module System.Console.Haskeline.Backend.Posix ( withPosixGetEvent, posixLayouts, tryGetLayouts, PosixT, runPosixT, Handles(..), Encoders(), posixEncode, mapLines, stdinTTYHandles, ttyHandles, posixRunTerm, fileRunTerm ) where import Foreign import Foreign.C.Types import qualified Data.Map as Map import System.Posix.Terminal hiding (Interrupt) import Control.Monad import Control.Concurrent hiding (throwTo) import Data.Maybe (catMaybes) import System.Posix.Signals.Exts import System.Posix.Types(Fd(..)) import Data.List import System.IO import qualified Data.ByteString as B import System.Environment import System.Console.Haskeline.Monads import System.Console.Haskeline.Key import System.Console.Haskeline.Term as Term import System.Console.Haskeline.Prefs import System.Console.Haskeline.Backend.IConv #if __GLASGOW_HASKELL__ >= 611 import GHC.IO.FD (fdFD) import Data.Dynamic (cast) import System.IO.Error import GHC.IO.Exception import GHC.IO.Handle.Types hiding (getState) import GHC.IO.Handle.Internals import System.Posix.Internals (FD) #else import GHC.IOBase(haFD,FD) import GHC.Handle (withHandle_) #endif #ifdef USE_TERMIOS_H #include #endif #include ----------------------------------------------- -- Input/output handles data Handles = Handles {hIn, hOut :: Handle, closeHandles :: IO ()} ------------------- -- Window size foreign import ccall ioctl :: FD -> CULong -> Ptr a -> IO CInt posixLayouts :: Handles -> [IO (Maybe Layout)] posixLayouts h = [ioctlLayout $ hOut h, envLayout] ioctlLayout :: Handle -> IO (Maybe Layout) ioctlLayout h = allocaBytes (#size struct winsize) $ \ws -> do fd <- unsafeHandleToFD h ret <- ioctl fd (#const TIOCGWINSZ) ws rows :: CUShort <- (#peek struct winsize,ws_row) ws cols :: CUShort <- (#peek struct winsize,ws_col) ws if ret >= 0 then return $ Just Layout {height=fromEnum rows,width=fromEnum cols} else return Nothing unsafeHandleToFD :: Handle -> IO FD #if __GLASGOW_HASKELL__ >= 611 unsafeHandleToFD h = withHandle_ "unsafeHandleToFd" h $ \Handle__{haDevice=dev} -> do case cast dev of Nothing -> ioError (ioeSetErrorString (mkIOError IllegalOperation "unsafeHandleToFd" (Just h) Nothing) "handle is not a file descriptor") Just fd -> return (fdFD fd) #else unsafeHandleToFD h = withHandle_ "unsafeHandleToFd" h (return . haFD) #endif envLayout :: IO (Maybe Layout) envLayout = handle (\(_::IOException) -> return Nothing) $ do -- note the handle catches both undefined envs and bad reads r <- getEnv "ROWS" c <- getEnv "COLUMNS" return $ Just $ Layout {height=read r,width=read c} tryGetLayouts :: [IO (Maybe Layout)] -> IO Layout tryGetLayouts [] = return Layout {height=24,width=80} tryGetLayouts (f:fs) = do ml <- f case ml of Just l | height l > 2 && width l > 2 -> return l _ -> tryGetLayouts fs -------------------- -- Key sequences getKeySequences :: (MonadIO m, MonadReader Prefs m) => Handles -> [(String,Key)] -> m (TreeMap Char Key) getKeySequences h tinfos = do sttys <- liftIO $ sttyKeys h customKeySeqs <- getCustomKeySeqs -- note ++ acts as a union; so the below favors sttys over tinfos return $ listToTree $ ansiKeys ++ tinfos ++ sttys ++ customKeySeqs where getCustomKeySeqs = do kseqs <- asks customKeySequences termName <- liftIO $ handle (\(_::IOException) -> return "") (getEnv "TERM") let isThisTerm = maybe True (==termName) return $ map (\(_,cs,k) ->(cs,k)) $ filter (\(kseqs',_,_) -> isThisTerm kseqs') $ kseqs ansiKeys :: [(String, Key)] ansiKeys = [("\ESC[D", simpleKey LeftKey) ,("\ESC[C", simpleKey RightKey) ,("\ESC[A", simpleKey UpKey) ,("\ESC[B", simpleKey DownKey) ,("\b", simpleKey Backspace) -- ctrl-left/right aren't a standard -- part of terminfo, but enough people have complained -- that I've decided to hard-code them in. -- (Note they will be overridden by terminfo or .haskeline.) -- These appear to be the most common bindings: -- xterm: ,("\ESC[1;5D", ctrlKey $ simpleKey LeftKey) ,("\ESC[1;5C", ctrlKey $ simpleKey RightKey) -- Terminal.app: ,("\ESC[5D", ctrlKey $ simpleKey LeftKey) ,("\ESC[5C", ctrlKey $ simpleKey RightKey) -- rxvt: (Note: these will be superceded by e.g. xterm-color, -- which uses them as regular arrow keys.) ,("\ESC[OD", ctrlKey $ simpleKey LeftKey) ,("\ESC[OC", ctrlKey $ simpleKey RightKey) ] sttyKeys :: Handles -> IO [(String, Key)] sttyKeys h = do fd <- unsafeHandleToFD $ hIn h attrs <- getTerminalAttributes (Fd fd) let getStty (k,c) = do {str <- controlChar attrs k; return ([str],c)} return $ catMaybes $ map getStty [(Erase,simpleKey Backspace),(Kill,simpleKey KillLine)] newtype TreeMap a b = TreeMap (Map.Map a (Maybe b, TreeMap a b)) deriving Show emptyTreeMap :: TreeMap a b emptyTreeMap = TreeMap Map.empty insertIntoTree :: Ord a => ([a], b) -> TreeMap a b -> TreeMap a b insertIntoTree ([],_) _ = error "Can't insert empty list into a treemap!" insertIntoTree ((c:cs),k) (TreeMap m) = TreeMap (Map.alter f c m) where alterSubtree = insertIntoTree (cs,k) f Nothing = Just $ if null cs then (Just k, emptyTreeMap) else (Nothing, alterSubtree emptyTreeMap) f (Just (y,t)) = Just $ if null cs then (Just k, t) else (y, alterSubtree t) listToTree :: Ord a => [([a],b)] -> TreeMap a b listToTree = foldl' (flip insertIntoTree) emptyTreeMap -- for debugging ' mapLines :: (Show a, Show b) => TreeMap a b -> [String] mapLines (TreeMap m) = let m2 = Map.map (\(k,t) -> show k : mapLines t) m in concatMap (\(k,ls) -> show k : map (' ':) ls) $ Map.toList m2 lexKeys :: TreeMap Char Key -> [Char] -> [Key] lexKeys _ [] = [] lexKeys baseMap cs | Just (k,ds) <- lookupChars baseMap cs = k : lexKeys baseMap ds lexKeys baseMap ('\ESC':cs) -- TODO: what's the right thing ' to do here? | k:ks <- lexKeys baseMap cs = metaKey k : ks lexKeys baseMap (c:cs) = simpleChar c : lexKeys baseMap cs lookupChars :: TreeMap Char Key -> [Char] -> Maybe (Key,[Char]) lookupChars _ [] = Nothing lookupChars (TreeMap tm) (c:cs) = case Map.lookup c tm of Nothing -> Nothing Just (Nothing,t) -> lookupChars t cs Just (Just k, t@(TreeMap tm2)) | not (null cs) && not (Map.null tm2) -- ?? lookup d tm2? -> lookupChars t cs | otherwise -> Just (k, cs) ----------------------------- withPosixGetEvent :: (MonadException m, MonadReader Prefs m) => Chan Event -> Handles -> Encoders -> [(String,Key)] -> (m Event -> m a) -> m a withPosixGetEvent eventChan h enc termKeys f = wrapTerminalOps h $ do baseMap <- getKeySequences h termKeys withWindowHandler eventChan $ f $ liftIO $ getEvent h enc baseMap eventChan withWindowHandler :: MonadException m => Chan Event -> m a -> m a withWindowHandler eventChan = withHandler windowChange $ Catch $ writeChan eventChan WindowResize withSigIntHandler :: MonadException m => m a -> m a withSigIntHandler f = do tid <- liftIO myThreadId withHandler keyboardSignal (Catch (throwTo tid Interrupt)) f withHandler :: MonadException m => Signal -> Handler -> m a -> m a withHandler signal handler f = do old_handler <- liftIO $ installHandler signal handler Nothing f `finally` liftIO (installHandler signal old_handler Nothing) getEvent :: Handles -> Encoders -> TreeMap Char Key -> Chan Event -> IO Event getEvent Handles {hIn=h} enc baseMap = keyEventLoop readKeyEvents where bufferSize = 32 readKeyEvents = do -- Read at least one character of input, and more if available. -- In particular, the characters making up a control sequence will all -- be available at once, so we can process them together with lexKeys. blockUntilInput h bs <- B.hGetNonBlocking h bufferSize cs <- convert h (localeToUnicode enc) bs return [KeyInput $ lexKeys baseMap cs] -- Different versions of ghc work better using different functions. blockUntilInput :: Handle -> IO () #if __GLASGOW_HASKELL__ >= 611 -- threadWaitRead doesn't work with the new ghc IO library, -- because it keeps a buffer even when NoBuffering is set. blockUntilInput h = hWaitForInput h (-1) >> return () #else -- hWaitForInput doesn't work with -threaded on ghc < 6.10 -- (#2363 in ghc's trac) blockUntilInput h = unsafeHandleToFD h >>= threadWaitRead . Fd #endif -- try to convert to the locale encoding using iconv. -- if the buffer has an incomplete shift sequence, -- read another byte of input and try again. convert :: Handle -> (B.ByteString -> IO (String,Result)) -> B.ByteString -> IO String convert h decoder bs = do (cs,result) <- decoder bs case result of Incomplete rest -> do extra <- B.hGetNonBlocking h 1 if B.null extra then return (cs ++ "?") else fmap (cs ++) $ convert h decoder (rest `B.append` extra) Invalid rest -> fmap ((cs ++) . ('?':)) $ convert h decoder (B.drop 1 rest) _ -> return cs getMultiByteChar :: Handle -> (B.ByteString -> IO (String,Result)) -> MaybeT IO Char getMultiByteChar h decoder = hWithBinaryMode h $ do b <- hGetByte h cs <- liftIO $ convert h decoder (B.pack [b]) case cs of [] -> return '?' -- shouldn't happen, but doesn't hurt to be careful. (c:_) -> return c stdinTTYHandles, ttyHandles :: MaybeT IO Handles stdinTTYHandles = do isInTerm <- liftIO $ hIsTerminalDevice stdin guard isInTerm h <- openTerm WriteMode -- Don't close stdin, since a different part of the program may use it later. return Handles { hIn = stdin, hOut = h, closeHandles = hClose h } ttyHandles = do -- Open the input and output separately, since they need different buffering. h_in <- openTerm ReadMode h_out <- openTerm WriteMode return Handles { hIn = h_in, hOut = h_out, closeHandles = hClose h_in >> hClose h_out } openTerm :: IOMode -> MaybeT IO Handle openTerm mode = handle (\(_::IOException) -> mzero) -- NB: we open the tty as a binary file since otherwise the terminfo -- backend, which writes output as Chars, would double-encode on ghc-6.12. $ liftIO $ openBinaryFile "/dev/tty" mode posixRunTerm :: MonadIO m => Handles -> (Encoders -> TermOps) -> m RunTerm posixRunTerm hs tOps = liftIO $ do codeset <- getCodeset encoders <- liftM2 Encoders (openEncoder codeset) (openPartialDecoder codeset) fileRT <- fileRunTerm $ hIn hs return fileRT { closeTerm = closeTerm fileRT >> closeHandles hs, -- NOTE: could also alloc Encoders once for each call to wrapRunTerm termOps = Left $ tOps encoders } type PosixT m = ReaderT Encoders (ReaderT Handles m) data Encoders = Encoders {unicodeToLocale :: String -> IO B.ByteString, localeToUnicode :: B.ByteString -> IO (String, Result)} posixEncode :: (MonadIO m, MonadReader Encoders m) => String -> m B.ByteString posixEncode str = do encoder <- asks unicodeToLocale liftIO $ encoder str runPosixT :: Monad m => Encoders -> Handles -> PosixT m a -> m a runPosixT enc h = runReaderT' h . runReaderT' enc putTerm :: Handle -> B.ByteString -> IO () putTerm h str = B.hPutStr h str >> hFlush h fileRunTerm :: Handle -> IO RunTerm fileRunTerm h_in = do let h_out = stdout oldLocale <- setLocale (Just "") codeset <- getCodeset let encoder str = join $ fmap ($ str) $ openEncoder codeset let decoder str = join $ fmap ($ str) $ openDecoder codeset decoder' <- openPartialDecoder codeset return RunTerm {putStrOut = encoder >=> putTerm h_out, closeTerm = setLocale oldLocale >> return (), wrapInterrupt = withSigIntHandler, encodeForTerm = encoder, decodeForTerm = decoder, termOps = Right FileOps { inputHandle = h_in, getLocaleChar = getMultiByteChar h_in decoder', maybeReadNewline = hMaybeReadNewline h_in, getLocaleLine = Term.hGetLine h_in >>= liftIO . decoder } } -- NOTE: If we set stdout to NoBuffering, there can be a flicker effect when many -- characters are printed at once. We'll keep it buffered here, and let the Draw -- monad manually flush outputs that don't print a newline. wrapTerminalOps :: MonadException m => Handles -> m a -> m a wrapTerminalOps Handles {hIn = h_in, hOut = h_out} = bracketSet (hGetBuffering h_in) (hSetBuffering h_in) NoBuffering -- TODO: block buffering? Certain \r and \n's are causing flicker... -- - moving to the right -- - breaking line after offset widechar? . bracketSet (hGetBuffering h_out) (hSetBuffering h_out) LineBuffering . bracketSet (hGetEcho h_in) (hSetEcho h_in) False . hWithBinaryMode h_in