/* mpfr_jn_asympt, mpfr_yn_asympt -- shared code for mpfr_jn and mpfr_yn Copyright 2007-2015 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef MPFR_JN # define FUNCTION mpfr_jn_asympt #else # ifdef MPFR_YN # define FUNCTION mpfr_yn_asympt # else # error "neither MPFR_JN nor MPFR_YN is defined" # endif #endif /* Implements asymptotic expansion for jn or yn (formulae 9.2.5 and 9.2.6 from Abramowitz & Stegun). Assumes |z| > p log(2)/2, where p is the target precision (z can be negative only for jn). Return 0 if the expansion does not converge enough (the value 0 as inexact flag should not happen for normal input). */ static int FUNCTION (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r) { mpfr_t s, c, P, Q, t, iz, err_t, err_s, err_u; mpfr_prec_t w; long k; int inex, stop, diverge = 0; mpfr_exp_t err2, err; MPFR_ZIV_DECL (loop); mpfr_init (c); w = MPFR_PREC(res) + MPFR_INT_CEIL_LOG2(MPFR_PREC(res)) + 4; MPFR_ZIV_INIT (loop, w); for (;;) { mpfr_set_prec (c, w); mpfr_init2 (s, w); mpfr_init2 (P, w); mpfr_init2 (Q, w); mpfr_init2 (t, w); mpfr_init2 (iz, w); mpfr_init2 (err_t, 31); mpfr_init2 (err_s, 31); mpfr_init2 (err_u, 31); /* Approximate sin(z) and cos(z). In the following, err <= k means that the approximate value y and the true value x are related by y = x * (1 + u)^k with |u| <= 2^(-w), following Higham's method. */ mpfr_sin_cos (s, c, z, MPFR_RNDN); if (MPFR_IS_NEG(z)) mpfr_neg (s, s, MPFR_RNDN); /* compute jn/yn(|z|), fix sign later */ /* The absolute error on s/c is bounded by 1/2 ulp(1/2) <= 2^(-w-1). */ mpfr_add (t, s, c, MPFR_RNDN); mpfr_sub (c, s, c, MPFR_RNDN); mpfr_swap (s, t); /* now s approximates sin(z)+cos(z), and c approximates sin(z)-cos(z), with total absolute error bounded by 2^(1-w). */ /* precompute 1/(8|z|) */ mpfr_si_div (iz, MPFR_IS_POS(z) ? 1 : -1, z, MPFR_RNDN); /* err <= 1 */ mpfr_div_2ui (iz, iz, 3, MPFR_RNDN); /* compute P and Q */ mpfr_set_ui (P, 1, MPFR_RNDN); mpfr_set_ui (Q, 0, MPFR_RNDN); mpfr_set_ui (t, 1, MPFR_RNDN); /* current term */ mpfr_set_ui (err_t, 0, MPFR_RNDN); /* error on t */ mpfr_set_ui (err_s, 0, MPFR_RNDN); /* error on P and Q (sum of errors) */ for (k = 1, stop = 0; stop < 4; k++) { /* compute next term: t(k)/t(k-1) = (2n+2k-1)(2n-2k+1)/(8kz) */ mpfr_mul_si (t, t, 2 * (n + k) - 1, MPFR_RNDN); /* err <= err_k + 1 */ mpfr_mul_si (t, t, 2 * (n - k) + 1, MPFR_RNDN); /* err <= err_k + 2 */ mpfr_div_ui (t, t, k, MPFR_RNDN); /* err <= err_k + 3 */ mpfr_mul (t, t, iz, MPFR_RNDN); /* err <= err_k + 5 */ /* the relative error on t is bounded by (1+u)^(5k)-1, which is bounded by 6ku for 6ku <= 0.02: first |5 log(1+u)| <= |5.5u| for |u| <= 0.15, then |exp(5.5u)-1| <= 