{-# OPTIONS_GHC -fno-warn-orphans #-} -- TODO {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeSynonymInstances #-} -- | This module is a staging ground -- for to-be-organized-and-merged-nicely code. module Language.Haskell.Meta.Utils ( module Language.Haskell.Meta.Utils ) where import Control.Monad import Data.Generics hiding (Fixity) import Data.List (findIndex) import Language.Haskell.Exts.Pretty (prettyPrint) import Language.Haskell.Meta import qualified Language.Haskell.Meta.THCompat as Compat (conP, plainTV) import Language.Haskell.TH.Lib hiding (cxt) import Language.Haskell.TH.Ppr import Language.Haskell.TH.Syntax import System.IO.Unsafe (unsafePerformIO) import Text.PrettyPrint ----------------------------------------------------------------------------- dataDCons :: Dec -> [Con] dataDCons (DataD _ _ _ _ cons _) = cons dataDCons _ = [] decCons :: Dec -> [Con] decCons (DataD _ _ _ _ cons _) = cons decCons (NewtypeD _ _ _ _ con _) = [con] decCons _ = [] decTyVars :: Dec -> [TyVarBndr_ ()] decTyVars (DataD _ _ ns _ _ _) = ns decTyVars (NewtypeD _ _ ns _ _ _) = ns decTyVars (TySynD _ ns _) = ns decTyVars (ClassD _ _ ns _ _) = ns decTyVars _ = [] decName :: Dec -> Maybe Name decName (FunD n _) = Just n decName (DataD _ n _ _ _ _) = Just n decName (NewtypeD _ n _ _ _ _) = Just n decName (TySynD n _ _) = Just n decName (ClassD _ n _ _ _) = Just n decName (SigD n _) = Just n decName (ForeignD fgn) = Just (foreignName fgn) decName _ = Nothing foreignName :: Foreign -> Name foreignName (ImportF _ _ _ n _) = n foreignName (ExportF _ _ n _) = n cleanNames :: (Data a) => a -> a cleanNames = everywhere (mkT cleanName) where cleanName :: Name -> Name cleanName n | isNameU n = n | otherwise = (mkName . nameBase) n isNameU :: Name -> Bool isNameU (Name _ (NameU _)) = True isNameU _ = False -- | The type passed in must have a @Show@ instance which -- produces a valid Haskell expression. Returns an empty -- @String@ if this is not the case. This is not TH-specific, -- but useful in general. pretty :: (Show a) => a -> String pretty a = case parseHsExp (show a) of Left _ -> [] Right e -> prettyPrint e pp :: (Data a, Ppr a) => a -> String pp = pprint . cleanNames ppDoc :: (Data a, Ppr a) => a -> Doc ppDoc = text . pp gpretty :: (Data a) => a -> String gpretty = either (const []) prettyPrint . parseHsExp . gshow instance Show ExpQ where show = show . cleanNames . unsafeRunQ instance Show (Q [Dec]) where show = unlines . fmap (show . cleanNames) . unsafeRunQ instance Show DecQ where show = show . cleanNames . unsafeRunQ instance Show TypeQ where show = show . cleanNames . unsafeRunQ instance Show (Q String) where show = unsafeRunQ instance Show (Q Doc) where show = show . unsafeRunQ -- | @unsafeRunQ = unsafePerformIO . runQ@ unsafeRunQ :: Q a -> a unsafeRunQ = unsafePerformIO . runQ nameToRawCodeStr :: Name -> String nameToRawCodeStr n = let s = showNameParens n in case nameSpaceOf n of Just VarName -> "'"++s Just DataName -> "'"++s Just TcClsName -> "''"++s _ -> concat ["(mkName \"", filter (/='"') s, "\")"] where showNameParens :: Name -> String showNameParens n' = let nb = nameBase n' in case nb of (c:_) | isSym c -> concat ["(",nb,")"] _ -> nb isSym :: Char -> Bool isSym = (`elem` ("><.\\/!@#$%^&*-+?:|" :: [Char])) ----------------------------------------------------------------------------- (|$|) :: ExpQ -> ExpQ -> ExpQ infixr 0 |$| f |$| x = [|$f $x|] (|.|) :: ExpQ -> ExpQ -> ExpQ infixr 9 |.| g |.