Safe Haskell | None |
---|---|
Language | Haskell2010 |
Heart.Core.Prelude
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Semigroup a where
- (<>) :: a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Integer
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word
- data Either a b
- id :: a -> a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- read :: Read a => String -> a
- type String = [Char]
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- appendFile :: FilePath -> String -> IO ()
- writeFile :: FilePath -> String -> IO ()
- readFile :: FilePath -> IO String
- interact :: (String -> String) -> IO ()
- getContents :: IO String
- getLine :: IO String
- getChar :: IO Char
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- putChar :: Char -> IO ()
- ioError :: IOError -> IO a
- type FilePath = String
- userError :: String -> IOError
- type IOError = IOException
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- unwords :: [String] -> String
- words :: String -> [String]
- unlines :: [String] -> String
- lines :: String -> [String]
- reads :: Read a => ReadS a
- lex :: ReadS String
- readParen :: Bool -> ReadS a -> ReadS a
- type ReadS a = String -> [(a, String)]
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- showParen :: Bool -> ShowS -> ShowS
- showString :: String -> ShowS
- showChar :: Char -> ShowS
- shows :: Show a => a -> ShowS
- type ShowS = String -> String
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- (!!) :: [a] -> Int -> a
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- reverse :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- take :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- cycle :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- init :: [a] -> [a]
- last :: [a] -> a
- tail :: [a] -> [a]
- head :: [a] -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- asTypeOf :: a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ($!) :: (a -> b) -> a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- undefined :: HasCallStack => a
- errorWithoutStackTrace :: [Char] -> a
- error :: HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- class Applicative f => Alternative (f :: Type -> Type) where
- class a ~R# b => Coercible (a :: k0) (b :: k0)
- class FromJSON a where
- class FromJSONKey a
- class Generic a
- type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s
- type HasCallStack = ?callStack :: CallStack
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- class Hashable a where
- hashWithSalt :: Int -> a -> Int
- hash :: a -> Int
- data HashMap k v
- data HashSet a
- newtype Identity a = Identity {
- runIdentity :: a
- data Int64
- type Iso' s a = Iso s s a a
- class IsList l
- class IsString a
- type Lens' s a = Lens s s a a
- newtype ListT (m :: Type -> Type) a = ListT (m (Maybe (a, ListT m a)))
- data Map k a
- class MonadThrow m => MonadCatch (m :: Type -> Type) where
- class Monad m => MonadFail (m :: Type -> Type) where
- class Monad m => MonadIO (m :: Type -> Type) where
- class MonadCatch m => MonadMask (m :: Type -> Type) where
- mask :: ((forall a. m a -> m a) -> m b) -> m b
- uninterruptibleMask :: ((forall a. m a -> m a) -> m b) -> m b
- generalBracket :: m a -> (a -> ExitCase b -> m c) -> (a -> m b) -> m (b, c)
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- class Monad m => MonadState s (m :: Type -> Type) | m -> s where
- class Monad m => MonadThrow (m :: Type -> Type) where
- class MonadTrans (t :: (Type -> Type) -> Type -> Type) where
- class MonadIO m => MonadUnliftIO (m :: Type -> Type) where
- askUnliftIO :: m (UnliftIO m)
- withRunInIO :: ((forall a. m a -> IO a) -> IO b) -> m b
- class (Monoid w, Monad m) => MonadWriter w (m :: Type -> Type) | m -> w where
- class Newtype n
- class NFData a
- type Prism' s a = Prism s s a a
- data Proxy (t :: k) :: forall k. k -> Type = Proxy
- type family Rep a :: Type -> Type
- data Seq a where
- data Set a
- type Setter' s a = Setter s s a a
- data SomeException
- data Text
- class ToJSON a where
- toJSON :: a -> Value
- toEncoding :: a -> Encoding
- toJSONList :: [a] -> Value
- toEncodingList :: [a] -> Encoding
- class ToJSONKey a
- class Typeable (a :: k)
- newtype UnliftIO (m :: Type -> Type) = UnliftIO {}
- data Void
- ap :: Monad m => m (a -> b) -> m a -> m b
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- catchJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a
- cast :: (Typeable a, Typeable b) => a -> Maybe b
- coerce :: Coercible a b => a -> b
- coerced :: (Coercible s a, Coercible t b) => Iso s t a b
- foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- makeLenses :: Name -> DecsQ
- makePrisms :: Name -> DecsQ
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- over :: ASetter s t a b -> (a -> b) -> s -> t
- review :: MonadReader b m => AReview t b -> m t
- set :: ASetter s t a b -> b -> s -> t
- simple :: Equality' a a
- toList :: Foldable t => t a -> [a]
- unless :: Applicative f => Bool -> f () -> f ()
- use :: MonadState s m => Getting a s a -> m a
- view :: MonadReader s m => Getting a s a -> m a
- when :: Applicative f => Bool -> f () -> f ()
Documentation
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
filter :: (a -> Bool) -> [a] -> [a] #
filter
, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
print :: Show a => a -> IO () #
The print
function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show
; print
converts values to strings for output using the show
operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] #
map
f xs
is the list obtained by applying f
to each element
of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that ($)
is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Ordering | Since: base-2.1 |
Bounded Word | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded () | Since: base-2.1 |
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
Bounded b => Bounded (Tagged s b) | |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
Eq Bool | |
Eq Char | |
Eq Double | Note that due to the presence of
Also note that
|
Eq Float | Note that due to the presence of
Also note that
|
Eq Int | |
Eq Int8 | Since: base-2.1 |
Eq Int16 | Since: base-2.1 |
Eq Int32 | Since: base-2.1 |
Eq Int64 | Since: base-2.1 |
Eq Integer | |
Eq Ordering | |
Eq Word | |
Eq Word8 | Since: base-2.1 |
Eq Word16 | Since: base-2.1 |
Eq Word32 | Since: base-2.1 |
Eq Word64 | Since: base-2.1 |
Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
Eq Exp | |
Eq Match | |
Eq Clause | |
Eq Pat | |
Eq Type | |
Eq Dec | |
Eq Name | |
Eq FunDep | |
Eq InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: InjectivityAnn -> InjectivityAnn -> Bool # (/=) :: InjectivityAnn -> InjectivityAnn -> Bool # | |
Eq Overlap | |
Eq () | |
Eq TyCon | |
Eq Module | |
Eq TrName | |
Eq Con | |
Eq Scientific | Scientific numbers can be safely compared for equality. No magnitude |
Defined in Data.Scientific | |
Eq JSONPathElement | |
Defined in Data.Aeson.Types.Internal Methods (==) :: JSONPathElement -> JSONPathElement -> Bool # (/=) :: JSONPathElement -> JSONPathElement -> Bool # | |
Eq Value | |
Eq DotNetTime | |
Defined in Data.Aeson.Types.Internal | |
Eq SumEncoding | |
Defined in Data.Aeson.Types.Internal | |
Eq Pos | |
Eq More | |
Eq BigNat | |
Eq Void | Since: base-4.8.0.0 |
Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
Eq Version | Since: base-2.1 |
Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Eq ExitCode | |
Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
Eq All | Since: base-2.1 |
Eq Any | Since: base-2.1 |
Eq Fixity | Since: base-4.6.0.0 |
Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
Eq SrcLoc | Since: base-4.9.0.0 |
Eq IntSet | |
Eq Extension | |
Eq ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type Methods (==) :: ForeignSrcLang -> ForeignSrcLang -> Bool # (/=) :: ForeignSrcLang -> ForeignSrcLang -> Bool # | |
Eq NCon | |
Eq RuleBndr | |
Eq Phases | |
Eq RuleMatch | |
Eq Inline | |
Eq Pragma | |
Eq DerivClause | |
Defined in Language.Haskell.TH.Syntax | |
Eq DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DerivStrategy -> DerivStrategy -> Bool # (/=) :: DerivStrategy -> DerivStrategy -> Bool # | |
Eq TySynEqn | |
Eq Fixity | |
Eq Info | |
Eq TyVarBndr | |
Eq Seed | |
Eq Doc | |
Eq TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ | |
Eq Style | |
Eq Mode | |
Eq ByteArray | Since: primitive-0.6.3.0 |
Eq ModName | |
Eq PkgName | |
Eq Module | |
Eq OccName | |
Eq NameFlavour | |
Defined in Language.Haskell.TH.Syntax | |
Eq NameSpace | |
Eq Loc | |
Eq ModuleInfo | |
Defined in Language.Haskell.TH.Syntax | |
Eq FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FixityDirection -> FixityDirection -> Bool # (/=) :: FixityDirection -> FixityDirection -> Bool # | |
Eq Lit | |
Eq Body | |
Eq Guard | |
Eq Stmt | |
Eq Range | |
Eq TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (/=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # | |
Eq Foreign | |
Eq Callconv | |
Eq Safety | |
Eq AnnTarget | |
Eq SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
Eq SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
