/* mpfr_eint, mpfr_eint1 -- the exponential integral Copyright 2005-2015 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* eint1(x) = -gamma - log(x) - sum((-1)^k*z^k/k/k!, k=1..infinity) for x > 0 = - eint(-x) for x < 0 where eint (x) = gamma + log(x) + sum(z^k/k/k!, k=1..infinity) for x > 0 eint (x) is undefined for x < 0. */ /* compute in y an approximation of sum(x^k/k/k!, k=1..infinity), and return e such that the absolute error is bound by 2^e ulp(y) */ static mpfr_exp_t mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) { mpfr_t eps; /* dynamic (absolute) error bound on t */ mpfr_t erru, errs; mpz_t m, s, t, u; mpfr_exp_t e, sizeinbase; mpfr_prec_t w = MPFR_PREC(y); unsigned long k; MPFR_GROUP_DECL (group); /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x) where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2 thus |R(x)/x| <= |x|/2 thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */ if (MPFR_GET_EXP(x) <= - (mpfr_exp_t) w) { mpfr_set (y, x, MPFR_RNDN); return 0; } mpz_init (s); /* initializes to 0 */ mpz_init (t); mpz_init (u); mpz_init (m); MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs); e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */ MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x)); if (MPFR_PREC (x) > w) { e += MPFR_PREC (x) - w; mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w); } /* remove trailing zeroes from m: this will speed up much cases where x is a small integer divided by a power of 2 */ k = mpz_scan1 (m, 0); mpz_tdiv_q_2exp (m, m, k); e += k; /* initialize t to 2^w */ mpz_set_ui (t, 1); mpz_mul_2exp (t, t, w); mpfr_set_ui (eps, 0, MPFR_RNDN); /* eps[0] = 0 */ mpfr_set_ui (errs, 0, MPFR_RNDN); for (k = 1;; k++) { /* let eps[k] be the absolute error on t[k]: since t[k] = trunc(t[k-1]*m*2^e/k), we have eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */ mpfr_mul_2ui (eps, eps, w - 1, MPFR_RNDU); mpfr_add_z (eps, eps, t, MPFR_RNDU); MPFR_MPZ_SIZEINBASE2 (sizeinbase, m); mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, MPFR_RNDU); mpfr_div_ui (eps, eps, k, MPFR_RNDU); mpfr_add_ui (eps, eps, 1, MPFR_RNDU); mpz_mul (t, t, m); if (e < 0) mpz_tdiv_q_2exp (t, t, -e); else mpz_mul_2exp (t, t, e); mpz_tdiv_q_ui (t, t, k); mpz_tdiv_q_ui (u, t, k); mpz_add (s, s, u); /* the absolute error on u is <= 1 + eps[k]/k */ mpfr_div_ui (erru, eps, k, MPFR_RNDU); mpfr_add_ui (erru, erru, 1, MPFR_RNDU); /* and that on s is the sum of all errors on u */ mpfr_add (errs, errs, erru, MPFR_RNDU); /* we are done when t is smaller than errs */ if (mpz_sgn (t) == 0) sizeinbase = 0; else MPFR_MPZ_SIZEINBASE2 (sizeinbase, t); if (sizeinbase < MPFR_GET_EXP (errs)) break; } /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...) <= (|t|+eps)/k*|x|/(k-|x|) */ mpz_abs (t, t); mpfr_add_z (eps, eps, t, MPFR_RNDU); mpfr_div_ui (eps, eps, k, MPFR_RNDU); mpfr_abs (erru, x, MPFR_RNDU); /* |x| */ mpfr_mul (eps, eps, erru, MPFR_RNDU); mpfr_ui_sub (erru, k, erru, MPFR_RNDD); if (MPFR_IS_NEG (erru)) { /* the truncated series does not converge, return fail */ e = w; } else { mpfr_div (eps, eps, erru, MPFR_RNDU); mpfr_add (errs, errs, eps, MPFR_RNDU); mpfr_set_z (y, s, MPFR_RNDN); mpfr_div_2ui (y, y, w, MPFR_RNDN); /* errs was an absolute error bound on s. We must convert it to an error in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must divide the error by 2^(EXP(y)-PREC(y)), but since we divided also y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */ e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y); } MPFR_GROUP_CLEAR (group); mpz_clear (s); mpz_clear (t); mpz_clear (u); mpz_clear (m); return e; } /* Return in y an approximation of Ei(x) using the asymptotic expansion: Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...) Assumes x >= PREC(y) * log(2). Returns the error bound in terms of ulp(y). */ static mpfr_exp_t mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x) { mpfr_prec_t p = MPFR_PREC(y); mpfr_t invx, t, err; unsigned long k; mpfr_exp_t err_exp; mpfr_init2 (t, p); mpfr_init2 (invx, p); mpfr_init2 (err, 31); /* error in ulps on y */ mpfr_ui_div (invx, 1, x, MPFR_RNDN); /* invx = 1/x*(1+u) with |u|<=2^(1-p) */ mpfr_set_ui (t, 1, MPFR_RNDN); /* exact */ mpfr_set (y, t, MPFR_RNDN); mpfr_set_ui (err, 0, MPFR_RNDN); for (k = 1; MPFR_GET_EXP(t) + (mpfr_exp_t) p > MPFR_GET_EXP(y); k++) { mpfr_mul (t, t, invx, MPFR_RNDN); /* 2 more roundings */ mpfr_mul_ui (t, t, k, MPFR_RNDN); /* 1 more rounding: t = k!