| f = [|$g . $f|] (|->|) :: TypeQ -> TypeQ -> TypeQ infixr 9 |->| a |->| b = appT (appT arrowT a) b unForall :: Type -> Type unForall (ForallT _ _ t) = t unForall t = t functionT :: [TypeQ] -> TypeQ functionT = foldl1 (|->|) mkVarT :: String -> TypeQ mkVarT = varT . mkName -- | Infinite list of names composed of lowercase letters myNames :: [Name] myNames = let xs = fmap (:[]) ['a'..'z'] ys = iterate (join (zipWith (++))) xs in fmap mkName (concat ys) -- | Generalisation of renameTs renameThings :: (t1 -> t2 -> a1 -> (a2, t1, t2)) -> t1 -> t2 -> [a2] -> [a1] -> ([a2], t1, t2) renameThings _ env new acc [] = (reverse acc, env, new) renameThings f env new acc (t:ts) = let (t', env', new') = f env new t in renameThings f env' new' (t':acc) ts -- | renameT applied to a list of types renameTs :: [(Name, Name)] -> [Name] -> [Type] -> [Type] -> ([Type], [(Name,Name)], [Name]) renameTs = renameThings renameT -- | Rename type variables in the Type according to the given association -- list. Normalise constructor names (remove qualification, etc.) -- If a name is not found in the association list, replace it with one from -- the fresh names list, and add this translation to the returned list. -- The fresh names list should be infinite; myNames is a good example. renameT :: [(Name, Name)] -> [Name] -> Type -> (Type, [(Name,Name)], [Name]) renameT _env [] _ = error "renameT: ran out of names!" renameT env (x:new) (VarT n) | Just n' <- lookup n env = (VarT n',env,x:new) | otherwise = (VarT x, (n,x):env, new) renameT env new (ConT n) = (ConT (normaliseName n), env, new) renameT env new t@(TupleT {}) = (t,env,new) renameT env new ArrowT = (ArrowT,env,new) renameT env new ListT = (ListT,env,new) renameT env new (AppT t t') = let (s,env',new') = renameT env new t (s',env'',new'') = renameT env' new' t' in (AppT s s', env'', new'') renameT env new (ForallT ns cxt t) = let (ns',env2,new2) = renameTs env new [] (fmap (VarT . toName) ns) ns'' = fmap unVarT ns' (cxt',env3,new3) = renamePreds env2 new2 [] cxt (t',env4,new4) = renameT env3 new3 t in (ForallT ns'' cxt' t', env4, new4) where unVarT (VarT n) = Compat.plainTV n unVarT ty = error $ "renameT: unVarT: TODO for" ++ show ty renamePreds = renameThings renamePred renamePred = renameT renameT _ _ t = error $ "renameT: TODO for " ++ show t -- | Remove qualification, etc. normaliseName :: Name -> Name normaliseName = mkName . nameBase applyT :: Type -> Type -> Type applyT (ForallT [] _ t) t' = t `AppT` t' applyT (ForallT (n:ns) cxt t) t' = ForallT ns cxt (substT [(toName n,t')] (fmap toName ns) t) applyT t t' = t `AppT` t' substT :: [(Name, Type)] -> [Name] -> Type -> Type substT env bnd (ForallT ns _ t) = substT env (fmap toName ns++bnd) t substT env bnd t@(VarT n) | n `elem` bnd = t | otherwise = maybe t id (lookup n env) substT env bnd (AppT t t') = AppT (substT env bnd t) (substT env bnd t') substT _ _ t = t splitCon :: Con -> (Name,[Type]) splitCon c = (conName c, conTypes c) strictTypeTy :: StrictType -> Type strictTypeTy (_,t) = t varStrictTypeTy :: VarStrictType -> Type varStrictTypeTy (_,_,t) = t conTypes :: Con -> [Type] conTypes (NormalC _ sts) = fmap strictTypeTy sts conTypes (RecC _ vts) = fmap varStrictTypeTy vts conTypes (InfixC t _ t') = fmap strictTypeTy [t,t'] conTypes (ForallC _ _ c) = conTypes c conTypes c = error $ "conTypes: TODO for " ++ show c -- TODO -- (GadtC _ _ _) -- (RecGadtC _ _ _) conToConType :: Type -> Con -> Type conToConType ofType con = foldr (\a b -> AppT (AppT ArrowT