{-# LANGUAGE CPP #-}
{-# LANGUAGE TemplateHaskell, RankNTypes, StandaloneDeriving,
  DeriveDataTypeable, PatternGuards, FlexibleContexts, FlexibleInstances,
  TypeSynonymInstances #-}

-- | This module is a staging ground
-- for to-be-organized-and-merged-nicely code.

module Language.Haskell.Meta.Utils where

import Data.List (findIndex)
import Data.Typeable
import Data.Generics hiding(Fixity)
import Language.Haskell.Meta
import System.IO.Unsafe(unsafePerformIO)
import Language.Haskell.Exts.Pretty(prettyPrint)
import Language.Haskell.TH.Quote
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Lib
import Language.Haskell.TH.Ppr
import Text.PrettyPrint
import Control.Monad

-----------------------------------------------------------------------------


cleanNames :: (Data a) => a -> a
cleanNames = everywhere (mkT cleanName)
  where cleanName :: Name -> Name
        cleanName n
          | isNameU n = n
          | otherwise = (mkName . nameBase) n
        isNameU :: Name -> Bool
        isNameU (Name _ (NameU _)) = True
        isNameU _ = False


-- | The type passed in must have a @Show@ instance which
--  produces a valid Haskell expression. Returns an empty
--  @String@ if this is not the case. This is not TH-specific,
--  but useful in general.
pretty :: (Show a) => a -> String
pretty a = case parseHsExp (show a) of
            Left _ -> []
            Right e -> prettyPrint e


pp :: (Data a, Ppr a) => a -> String
pp = pprint . cleanNames

ppDoc :: (Data a, Ppr a) => a -> Doc
ppDoc = text . pp


gpretty :: (Data a) => a -> String
gpretty = either (const []) prettyPrint . parseHsExp . gshow


instance Show ExpQ where show = show . cleanNames . unsafeRunQ
instance Show (Q [Dec]) where show = unlines . fmap (show . cleanNames) . unsafeRunQ
instance Show DecQ where show = show . cleanNames . unsafeRunQ
instance Show TypeQ where show = show . cleanNames . unsafeRunQ
instance Show (Q String) where show = unsafeRunQ
instance Show (Q Doc) where show = show . unsafeRunQ

#if MIN_VERSION_base(4,7,0)
deriving instance Typeable Q
#else
deriving instance Typeable1 Q
#endif
deriving instance Typeable QuasiQuoter


-- | @unsafeRunQ = unsafePerformIO . runQ@
unsafeRunQ :: Q a -> a
unsafeRunQ = unsafePerformIO . runQ


nameToRawCodeStr :: Name -> String
nameToRawCodeStr n =
  let s = showNameParens n
  in case nameSpaceOf n of
      Just VarName -> "'"++s
      Just DataName -> "'"++s
      Just TcClsName -> "''"++s
      _ -> concat ["(mkName \"", filter (/='"') s, "\")"]
  where showNameParens :: Name -> String
        showNameParens n =
          let nb = nameBase n
          in case nb of
            (c:_) | isSym c -> concat ["(",nb,")"]
            _  -> nb
        isSym :: Char -> Bool
        isSym = (`elem` "><.\\/!@#$%^&*-+?:|")


-----------------------------------------------------------------------------


(|$|) :: ExpQ -> ExpQ -> ExpQ
infixr 0 |$|
f |$| x = [|$f $x|]

(|.|) :: ExpQ -> ExpQ -> ExpQ
infixr 9 |.|
g |.| f = [|$g . $f|]

(|->|) :: TypeQ -> TypeQ -> TypeQ
infixr 9 |->|
a |->| b = appT (appT arrowT a) b



unForall :: Type -> Type
unForall (ForallT _ _ t) = t
unForall t = t

functionT :: [TypeQ] -> TypeQ
functionT = foldl1 (|->|)

mkVarT :: String -> TypeQ
mkVarT = varT . mkName


-- | Infinite list of names composed of lowercase letters
myNames :: [Name]
myNames = let xs = fmap (:[]) ['a'..'z']
              ys = iterate (join (zipWith (++))) xs
           in fmap mkName (concat ys)

-- | Generalisation of renameTs
renameThings _ env new acc [] = (reverse acc, env, new)
renameThings f env new acc (t:ts) =
  let (t', env', new') = f env new t
  in renameThings f env' new' (t':acc) ts