Eq DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
Eq Bang | |
Eq PatSynDir | |
Eq PatSynArgs | |
Defined in Language.Haskell.TH.Syntax | |
Eq FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FamilyResultSig -> FamilyResultSig -> Bool # (/=) :: FamilyResultSig -> FamilyResultSig -> Bool # | |
Eq TyLit | |
Eq Role | |
Eq AnnLookup | |
Eq DatatypeInfo | |
Defined in Language.Haskell.TH.Datatype | |
Eq DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: DatatypeVariant -> DatatypeVariant -> Bool # (/=) :: DatatypeVariant -> DatatypeVariant -> Bool # | |
Eq ConstructorInfo | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: ConstructorInfo -> ConstructorInfo -> Bool # (/=) :: ConstructorInfo -> ConstructorInfo -> Bool # | |
Eq ConstructorVariant | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: ConstructorVariant -> ConstructorVariant -> Bool # (/=) :: ConstructorVariant -> ConstructorVariant -> Bool # | |
Eq FieldStrictness | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: FieldStrictness -> FieldStrictness -> Bool # (/=) :: FieldStrictness -> FieldStrictness -> Bool # | |
Eq Unpackedness | |
Defined in Language.Haskell.TH.Datatype | |
Eq Strictness | |
Defined in Language.Haskell.TH.Datatype | |
Eq LocalTime | |
Eq UnpackedUUID | |
Eq UUID | |
Eq Term Source # | |
Eq a => Eq [a] | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Eq (Ptr a) | Since: base-2.1 |
Eq (FunPtr a) | |
Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
Eq (Encoding' a) | |
Eq a => Eq (IResult a) | |
Eq a => Eq (Result a) | |
Eq a => Eq (Complex a) | Since: base-2.1 |
Eq (Fixed a) | Since: base-2.1 |
Eq a => Eq (Min a) | Since: base-4.9.0.0 |
Eq a => Eq (Max a) | Since: base-4.9.0.0 |
Eq a => Eq (First a) | Since: base-4.9.0.0 |
Eq a => Eq (Last a) | Since: base-4.9.0.0 |
Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |
Eq a => Eq (Option a) | Since: base-4.9.0.0 |
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
Eq (IORef a) | ^ Pointer equality. Since: base-4.1.0.0 |
Eq a => Eq (First a) | Since: base-2.1 |
Eq a => Eq (Last a) | Since: base-2.1 |
Eq a => Eq (Dual a) | Since: base-2.1 |
Eq a => Eq (Sum a) | Since: base-2.1 |
Eq a => Eq (Product a) | Since: base-2.1 |
Eq a => Eq (Down a) | Since: base-4.6.0.0 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (IntMap a) | |
Eq a => Eq (Tree a) | |
Eq a => Eq (Seq a) | |
Eq a => Eq (ViewL a) | |
Eq a => Eq (ViewR a) | |
Eq a => Eq (Set a) | |
Eq a => Eq (DList a) | |
Eq a => Eq (Hashed a) | Uses precomputed hash to detect inequality faster |
(Prim a, Eq a) => Eq (Vector a) | |
(Storable a, Eq a) => Eq (Vector a) | |
Eq a => Eq (HashSet a) | |
Eq a => Eq (Vector a) | |
Eq (Doc a) | |
Eq a => Eq (AnnotDetails a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods (==) :: AnnotDetails a -> AnnotDetails a -> Bool # (/=) :: AnnotDetails a -> AnnotDetails a -> Bool # | |
Eq a => Eq (Span a) | |
(Eq a, Prim a) => Eq (PrimArray a) | Since: primitive-0.6.4.0 |
Eq a => Eq (SmallArray a) | |
Defined in Data.Primitive.SmallArray | |
Eq a => Eq (Array a) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
Eq (V1 p) | Since: base-4.9.0.0 |
Eq (U1 p) | Since: base-4.9.0.0 |
Eq (TypeRep a) | Since: base-2.1 |
(Eq a, Eq b) => Eq (a, b) | |
(Eq k, Eq v) => Eq (HashMap k v) | |
(Eq k, Eq a) => Eq (Map k a) | |
Eq a => Eq (Arg a b) | Since: base-4.9.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
(Eq1 m, Eq a) => Eq (MaybeT m a) | |
(Eq1 f, Eq a) => Eq (Cofree f a) | |
(Eq1 f, Eq a) => Eq (Free f a) | |
(Eq1 f, Eq a) => Eq (Yoneda f a) | |
(Eq1 m, Eq a) => Eq (ListT m a) | |
Eq (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods (==) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # (/=) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # | |
Eq (MutableArray s a) | |
Defined in Data.Primitive.Array Methods (==) :: MutableArray s a -> MutableArray s a -> Bool # (/=) :: MutableArray s a -> MutableArray s a -> Bool # | |
(Eq k, Eq v) => Eq (Leaf k v) | |
Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Float p) | |
Eq (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
Eq (f a) => Eq (Alt f a) | Since: base-4.8.0.0 |
Eq (a :~: b) | Since: base-4.7.0.0 |
Eq (p a a) => Eq (Join p a) | |
Eq (p (Fix p a) a) => Eq (Fix p a) | |
(Eq1 f, Eq a) => Eq (IdentityT f a) | |
(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) | |
(Eq a, Eq (f b)) => Eq (FreeF f a b) | |
(Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) | |
(Eq a, Eq (f b)) => Eq (CofreeF f a b) | |
Eq (w (CofreeF f a (CofreeT f w a))) => Eq (CofreeT f w a) | |