a) b) ofType (conTypes con) unwindT :: Type -> [Type] unwindT = go where go :: Type -> [Type] go (ForallT _ _ t) = go t go (AppT (AppT ArrowT t) t') = t : go t' go _ = [] unwindE :: Exp -> [Exp] unwindE = go [] where go acc (e `AppE` e') = go (e':acc) e go acc e = e:acc -- | The arity of a Type. arityT :: Type -> Int arityT = go 0 where go :: Int -> Type -> Int go n (ForallT _ _ t) = go n t go n (AppT (AppT ArrowT _) t) = let n' = n+1 in n' `seq` go n' t go n _ = n typeToName :: Type -> Maybe Name typeToName t | ConT n <- t = Just n | ArrowT <- t = Just ''(->) | ListT <- t = Just ''[] | TupleT n <- t = Just $ tupleTypeName n | ForallT _ _ t' <- t = typeToName t' | otherwise = Nothing -- | Randomly useful. nameSpaceOf :: Name -> Maybe NameSpace nameSpaceOf (Name _ (NameG ns _ _)) = Just ns nameSpaceOf _ = Nothing conName :: Con -> Name conName (RecC n _) = n conName (NormalC n _) = n conName (InfixC _ n _) = n conName (ForallC _ _ con) = conName con conName c = error $ "conName: TODO for" ++ show c -- TODO -- (GadtC _ _ _) -- (RecGadtC _ _ _) recCName :: Con -> Maybe Name recCName (RecC n _) = Just n recCName _ = Nothing fromDataConI :: Info -> Q (Maybe Exp) fromDataConI (DataConI dConN ty _tyConN) = let n = arityT ty in replicateM n (newName "a") >>= \ns -> return (Just (LamE [Compat.conP dConN (fmap VarP ns)] #if MIN_VERSION_template_haskell(2,16,0) (TupE $ fmap (Just . VarE) ns) #else (TupE $ fmap VarE ns) #endif )) fromDataConI _ = return Nothing fromTyConI :: Info -> Maybe Dec fromTyConI (TyConI dec) = Just dec fromTyConI _ = Nothing mkFunD :: Name -> [Pat] -> Exp -> Dec mkFunD f xs e = FunD f [Clause xs (NormalB e) []] mkClauseQ :: [PatQ] -> ExpQ -> ClauseQ mkClauseQ ps e = clause ps (normalB e) [] ----------------------------------------------------------------------------- -- | The strategy for producing QuasiQuoters which -- this datatype aims to facilitate is as follows. -- Given a collection of datatypes which make up -- the to-be-quasiquoted languages AST, make each -- type in this collection an instance of at least -- @Show@ and @Lift@. Now, assuming @parsePat@ and -- @parseExp@, both of type @String -> Q a@ (where @a@ -- is the top level type of the AST), are the pair of -- functions you wish to use for parsing in pattern and -- expression context respectively, put them inside -- a @Quoter@ datatype and pass this to quasify. {- data Quoter a = Quoter { expQ :: (Lift a) => String -> Q a , patQ :: (Show a) => String -> Q a } quasify :: (Show a, Lift a) => Quoter a -> QuasiQuoter quasify q = QuasiQuoter (toExpQ (expQ q)) (toPatQ (patQ q)) -} toExpQ :: (Lift a) => (String -> Q a) -> (String -> ExpQ) toExpQ parseQ = (lift =<<) . parseQ toPatQ :: (Show a) => (String -> Q a) -> (String -> PatQ) toPatQ parseQ = (showToPatQ =<<) . parseQ showToPatQ :: (Show a) => a -> PatQ showToPatQ = either fail return . parsePat . show ----------------------------------------------------------------------------- eitherQ :: (e -> String) -> Either e a -> Q a eitherQ toStr = either (fail . toStr) return ----------------------------------------------------------------------------- normalizeT :: (Data a) => a -> a normalizeT = everywhere (mkT go) where go :: Type -> Type go (ConT n) | n == ''[] = ListT go (AppT (TupleT 1) t) = t go (ConT n) | Just m <- findIndex (== n) tupleNames = TupleT (m + 2) where tupleNames = map tupleTypeName [2 .. 64] go t = t -----------------------------------------------------------------------------