 else go fp $ idx + 1 ------------------------------------------------------------------------------ maxLoad :: Double maxLoad = 0.82 ------------------------------------------------------------------------------ emptyMarker :: Int emptyMarker = 0 ------------------------------------------------------------------------------ deletedMarker :: Int deletedMarker = 1 ------------------------------------------------------------------------------ {-# INLINE recordIsEmpty #-} recordIsEmpty :: Int -> Bool recordIsEmpty = (== emptyMarker) ------------------------------------------------------------------------------ {-# INLINE recordIsDeleted #-} recordIsDeleted :: Int -> Bool recordIsDeleted = (== deletedMarker) ------------------------------------------------------------------------------ {-# INLINE hash #-} hash :: (Hashable k) => k -> Int hash k = out where !(I# h#) = H.hash k !m# = maskw# h# 0# `or#` maskw# h# 1# !nm# = not# m# !r# = ((int2Word# 2#) `and#` m#) `or#` (int2Word# h# `and#` nm#) !out = I# (word2Int# r#) ------------------------------------------------------------------------------ newRef :: HashTable_ s k v -> ST s (HashTable s k v) newRef = liftM HT . newSTRef {-# INLINE newRef #-} writeRef :: HashTable s k v -> HashTable_ s k v -> ST s () writeRef (HT ref) ht = writeSTRef ref ht {-# INLINE writeRef #-} readRef :: HashTable s k v -> ST s (HashTable_ s k v) readRef (HT ref) = readSTRef ref {-# INLINE readRef #-} ------------------------------------------------------------------------------ {-# INLINE debug #-} debug :: String -> ST s () --debug s = unsafeIOToST (putStrLn s) debug _ = return ()