6u for |u| <= 0.02. */ mpfr_mul_ui (err_t, t, 6 * k, MPFR_IS_POS(t) ? MPFR_RNDU : MPFR_RNDD); mpfr_abs (err_t, err_t, MPFR_RNDN); /* exact */ /* the absolute error on t is bounded by err_t * 2^(-w) */ mpfr_abs (err_u, t, MPFR_RNDU); mpfr_mul_2ui (err_u, err_u, w, MPFR_RNDU); /* t * 2^w */ mpfr_add (err_u, err_u, err_t, MPFR_RNDU); /* max|t| * 2^w */ if (stop >= 2) { /* take into account the neglected terms: t * 2^w */ mpfr_div_2ui (err_s, err_s, w, MPFR_RNDU); if (MPFR_IS_POS(t)) mpfr_add (err_s, err_s, t, MPFR_RNDU); else mpfr_sub (err_s, err_s, t, MPFR_RNDU); mpfr_mul_2ui (err_s, err_s, w, MPFR_RNDU); stop ++; } /* if k is odd, add to Q, otherwise to P */ else if (k & 1) { /* if k = 1 mod 4, add, otherwise subtract */ if ((k & 2) == 0) mpfr_add (Q, Q, t, MPFR_RNDN); else mpfr_sub (Q, Q, t, MPFR_RNDN); /* check if the next term is smaller than ulp(Q): if EXP(err_u) <= EXP(Q), since the current term is bounded by err_u * 2^(-w), it is bounded by ulp(Q) */ if (MPFR_EXP(err_u) <= MPFR_EXP(Q)) stop ++; else stop = 0; } else { /* if k = 0 mod 4, add, otherwise subtract */ if ((k & 2) == 0) mpfr_add (P, P, t, MPFR_RNDN); else mpfr_sub (P, P, t, MPFR_RNDN); /* check if the next term is smaller than ulp(P) */ if (MPFR_EXP(err_u) <= MPFR_EXP(P)) stop ++; else stop = 0; } mpfr_add (err_s, err_s, err_t, MPFR_RNDU); /* the sum of the rounding errors on P and Q is bounded by err_s * 2^(-w) */ /* stop when start to diverge */ if (stop < 2 && ((MPFR_IS_POS(z) && mpfr_cmp_ui (z, (k + 1) / 2) < 0) || (MPFR_IS_NEG(z) && mpfr_cmp_si (z, - ((k + 1) / 2)) > 0))) { /* if we have to stop the series because it diverges, then increasing the precision will most probably fail, since we will stop to the same point, and thus compute a very similar approximation */ diverge = 1; stop = 2; /* force stop */ } } /* the sum of the total errors on P and Q is bounded by err_s * 2^(-w) */ /* Now combine: the sum of the rounding errors on P and Q is bounded by err_s * 2^(-w), and the absolute error on s/c is bounded by 2^(1-w) */ if ((n & 1) == 0) /* n even: P * (sin + cos) + Q (cos - sin) for jn Q * (sin + cos) + P (sin - cos) for yn */ { #ifdef MPFR_JN mpfr_mul (c, c, Q, MPFR_RNDN); /* Q * (sin - cos) */ mpfr_mul (s, s, P, MPFR_RNDN); /* P * (sin + cos) */ #else mpfr_mul (c, c, P, MPFR_RNDN); /* P * (sin - cos) */ mpfr_mul (s, s, Q, MPFR_RNDN); /* Q * (sin + cos) */ #endif err = MPFR_EXP(c); if (MPFR_EXP(s) > err) err = MPFR_EXP(s); #ifdef MPFR_JN mpfr_sub (s, s, c, MPFR_RNDN); #else mpfr_add (s, s, c, MPFR_RNDN); #endif } else /* n odd: P * (sin - cos) + Q (cos + sin) for jn, Q * (sin - cos) - P (cos + sin) for yn */ { #ifdef MPFR_JN