(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) | |
Eq b => Eq (Tagged s b) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Product f g a) | Since: base-4.9.0.0 |
(Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) | Since: base-4.9.0.0 |
Eq (a :~~: b) | Since: base-4.10.0.0 |
Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) | Since: base-4.9.0.0 |
Eq (p a b) => Eq (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods (==) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # (/=) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # | |
Eq (g b) => Eq (Joker g a b) | |
Eq (p b a) => Eq (Flip p a b) | |
Eq (f a) => Eq (Clown f a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq (p a b), Eq (q a b)) => Eq (Sum p q a b) | |
(Eq (f a b), Eq (g a b)) => Eq (Product f g a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
Eq (f (p a b)) => Eq (Tannen f p a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
Eq (p (f a) (g b)) => Eq (Biff p f g a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, '(+)', '(*)'
and exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
= @exp a * exp bexp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, '(+)' and
'(*)' are customarily expected to define a division ring and have the
following properties:
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional Scientific | WARNING:
|
Defined in Data.Scientific Methods (/) :: Scientific -> Scientific -> Scientific # recip :: Scientific -> Scientific # fromRational :: Rational -> Scientific # | |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
HasResolution a => Fractional (Fixed a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Fractional a => Fractional (Tagged s a) | |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
Integral Int | Since: base-2.0.1 |
Integral Int8 | Since: base-2.1 |
Integral Int16 | Since: base-2.1 |
Integral Int32 | Since: base-2.1 |
Integral Int64 | Since: base-2.1 |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Integral Word | Since: base-2.1 |
Integral Word8 | Since: base-2.1 |
Integral Word16 | Since: base-2.1 |
Integral Word32 | Since: base-2.1 |
Integral Word64 | Since: base-2.1 |
Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
Integral a => Integral (Tagged s a) | |
Defined in Data.Tagged Methods quot :: Tagged s a -> Tagged s a -> Tagged s a # rem :: Tagged s a -> Tagged s a -> Tagged s a # div :: Tagged s a -> Tagged s a -> Tagged s a # mod :: Tagged s a -> Tagged s a -> Tagged s a # quotRem :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # divMod :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following laws:
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad IResult | |
Monad Result | |
Monad Parser | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Tree | |
Monad Seq | |
Monad DList | |
Monad Vector | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
Monad Array | |
Monad P | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Representable f => Monad (Co f) | |
Monad (Parser i) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Monad (MaybeT m) | |
Alternative f => Monad (Cofree f) | |
Functor f => Monad (Free f) | |
Monad m => Monad (Yoneda m) | |
Monad (ReifiedGetter s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b # (>>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # return :: a -> ReifiedGetter s a # fail :: String -> ReifiedGetter s a # | |
Monad (ReifiedFold s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b # (>>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # return :: a -> ReifiedFold s a # fail :: String -> ReifiedFold s a # | |
Monad m => Monad (ListT m) | |
Monad m => Monad (ListT m) | |
(Monad (Rep p), Representable p) => Monad (Prep p) | |
Monad (RIO env) Source # | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad m => Monad (IdentityT m) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # fail :: String -> WhenMissing f x a # | |
Monad m => Monad (ExceptT e m) | |
(Functor f, Monad m) => Monad (FreeT f m) | |
(Alternative f, Monad w) => Monad (CofreeT f w) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (StateT s m) | |
Monad (Tagged s) | |
Monad (Indexed i a) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # fail :: String -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # fail :: String -> WhenMissing f k x a # | |
Monad m => Monad (ReaderT r m) | |
Monad (ContT r m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # fail :: String -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Minimal complete definition