-- | renameT applied to a list of types
renameTs :: [(Name, Name)] -> [Name] -> [Type] -> [Type]
  -> ([Type], [(Name,Name)], [Name])
renameTs = renameThings renameT

-- | Rename type variables in the Type according to the given association
-- list. Normalise constructor names (remove qualification, etc.)
-- If a name is not found in the association list, replace it with one from
-- the fresh names list, and add this translation to the returned list.
-- The fresh names list should be infinite; myNames is a good example.
renameT :: [(Name, Name)] -> [Name] -> Type -> (Type, [(Name,Name)], [Name])
renameT env [] _ = error "renameT: ran out of names!"
renameT env (x:new) (VarT n)
 | Just n' <- lookup n env = (VarT n',env,x:new)
 | otherwise = (VarT x, (n,x):env, new)
renameT env new (ConT n) = (ConT (normaliseName n), env, new)
renameT env new t@(TupleT {}) = (t,env,new)
renameT env new ArrowT = (ArrowT,env,new)
renameT env new ListT = (ListT,env,new)
renameT env new (AppT t t') = let (s,env',new') = renameT env new t
                                  (s',env'',new'') = renameT env' new' t'
                              in (AppT s s', env'', new'')
renameT env new (ForallT ns cxt t) =
    let (ns',env2,new2) = renameTs env new [] (fmap (VarT . toName) ns)
        ns'' = fmap unVarT ns'
        (cxt',env3,new3) = renamePreds env2 new2 [] cxt
        (t',env4,new4) = renameT env3 new3 t
    in (ForallT ns'' cxt' t', env4, new4)
  where
    unVarT (VarT n) = PlainTV n
    renamePreds = renameThings renamePred

    renamePred env new (ClassP n ts) = let
        (ts', env', new') = renameTs env new [] ts
      in (ClassP (normaliseName n) ts', env', new')

    renamePred env new (EqualP t1 t2) = let
        (t1', env1, new1) = renameT env new t1
        (t2', env2, new2) = renameT env1 new1 t2
      in (EqualP t1' t2', env2, new2)


-- | Remove qualification, etc.
normaliseName :: Name -> Name
normaliseName = mkName . nameBase

applyT :: Type -> Type -> Type
applyT (ForallT [] _ t) t' = t `AppT` t'
applyT (ForallT (n:ns) cxt t) t' = ForallT ns cxt
  (substT [(toName n,t')] (fmap toName ns) t)
applyT t t' = t `AppT` t'



substT :: [(Name, Type)] -> [Name] -> Type -> Type
substT env bnd (ForallT ns _ t) = substT env (fmap toName ns++bnd) t
substT env bnd t@(VarT n)
  | n `elem` bnd = t
  | otherwise = maybe t id (lookup n env)
substT env bnd (AppT t t') = AppT (substT env bnd t)
                                  (substT env bnd t')
substT _ _ t = t





splitCon :: Con -> (Name,[Type])
splitCon c = (conName c, conTypes c)


strictTypeTy :: StrictType -> Type
strictTypeTy (_,t) = t

varStrictTypeTy :: VarStrictType -> Type
varStrictTypeTy (_,_,t) = t


conTypes :: Con -> [Type]
conTypes (NormalC _ sts) = fmap strictTypeTy sts
conTypes (RecC    _ vts) = fmap varStrictTypeTy vts
conTypes (InfixC t _ t') = fmap strictTypeTy [t,t']
conTypes (ForallC _ _ c) = conTypes c


conToConType :: Type -> Con -> Type
conToConType ofType con = foldr (\a b -> AppT (AppT ArrowT a) b) ofType (conTypes con)



decCons :: Dec -> [Con]
decCons (DataD _ _ _ cons _) = cons
decCons (NewtypeD _ _ _ con _) = [con]
decCons _ = []


decTyVars :: Dec -> [TyVarBndr]
decTyVars (DataD _ _ ns _ _) = ns
decTyVars (NewtypeD _ _ ns _ _) = ns
decTyVars (TySynD _ ns _) = ns
decTyVars (ClassD _ _ ns _ _) = ns
decTyVars _ = []


decName :: Dec -> Maybe Name
decName (FunD n _) = Just n
decName (DataD _ n _ _ _) = Just n
decName (NewtypeD _ n _ _ _) = Just n
decName (TySynD n _ _) = Just n
decName (ClassD _ n _ _ _) = Just n
decName (SigD n _) = Just n
decName (ForeignD fgn) = Just (foreignName fgn)
decName _ = Nothing


foreignName :: Foreign -> Name
foreignName (ImportF _ _ _ n _) = n
foreignName (ExportF _ _ n _) = n


unwindT :: Type -> [Type]
unwindT = go
  where go :: Type -> [Type]
        go (ForallT _ _ t) = go t
        go (AppT (AppT ArrowT t) t') = t : go t'
        go _ = []


unwindE :: Exp -> [Exp]
unwindE = go []
  where go acc (e `AppE` e') = go (e':acc) e
        go acc e = e:acc


