/* mpfr_const_euler -- Euler's constant Copyright 2001-2015 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Declare the cache */ MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_euler, mpfr_const_euler_internal); /* Set User Interface */ #undef mpfr_const_euler int mpfr_const_euler (mpfr_ptr x, mpfr_rnd_t rnd_mode) { return mpfr_cache (x, __gmpfr_cache_const_euler, rnd_mode); } static void mpfr_const_euler_S2 (mpfr_ptr, unsigned long); static void mpfr_const_euler_R (mpfr_ptr, unsigned long); int mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd) { mpfr_prec_t prec = MPFR_PREC(x), m, log2m; mpfr_t y, z; unsigned long n; int inexact; MPFR_ZIV_DECL (loop); log2m = MPFR_INT_CEIL_LOG2 (prec); m = prec + 2 * log2m + 23; mpfr_init2 (y, m); mpfr_init2 (z, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_exp_t exp_S, err; /* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */ n = 1 + (unsigned long) ((double) m * LOG2 / 2.0); MPFR_ASSERTD (n >= 9); mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */ exp_S = MPFR_EXP(y); mpfr_set_ui (z, n, MPFR_RNDN); mpfr_log (z, z, MPFR_RNDD); /* error <= 1 ulp */ mpfr_sub (y, y, z, MPFR_RNDN); /* S'(n) - log(n) */ /* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y)) <= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y)) <= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */ err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y); err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */ exp_S = MPFR_EXP(y); mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */ mpfr_sub (y, y, z, MPFR_RNDN); /* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y). Since the result is between 0.5 and 1, ulp(y) = 2^(-m). So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y). 3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */ err = err + exp_S - MPFR_EXP(y); err = (err >= 1) ? err + 1 : 2; if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd))) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (y, m); mpfr_set_prec (z, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (x, y, rnd); mpfr_clear (y); mpfr_clear (z); return inexact; /* always inexact */ } static void mpfr_const_euler_S2_aux (mpz_t P, mpz_t Q, mpz_t T, unsigned long n, unsigned long a, unsigned long b, int need_P) { if (a + 1 == b) { mpz_set_ui (P, n); if (a > 1) mpz_mul_si (P, P, 1 - (long) a); mpz_set (T, P); mpz_set_ui (Q, a); mpz_mul_ui (Q, Q, a); } else { unsigned long c = (a + b) / 2; mpz_t P2, Q2, T2; mpfr_const_euler_S2_aux (P, Q, T, n, a, c, 1); mpz_init (P2); mpz_init (Q2); mpz_init (T2); mpfr_const_euler_S2_aux (P2, Q2, T2, n, c, b, 1); mpz_mul (T, T, Q2); mpz_mul (T2, T2, P); mpz_add (T, T, T2); if (need_P) mpz_mul (P, P, P2); mpz_mul (Q, Q, Q2); mpz_clear (P2); mpz_clear (Q2); mpz_clear (T2); /* divide by 2 if possible */ { unsigned long v2; v2 = mpz_scan1 (P, 0); c = mpz_scan1 (Q, 0); if (c < v2) v2 = c; c = mpz_scan1 (T, 0); if (c < v2) v2 = c; if (v2) { mpz_tdiv_q_2exp (P, P, v2); mpz_tdiv_q_2exp (Q, Q, v2); mpz_tdiv_q_2exp (T, T, v2); } } } } /* computes S(n) = sum(n^k*(-1)^(k-1)/k!/k, k=1..ceil(4.319136566 * n)) using binary splitting. We have S(n) = sum(f(k), k=1..N) with N=ceil(4.319136566 * n) and f(k) = n^k*(-1)*(k-1)/k!/k, thus f(k)/f(k-1) = -n*(k-1)/k^2 */ static void mpfr_const_euler_S2 (mpfr_t x, unsigned long n) { mpz_t P, Q, T; unsigned long N = (unsigned long) (ALPHA * (double) n + 1.0); mpz_init (P); mpz_init (Q); mpz_init (T); mpfr_const_euler_S2_aux (P, Q, T, n, 1, N + 1, 0); mpfr_set_z (x, T, MPFR_RNDN); mpfr_div_z (x, x, Q, MPFR_RNDN); mpz_clear (P); mpz_clear (Q); mpz_clear (T); } /* computes R(n) = exp(-n)/n * sum(k!/(-n)^k, k=0..n-2) with error at most 4*ulp(x). Assumes n>=2. Since x <= exp(-n)/n <= 1/8, then 4*ulp(x) <= ulp(1). */ static void mpfr_const_euler_R (mpfr_t x, unsigned long n) { unsigned long k, m; mpz_t a, s; mpfr_t y; MPFR_ASSERTN (n >= 2); /* ensures sum(k!/(-n)^k, k=0..n-2) >= 2/3 */ /* as we multiply the sum by exp(-n), we need only PREC(x) - n/LOG2 bits */ m = MPFR_PREC(x) - (unsigned long) ((double) n / LOG2); mpz_init_set_ui (a, 1); mpz_mul_2exp (a, a, m); mpz_init_set (s, a); for (k = 1; k <= n; k++) { mpz_mul_ui (a, a, k); mpz_fdiv_q_ui (a, a, n); /* the error e(k) on a is e(k) <= 1 + k/n*e(k-1) with e(0)=0, i.e. e(k) <= k */ if (k % 2) mpz_sub (s, s, a); else mpz_add (s, s, a); } /* the error on s is at most 1+2+...+n = n*(n+1)/2 */ mpz_fdiv_q_ui (s, s, n); /* err <= 1 + (n+1)/2 */ MPFR_ASSERTN (MPFR_PREC(x) >= mpz_sizeinbase(s, 2)); mpfr_set_z (x, s, MPFR_RNDD); /* exact */ mpfr_div_2ui (x, x, m, MPFR_RNDD); /* now x = 1/n * sum(k!/(-n)^k, k=0..n-2) <= 1/n */ /* err(x) <= (n+1)/2^m <= (n+1)*exp(n)/2^PREC(x) */ mpfr_init2 (y, m); mpfr_set_si (y, -(long)n, MPFR_RNDD); /* assumed exact */ mpfr_exp (y, y, MPFR_RNDD); /* err <= ulp(y) <= exp(-n)*2^(1-m) */ mpfr_mul (x, x, y, MPFR_RNDD); /* err <= ulp(x) + (n + 1 + 2/n) / 2^prec(x) <= ulp(x) + (n + 1 + 2/n) ulp(x)/x since x*2^(-prec(x)) < ulp(x) <= ulp(x) + (n + 1 + 2/n) 3/(2n) ulp(x) since x >= 2/3*n for n >= 2 <= 4 * ulp(x) for n >= 2 */ mpfr_clear (y); mpz_clear (a); mpz_clear (s); }