/* Mulders' MulHigh function (short product) Copyright 2005-2015 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ /* References: [1] Short Division of Long Integers, David Harvey and Paul Zimmermann, Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20), July 25-27, 2011, pages 7-14. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" #ifndef MUL_FFT_THRESHOLD #define MUL_FFT_THRESHOLD 8448 #endif /* Don't use MPFR_MULHIGH_SIZE since it is handled by tuneup */ #ifdef MPFR_MULHIGH_TAB_SIZE static short mulhigh_ktab[MPFR_MULHIGH_TAB_SIZE]; #else static short mulhigh_ktab[] = {MPFR_MULHIGH_TAB}; #define MPFR_MULHIGH_TAB_SIZE \ ((mp_size_t) (sizeof(mulhigh_ktab) / sizeof(mulhigh_ktab[0]))) #endif /* Put in rp[n..2n-1] an approximation of the n high limbs of {up, n} * {vp, n}. The error is less than n ulps of rp[n] (and the approximation is always less or equal to the truncated full product). Assume 2n limbs are allocated at rp. Implements Algorithm ShortMulNaive from [1]. */ static void mpfr_mulhigh_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up, mpfr_limb_srcptr vp, mp_size_t n) { mp_size_t i; rp += n - 1; umul_ppmm (rp[1], rp[0], up[n-1], vp[0]); /* we neglect up[0..n-2]*vp[0], which is less than B^n */ for (i = 1 ; i < n ; i++) /* here, we neglect up[0..n-i-2] * vp[i], which is less than B^n too */ rp[i + 1] = mpn_addmul_1 (rp, up + (n - i - 1), i + 1, vp[i]); /* in total, we neglect less than n*B^n, i.e., n ulps of rp[n]. */ } /* Put in rp[0..n] the n+1 low limbs of {up, n} * {vp, n}. Assume 2n limbs are allocated at rp. */ static void mpfr_mullow_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up, mpfr_limb_srcptr vp, mp_size_t n) { mp_size_t i; rp[n] = mpn_mul_1 (rp, up, n, vp[0]); for (i = 1 ; i < n ; i++) mpn_addmul_1 (rp + i, up, n - i + 1, vp[i]); } /* Put in rp[n..2n-1] an approximation of the n high limbs of {np, n} * {mp, n}. The error is less than n ulps of rp[n] (and the approximation is always less or equal to the truncated full product). Implements Algorithm ShortMul from [1]. */ void mpfr_mulhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp, mp_size_t n) { mp_size_t k; MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */ k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4); /* Algorithm ShortMul from [1] requires k >= (n+3)/2, which translates into k >= (n+4)/2 in the C language. */ MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n)); if (k < 0) mpn_mul_basecase (rp, np, n, mp, n); /* result is exact, no error */ else if (k == 0) mpfr_mulhigh_n_basecase (rp, np, mp, n); /* basecase error < n ulps */ else if (n > MUL_FFT_THRESHOLD) mpn_mul_n (rp, np, mp, n); /* result is exact, no error */ else { mp_size_t l = n - k; mp_limb_t cy; mpn_mul_n (rp + 2 * l, np + l, mp + l, k); /* fills rp[2l..2n-1] */ mpfr_mulhigh_n (rp, np + k, mp, l); /* fills rp[l-1..2l-1] */ cy = mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); mpfr_mulhigh_n (rp, np, mp + k, l); /* fills rp[l-1..2l-1] */ cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */ } } /* Put in rp[0..n] the n+1 low limbs of {np, n} * {mp, n}. Assume 2n limbs are allocated at rp. */ void mpfr_mullow_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp, mp_size_t n) { mp_size_t k; MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */ k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4); MPFR_ASSERTD (k == -1 || k == 0 || (2 * k >= n && k < n)); if (k < 0) mpn_mul_basecase (rp, np, n, mp, n); else if (k == 0) mpfr_mullow_n_basecase (rp, np, mp, n); else if (n > MUL_FFT_THRESHOLD) mpn_mul_n (rp, np, mp, n); else { mp_size_t l = n - k; mpn_mul_n (rp, np, mp, k); /* fills rp[0..2k] */ mpfr_mullow_n (rp + n, np + k, mp, l); /* fills rp[n..n+2l] */ mpn_add_n (rp + k, rp + k, rp + n, l + 1); mpfr_mullow_n (rp + n, np, mp + k, l); /* fills rp[n..n+2l] */ mpn_add_n (rp + k, rp + k, rp + n, l + 1); } } #ifdef MPFR_SQRHIGH_TAB_SIZE static short sqrhigh_ktab[MPFR_SQRHIGH_TAB_SIZE]; #else static short sqrhigh_ktab[] = {MPFR_SQRHIGH_TAB}; #define MPFR_SQRHIGH_TAB_SIZE (sizeof(sqrhigh_ktab) / sizeof(sqrhigh_ktab[0])) #endif /* Put in rp[n..2n-1] an approximation of the n high limbs of {np, n}^2. The error is less than n ulps of rp[n]. */ void mpfr_sqrhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mp_size_t n) { mp_size_t k; MPFR_ASSERTN (MPFR_SQRHIGH_TAB_SIZE > 2); /* ensures k < n */ k = MPFR_LIKELY (n < MPFR_SQRHIGH_TAB_SIZE) ? sqrhigh_ktab[n] : (n+4)/2; /* ensures that k >= (n+3)/2 */ MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n)); if (k < 0) /* we can't use mpn_sqr_basecase here, since it requires n <= SQR_KARATSUBA_THRESHOLD, where SQR_KARATSUBA_THRESHOLD is not exported by GMP */ mpn_sqr_n (rp, np, n); else if (k == 0) mpfr_mulhigh_n_basecase (rp, np, np, n); else { mp_size_t l = n - k; mp_limb_t cy; mpn_sqr_n (rp + 2 * l, np + l, k); /* fills rp[2l..2n-1] */ mpfr_mulhigh_n (rp, np, np + k, l); /* fills rp[l-1..2l-1] */ /* {rp+n-1,l+1} += 2 * {rp+l-1,l+1} */ cy = mpn_lshift (rp + l - 1, rp + l - 1, l + 1, 1); cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */ } } #ifdef MPFR_DIVHIGH_TAB_SIZE static short divhigh_ktab[MPFR_DIVHIGH_TAB_SIZE]; #else static short divhigh_ktab[] = {MPFR_DIVHIGH_TAB}; #define MPFR_DIVHIGH_TAB_SIZE (sizeof(divhigh_ktab) / sizeof(divhigh_ktab[0])) #endif #ifndef __GMPFR_GMP_H__ #define mpfr_pi1_t gmp_pi1_t /* with a GMP build */ #endif #if !(defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q)) /* Put in Q={qp, n} an approximation of N={np, 2*n} divided by D={dp, n}, with the most significant limb of the quotient as return value (0 or 1). Assumes the most significant bit of D is set. Clobbers N. The approximate quotient Q satisfies - 2(n-1) < N/D - Q <= 4. */ static mp_limb_t mpfr_divhigh_n_basecase (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_srcptr dp, mp_size_t n) { mp_limb_t qh, d1, d0, dinv, q2, q1, q0; mpfr_pi1_t dinv2; np += n; if ((qh = (mpn_cmp (np, dp, n) >= 0))) mpn_sub_n (np, np, dp, n); /* now {np, n} is less than D={dp, n}, which implies np[n-1] <= dp[n-1] */ d1 = dp[n - 1]; if (n == 1) { invert_limb (dinv, d1); umul_ppmm (q1, q0, np[0], dinv); qp[0] = np[0] + q1; return qh; } /* now n >= 2 */ d0 = dp[n - 2]; invert_pi1 (dinv2, d1, d0); /* dinv2.inv32 = floor ((B^3 - 1) / (d0 + d1 B)) - B */ while (n > 1) { /* Invariant: it remains to reduce n limbs from N (in addition to the initial low n limbs). Since n >= 2 here, necessarily we had n >= 2 initially, which means that in addition to the limb np[n-1] to reduce, we have at least 2 extra limbs, thus accessing np[n-3] is valid. */ /* Warning: we can have np[n-1]>d1 or (np[n-1]=d1 and np[n-2]>=d0) here, since we truncate the divisor at each step, but since {np,n} < D originally, the largest possible partial quotient is B-1. */ if (MPFR_UNLIKELY(np[n-1] > d1 || (np[n-1] == d1 && np[n-2] >= d0))) q2 = ~ (mp_limb_t) 0; else udiv_qr_3by2 (q2, q1, q0, np[n - 1], np[n - 2], np[n - 3], d1, d0, dinv2.inv32); /* since q2 = floor((np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0)), we have q2 <= (np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0), thus np[n-1]*B^2+np[n-2]*B+np[n-3] >= q2*(d1*B+d0) and {np-1, n} >= q2*D - q2*B^(n-2) >= q2*D - B^(n-1) thus {np-1, n} - (q2-1)*D >= D - B^(n-1) >= 0 which proves that at most one correction is needed */ q0 = mpn_submul_1 (np - 1, dp, n, q2); if (MPFR_UNLIKELY(q0 > np[n - 1])) { mpn_add_n (np - 1, np - 1, dp, n); q2 --; } qp[--n] = q2; dp ++; } /* we have B+dinv2 = floor((B^3-1)/(d1*B+d0)) < B^2/d1 q1 = floor(np[0]*(B+dinv2)/B) <= floor(np[0]*B/d1) <= floor((np[0]*B+np[1])/d1) thus q1 is not larger than the true quotient. q1 > np[0]*(B+dinv2)/B - 1 > np[0]*(B^3-1)/(d1*B+d0)/B - 2 For d1*B+d0 <> B^2/2, we have B+dinv2 = floor(B^3/(d1*B+d0)) thus q1 > np[0]*B^2/(d1*B+d0) - 2, i.e., (d1*B+d0)*q1 > np[0]*B^2 - 2*(d1*B+d0) d1*B*q1 > np[0]*B^2 - 2*d1*B - 2*d0 - d0*q1 >= np[0]*B^2 - 2*d1*B - B^2 thus q1 > np[0]*B/d1 - 2 - B/d1 > np[0]*B/d1 - 4. For d1*B+d0 = B^2/2, dinv2 = B-1 thus q1 > np[0]*(2B-1)/B - 1 > np[0]*B/d1 - 2. In all cases, if q = floor((np[0]*B+np[1])/d1), we have: q - 4 <= q1 <= q */ umul_ppmm (q1, q0, np[0], dinv2.inv32); qp[0] = np[0] + q1; return qh; } #endif /* Put in {qp, n} an approximation of N={np, 2*n} divided by D={dp, n}, with the most significant limb of the quotient as return value (0 or 1). Assumes the most significant bit of D is set. Clobbers N. This implements the ShortDiv algorithm from reference [1]. */ #if 1 mp_limb_t mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp, mp_size_t n) { mp_size_t k, l; mp_limb_t qh, cy; mpfr_limb_ptr tp; MPFR_TMP_DECL(marker); MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 15); /* so that 2*(n/3) >= (n+4)/2 */ k = MPFR_LIKELY (n < MPFR_DIVHIGH_TAB_SIZE) ? divhigh_ktab[n] : 2*(n/3); if (k == 0) #if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q) { mpfr_pi1_t dinv2; invert_pi1 (dinv2, dp[n - 1], dp[n - 2]); return __gmpn_sbpi1_divappr_q (qp, np, n + n, dp, n, dinv2.inv32); } #else /* use our own code for base-case short division */ return mpfr_divhigh_n_basecase (qp, np, dp, n); #endif else if (k == n) /* for k=n, we use a division with remainder (mpn_divrem), which computes the exact quotient */ return mpn_divrem (qp, 0, np, 2 * n, dp, n); MPFR_ASSERTD ((n+4)/2 <= k && k < n); /* bounds from [1] */ MPFR_TMP_MARK (marker); l = n - k; /* first divide the most significant 2k limbs from N by the most significant k limbs of D */ qh = mpn_divrem (qp + l, 0, np + 2 * l, 2 * k, dp + l, k); /* exact */ /* it remains {np,2l+k} = {np,n+l} as remainder */ /* now we have to subtract high(Q1)*D0 where Q1=qh*B^k+{qp+l,k} and D0={dp,l} */ tp = MPFR_TMP_LIMBS_ALLOC (2 * l); mpfr_mulhigh_n (tp, qp + k, dp, l); /* we are only interested in the upper l limbs from {tp,2l} */ cy = mpn_sub_n (np + n, np + n, tp + l, l); if (qh) cy += mpn_sub_n (np + n, np + n, dp, l); while (cy > 0) /* Q1 was too large: subtract 1 to Q1 and add D to np+l */ { qh -= mpn_sub_1 (qp + l, qp + l, k, MPFR_LIMB_ONE); cy -= mpn_add_n (np + l, np + l, dp, n); } /* now it remains {np,n+l} to divide by D */ cy = mpfr_divhigh_n (qp, np + k, dp + k, l); qh += mpn_add_1 (qp + l, qp + l, k, cy); MPFR_TMP_FREE(marker); return qh; } #else /* below is the FoldDiv(K) algorithm from [1] */ mp_limb_t mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp, mp_size_t n) { mp_size_t k, r; mpfr_limb_ptr ip, tp, up; mp_limb_t qh = 0, cy, cc; int count; MPFR_TMP_DECL(marker); #define K 3 if (n < K) return mpn_divrem (qp, 0, np, 2 * n, dp, n); k = (n - 1) / K + 1; /* ceil(n/K) */ MPFR_TMP_MARK (marker); ip = MPFR_TMP_LIMBS_ALLOC (k + 1); tp = MPFR_TMP_LIMBS_ALLOC (n + k); up = MPFR_TMP_LIMBS_ALLOC (2 * (k + 1)); mpn_invert (ip, dp + n - (k + 1), k + 