-- | The arity of a Type.
arityT :: Type -> Int
arityT = go 0
  where go :: Int -> Type -> Int
        go n (ForallT _ _ t) = go n t
        go n (AppT (AppT ArrowT _) t) =
          let n' = n+1 in n' `seq` go n' t
        go n _ = n

typeToName :: Type -> Maybe Name
typeToName t
  | ConT n <- t = Just n
  | ArrowT <- t = Just ''(->)
  | ListT  <- t = Just ''[]
  | TupleT n <- t = Just $ tupleTypeName n
  | ForallT _ _ t' <- t = typeToName t'
  | otherwise = Nothing

-- | Randomly useful.
nameSpaceOf :: Name -> Maybe NameSpace
nameSpaceOf (Name _ (NameG ns _ _)) = Just ns
nameSpaceOf _ = Nothing

conName :: Con -> Name
conName (RecC n _) = n
conName (NormalC n _) = n
conName (InfixC _ n _) = n
conName (ForallC _ _ con) = conName con

recCName :: Con -> Maybe Name
recCName (RecC n _) = Just n
recCName _ = Nothing

dataDCons :: Dec -> [Con]
dataDCons (DataD _ _ _ cons _) = cons
dataDCons _ = []

fromDataConI :: Info -> Q (Maybe Exp)
fromDataConI (DataConI dConN ty tyConN fxty) =
  let n = arityT ty
  in replicateM n (newName "a")
      >>= \ns -> return (Just (LamE
                    [ConP dConN (fmap VarP ns)]
                    (TupE $ fmap VarE ns)))
fromDataConI _ = return Nothing

fromTyConI :: Info -> Maybe Dec
fromTyConI (TyConI dec) = Just dec
fromTyConI _ = Nothing

mkFunD :: Name -> [Pat] -> Exp -> Dec
mkFunD f xs e = FunD f [Clause xs (NormalB e) []]

mkClauseQ :: [PatQ] -> ExpQ -> ClauseQ
mkClauseQ ps e = clause ps (normalB e) []

-----------------------------------------------------------------------------

-- | The strategy for producing QuasiQuoters which
--  this datatype aims to facilitate is as follows.
--  Given a collection of datatypes which make up
--  the to-be-quasiquoted languages AST, make each
--  type in this collection an instance of at least
--  @Show@ and @Lift@. Now, assuming @parsePat@ and
--  @parseExp@, both of type @String -> Q a@ (where @a@
--  is the top level type of the AST), are the pair of
--  functions you wish to use for parsing in pattern and
--  expression context respectively, put them inside
--  a @Quoter@ datatype and pass this to quasify.
{-
data Quoter a = Quoter
  { expQ :: (Lift a) => String -> Q a
  , patQ :: (Show a) => String -> Q a }

quasify :: (Show a, Lift a) => Quoter a -> QuasiQuoter
quasify q = QuasiQuoter
              (toExpQ (expQ q))
              (toPatQ (patQ q))
              -}

toExpQ :: (Lift a) => (String -> Q a) -> (String -> ExpQ)
toExpQ parseQ = (lift =<<) . parseQ

toPatQ :: (Show a) => (String -> Q a) -> (String -> PatQ)
toPatQ parseQ = (showToPatQ =<<) . parseQ

showToPatQ :: (Show a) => a -> PatQ
showToPatQ = either fail return . parsePat . show

-----------------------------------------------------------------------------

eitherQ :: (e -> String) -> Either e a -> Q a
eitherQ toStr = either (fail . toStr) return

-----------------------------------------------------------------------------




normalizeT :: (Data a) => a -> a
normalizeT = everywhere (mkT go)
  where go :: Type -> Type
        go (ConT n) | n == ''[] = ListT
        go (AppT (TupleT 1) t) = t
        go (ConT n)
          | Just m <- findIndex (== n) tupleNames = TupleT (m + 2)
         where
          tupleNames = map tupleTypeName [2 .. 64]
        go t = t



-----------------------------------------------------------------------------