mpfr_mul (c, c, P, MPFR_RNDN); /* P * (sin - cos) */ mpfr_mul (s, s, Q, MPFR_RNDN); /* Q * (sin + cos) */ #else mpfr_mul (c, c, Q, MPFR_RNDN); /* Q * (sin - cos) */ mpfr_mul (s, s, P, MPFR_RNDN); /* P * (sin + cos) */ #endif err = MPFR_EXP(c); if (MPFR_EXP(s) > err) err = MPFR_EXP(s); #ifdef MPFR_JN mpfr_add (s, s, c, MPFR_RNDN); #else mpfr_sub (s, c, s, MPFR_RNDN); #endif } if ((n & 2) != 0) mpfr_neg (s, s, MPFR_RNDN); if (MPFR_EXP(s) > err) err = MPFR_EXP(s); /* the absolute error on s is bounded by P*err(s/c) + Q*err(s/c) + err(P)*(s/c) + err(Q)*(s/c) + 3 * 2^(err - w - 1) <= (|P|+|Q|) * 2^(1-w) + err_s * 2^(1-w) + 2^err * 2^(1-w), since |c|, |old_s| <= 2. */ err2 = (MPFR_EXP(P) >= MPFR_EXP(Q)) ? MPFR_EXP(P) + 2 : MPFR_EXP(Q) + 2; /* (|P| + |Q|) * 2^(1 - w) <= 2^(err2 - w) */ err = MPFR_EXP(err_s) >= err ? MPFR_EXP(err_s) + 2 : err + 2; /* err_s * 2^(1-w) + 2^old_err * 2^(1-w) <= 2^err * 2^(-w) */ err2 = (err >= err2) ? err + 1 : err2 + 1; /* now the absolute error on s is bounded by 2^(err2 - w) */ /* multiply by sqrt(1/(Pi*z)) */ mpfr_const_pi (c, MPFR_RNDN); /* Pi, err <= 1 */ mpfr_mul (c, c, z, MPFR_RNDN); /* err <= 2 */ mpfr_si_div (c, MPFR_IS_POS(z) ? 1 : -1, c, MPFR_RNDN); /* err <= 3 */ mpfr_sqrt (c, c, MPFR_RNDN); /* err<=5/2, thus the absolute error is bounded by 3*u*|c| for |u| <= 0.25 */ mpfr_mul (err_t, c, s, MPFR_SIGN(c)==MPFR_SIGN(s) ? MPFR_RNDU : MPFR_RNDD); mpfr_abs (err_t, err_t, MPFR_RNDU); mpfr_mul_ui (err_t, err_t, 3, MPFR_RNDU); /* 3*2^(-w)*|old_c|*|s| [see below] is bounded by err_t * 2^(-w) */ err2 += MPFR_EXP(c); /* |old_c| * 2^(err2 - w) [see below] is bounded by 2^(err2-w) */ mpfr_mul (c, c, s, MPFR_RNDN); /* the absolute error on c is bounded by 1/2 ulp(c) + 3*2^(-w)*|old_c|*|s| + |old_c| * 2^(err2 - w) */ /* compute err_t * 2^(-w) + 1/2 ulp(c) = (err_t + 2^EXP(c)) * 2^(-w) */ err = (MPFR_EXP(err_t) > MPFR_EXP(c)) ? MPFR_EXP(err_t) + 1 : MPFR_EXP(c) + 1; /* err_t * 2^(-w) + 1/2 ulp(c) <= 2^(err - w) */ /* now err_t * 2^(-w) bounds 1/2 ulp(c) + 3*2^(-w)*|old_c|*|s| */ err = (err >= err2) ? err + 1 : err2 + 1; /* the absolute error on c is bounded by 2^(err - w) */ mpfr_clear (s); mpfr_clear (P); mpfr_clear (Q); mpfr_clear (t); mpfr_clear (iz); mpfr_clear (err_t); mpfr_clear (err_s); mpfr_clear (err_u); err -= MPFR_EXP(c); if (MPFR_LIKELY (MPFR_CAN_ROUND (c, w - err, MPFR_PREC(res), r))) break; if (diverge != 0) { mpfr_set (c, z, r); /* will force inex=0 below, which means the asymptotic expansion failed */ break; } MPFR_ZIV_NEXT (loop, w); } MPFR_ZIV_FREE (loop); inex = (MPFR_IS_POS(z) || ((n & 1) == 0)) ? mpfr_set (res, c, r) : mpfr_neg (res, c, r); mpfr_clear (c); return inex; }