1, NULL); /* takes about 13% for n=1000 */ /* {ip, k+1} = floor((B^(2k+2)-1)/D - B^(k+1) where D = {dp+n-(k+1),k+1} */ for (r = n, cc = 0UL; r > 0;) { /* cc is the carry at np[n+r] */ MPFR_ASSERTD(cc <= 1); /* FIXME: why can we have cc as large as say 8? */ count = 0; while (cc > 0) { count ++; MPFR_ASSERTD(count <= 1); /* subtract {dp+n-r,r} from {np+n,r} */ cc -= mpn_sub_n (np + n, np + n, dp + n - r, r); /* add 1 at qp[r] */ qh += mpn_add_1 (qp + r, qp + r, n - r, 1UL); } /* it remains r limbs to reduce, i.e., the remainder is {np, n+r} */ if (r < k) { ip += k - r; k = r; } /* now r >= k */ /* qp + r - 2 * k -> up */ mpfr_mulhigh_n (up, np + n + r - (k + 1), ip, k + 1); /* take into account the term B^k in the inverse: B^k * {np+n+r-k, k} */ cy = mpn_add_n (qp + r - k, up + k + 2, np + n + r - k, k); /* since we need only r limbs of tp (below), it suffices to consider r high limbs of dp */ if (r > k) { #if 0 mpn_mul (tp, dp + n - r, r, qp + r - k, k); #else /* use a short product for the low k x k limbs */ /* we know the upper k limbs of the r-limb product cancel with the remainder, thus we only need to compute the low r-k limbs */ if (r - k >= k) mpn_mul (tp + k, dp + n - r + k, r - k, qp + r - k, k); else /* r-k < k */ { /* #define LOW */ #ifndef LOW mpn_mul (tp + k, qp + r - k, k, dp + n - r + k, r - k); #else mpfr_mullow_n_basecase (tp + k, qp + r - k, dp + n - r + k, r - k); /* take into account qp[2r-2k] * dp[n - r + k] */ tp[r] += qp[2*r-2*k] * dp[n - r + k]; #endif /* tp[k..r] is filled */ } #if 0 mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k); #else /* compute one more limb. FIXME: we could add one limb of dp in the above, to save one mpn_addmul_1 call */ mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k - 1); /* {up,2k-2} */ /* add {qp + r - k, k - 1} * dp[n-r+k-1] */ up[2*k-2] = mpn_addmul_1 (up + k - 1, qp + r - k, k-1, dp[n-r+k-1]); /* add {dp+n-r, k} * qp[r-1] */ up[2*k-1] = mpn_addmul_1 (up + k - 1, dp + n - r, k, qp[r-1]); #endif #ifndef LOW cc = mpn_add_n (tp + k, tp + k, up + k, k); mpn_add_1 (tp + 2 * k, tp + 2 * k, r - k, cc); #else /* update tp[k..r] */ if (r - k + 1 <= k) mpn_add_n (tp + k, tp + k, up + k, r - k + 1); else /* r - k >= k */ { cc = mpn_add_n (tp + k, tp + k, up + k, k); mpn_add_1 (tp + 2 * k, tp + 2 * k, r - 2 * k + 1, cc); } #endif #endif } else /* last step: since we only want the quotient, no need to update, just propagate the carry cy */ { MPFR_ASSERTD(r < n); if (cy > 0) qh += mpn_add_1 (qp + r, qp + r, n - r, cy); break; } /* subtract {tp, n+k} from {np+r-k, n+k}; however we only want to update {np+n, n} */ /* we should have tp[r] = np[n+r-k] up to 1 */ MPFR_ASSERTD(tp[r] == np[n + r - k] || tp[r] + 1 == np[n + r - k]); #ifndef LOW cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r + 1); /* borrow at np[n+r] */ #else cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r - k + 2); #endif /* if cy = 1, subtract {dp, n} from {np+r, n}, thus {dp+n-r,r} from {np+n,r} */ if (cy) { if (r < n) cc += mpn_sub_n (np + n - 1, np + n - 1, dp + n - r - 1, r + 1); else cc += mpn_sub_n (np + n, np + n, dp + n - r, r); /* propagate cy */ if (r == n) qh = cy; else qh += mpn_add_1 (qp + r, qp + r, n - r, cy); } /* cc is the borrow at np[n+r] */ count = 0; while (cc > 0) /* quotient was too large */ { count++; MPFR_ASSERTD (count <= 1); cy = mpn_add_n (np + n, np + n, dp + n - (r - k), r - k); cc -= mpn_add_1 (np + n + r - k, np + n + r - k, k, cy); qh -= mpn_sub_1 (qp + r - k, qp + r - k, n - (r - k), 1UL); } r -= k; cc = np[n + r]; } MPFR_TMP_FREE(marker); return qh; } #endif