/x^k*(1+u)^e with u=2^{-p} and |e| <= 3*k */ /* we use the fact that |(1+u)^n-1| <= 2*|n*u| for |n*u| <= 1, thus the error on t is less than 6*k*2^{-p}*t <= 6*k*ulp(t) */ /* err is in terms of ulp(y): transform it in terms of ulp(t) */ mpfr_mul_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU); mpfr_add_ui (err, err, 6 * k, MPFR_RNDU); /* transform back in terms of ulp(y) */ mpfr_div_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU); mpfr_add (y, y, t, MPFR_RNDN); } /* add the truncation error bounded by ulp(y): 1 ulp */ mpfr_mul (y, y, invx, MPFR_RNDN); /* err <= 2*err + 3/2 */ mpfr_exp (t, x, MPFR_RNDN); /* err(t) <= 1/2*ulp(t) */ mpfr_mul (y, y, t, MPFR_RNDN); /* again: err <= 2*err + 3/2 */ mpfr_mul_2ui (err, err, 2, MPFR_RNDU); mpfr_add_ui (err, err, 8, MPFR_RNDU); err_exp = MPFR_GET_EXP(err); mpfr_clear (t); mpfr_clear (invx); mpfr_clear (err); return err_exp; } int mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) { int inex; mpfr_t tmp, ump; mpfr_exp_t err, te; mpfr_prec_t prec; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC ( ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { /* exp(NaN) = exp(-Inf) = NaN */ if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x))) { MPFR_SET_NAN (y); MPFR_RET_NAN; } /* eint(+inf) = +inf */ else if (MPFR_IS_INF (x)) { MPFR_SET_INF(y); MPFR_SET_POS(y); MPFR_RET(0); } else /* eint(+/-0) = -Inf */ { MPFR_SET_INF(y); MPFR_SET_NEG(y); mpfr_set_divby0 (); MPFR_RET(0); } } /* eint(x) = NaN for x < 0 */ if (MPFR_IS_NEG(x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } MPFR_SAVE_EXPO_MARK (expo); /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2). Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax, then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */ mpfr_init2 (tmp, 64); mpfr_init2 (ump, 64); mpfr_log (tmp, x, MPFR_RNDU); mpfr_sub (ump, x, tmp, MPFR_RNDD); mpfr_const_log2 (tmp, MPFR_RNDU); mpfr_div (ump, ump, tmp, MPFR_RNDD); /* FIXME: We really need mpfr_set_exp_t and mpfr_cmpfr_exp_t functions. */ MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0) { mpfr_clear (tmp); mpfr_clear (ump); MPFR_SAVE_EXPO_FREE (expo); return mpfr_overflow (y, rnd, 1); } /* Init stuff */ prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6; /* eint() has a root 0.37250741078136663446..., so if x is near, already take more bits */ /* FIXME: do not use native floating-point here. */ if (MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */ { double d; d = mpfr_get_d (x, MPFR_RNDN) - 0.37250741078136663; d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d); prec += -d; } mpfr_set_prec (tmp, prec); mpfr_set_prec (ump, prec); MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */ for (;;) /* Infinite loop */ { /* We need that the smallest value of k!/x^k is smaller than 2^(-p). The minimum is obtained for x=k, and it is smaller than e*sqrt(x)/e^x for x>=1. */ if (MPFR_GET_EXP (x) > 0 && mpfr_cmp_d (x, ((double) prec + 0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0) err = mpfr_eint_asympt (tmp, x); else { err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */ te = MPFR_GET_EXP(tmp); mpfr_const_euler (ump, MPFR_RNDN); /* 0.577 -> EXP(ump)=0 */ mpfr_add (tmp, tmp, ump, MPFR_RNDN); /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err) <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp)) <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */ err = MAX(1, te + err + 2) - MPFR_GET_EXP(tmp); err = MAX(0, err); te = MPFR_GET_EXP(tmp); mpfr_log (ump, x, MPFR_RNDN); mpfr_add (tmp, tmp, ump, MPFR_RNDN); /* same formula as above, except now EXP(ump) is not 0 */ err += te + 1; if (MPFR_LIKELY (!MPFR_IS_ZERO (ump))) err = MAX (MPFR_GET_EXP (ump), err); err = MAX(0, err - MPFR_GET_EXP (tmp)); } if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd))) break; MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */ mpfr_set_prec (tmp, prec); mpfr_set_prec (ump, prec); } MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controller */ inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */ mpfr_clear (tmp); mpfr_clear (ump); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inex, rnd); }