{-# OPTIONS_GHC -w #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
{-# LANGUAGE CPP #-}
module HERMIT.ParserType
    ( parseType
    , parseTypeT
    , parseTypeWithHoles
    , parseTypeWithHolesT
    ) where

import Control.Arrow
import Control.Monad.State
import Data.Char (isSpace, isDigit)

import HERMIT.Context
import HERMIT.Core
import HERMIT.External
import HERMIT.GHC
import HERMIT.Kure
import HERMIT.Monad
import HERMIT.Name
import HERMIT.ParserCore
import HERMIT.Syntax (isCoreInfixIdChar, isCoreIdFirstChar, isCoreIdChar)

import Language.KURE.MonadCatch (prefixFailMsg)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts

-- parser produced by Happy Version 1.19.3

newtype HappyAbsSyn t4 t5 t6 t7 t8 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4 t5 t6 t7 t8) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: t5 -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn t4 t5 t6 t7 t8) -> t5
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: t6 -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn t4 t5 t6 t7 t8) -> t6
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyIn7 :: t7 -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn t4 t5 t6 t7 t8) -> t7
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut7 #-}
happyIn8 :: t8 -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn t4 t5 t6 t7 t8) -> t8
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut8 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4 t5 t6 t7 t8)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4 t5 t6 t7 t8) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\xfa\xff\xfa\xff\xff\xff\xfa\xff\x00\x00\x00\x00\xf8\xff\x00\x00\xf1\xff\xf5\xff\x00\x00\xf6\xff\x00\x00\xfa\xff\xfa\xff\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x07\x00\x0b\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x1a\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x0d\x00\x00\x00\x17\x00\x0d\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\xfc\xff\xfa\xff\xf7\xff\x00\x00\xf6\xff\x00\x00\xfc\xff\xfb\xff\x00\x00\xf8\xff\x00\x00\xfe\xff\xf9\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x0c\x00\x0c\x00\x0d\x00\x0c\x00\x0d\x00\x0c\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x01\x00\x02\x00\x03\x00\x04\x00\x03\x00\x04\x00\x1d\x00\x1d\x00\x23\x00\x1d\x00\x17\x00\x1d\x00\x23\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x07\x00\x07\x00\x10\x00\x07\x00\x0d\x00\x07\x00\x08\x00\x02\x00\x09\x00\x04\x00\x05\x00\x02\x00\x03\x00\x04\x00\x05\x00\x0a\x00\x05\x00\x08\x00\x08\x00\xff\xff\x08\x00\x0e\x00\x08\x00\xfd\xff\x0e\x00\x04\x00\x05\x00\x0b\x00\x04\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 9) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9)
	]

happy_n_terms = 36 :: Int
happy_n_nonterms = 5 :: Int

happyReduce_1 = happySpecReduce_3  0# happyReduction_1
happyReduction_1 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut5 happy_x_1 of { happy_var_1 -> 
	case happyOut6 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (mkPhiTy happy_var_1 happy_var_3
	)}}

happyReduce_2 = happySpecReduce_1  0# happyReduction_2
happyReduction_2 happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (happy_var_1
	)}

happyReduce_3 = happySpecReduce_1  1# happyReduction_3
happyReduction_3 happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	happyIn5
		 ([happy_var_1]
	)}

happyReduce_4 = happySpecReduce_2  2# happyReduction_4
happyReduction_4 happy_x_2
	happy_x_1
	 =  case happyOut6 happy_x_1 of { happy_var_1 -> 
	case happyOut7 happy_x_2 of { happy_var_2 -> 
	happyIn6
		 (mkAppTy happy_var_1 happy_var_2
	)}}

happyReduce_5 = happySpecReduce_1  2# happyReduction_5
happyReduction_5 happy_x_1
	 =  case happyOut7 happy_x_1 of { happy_var_1 -> 
	happyIn6
		 (happy_var_1
	)}

happyReduce_6 = happySpecReduce_3  3# happyReduction_6
happyReduction_6 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut6 happy_x_2 of { happy_var_2 -> 
	happyIn7
		 (happy_var_2
	)}

happyReduce_7 = happyMonadReduce 2# 3# happyReduction_7
happyReduction_7 (happy_x_2 `HappyStk`
	happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (( lookupName "()")
	) (\r -> happyReturn (happyIn7 r))

happyReduce_8 = happySpecReduce_1  3# happyReduction_8
happyReduction_8 happy_x_1
	 =  case happyOut8 happy_x_1 of { happy_var_1 -> 
	happyIn7
		 (happy_var_1
	)}

happyReduce_9 = happyMonadReduce 1# 4# happyReduction_9
happyReduction_9 (happy_x_1 `HappyStk`
	happyRest) tk
	 = happyThen (case happyOutTok happy_x_1 of { (Tname happy_var_1) -> 
	( lookupName happy_var_1)}
	) (\r -> happyReturn (happyIn8 r))

happyNewToken action sts stk [] =
	happyDoAction 35# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
	let cont i = happyDoAction i tk action sts stk tks in
	case tk of {
	Tforall -> cont 1#;
	Trec -> cont 2#;
	Tlet -> cont 3#;
	Tin -> cont 4#;
	Tcase -> cont 5#;
	Tof -> cont 6#;
	Tcast -> cont 7#;
	Tnote -> cont 8#;
	Texternal -> cont 9#;
	Tlocal -> cont 10#;
	Twild -> cont 11#;
	Toparen -> cont 12#;
	Tcparen -> cont 13#;
	Tobrace -> cont 14#;
	Tcbrace -> cont 15#;
	Thash -> cont 16#;
	Teq -> cont 17#;
	Tcolon -> cont 18#;
	Tcoloncolon -> cont 19#;
	Tcoloneqcolon -> cont 20#;
	Tstar -> cont 21#;
	Tarrow -> cont 22#;
	Tdoublearrow -> cont 23#;
	Tlambda -> cont 24#;
	Tat -> cont 25#;
	Tdot -> cont 26#;
	Tquestion -> cont 27#;
	Tsemicolon -> cont 28#;
	Tname happy_dollar_dollar -> cont 29#;
	Tcname happy_dollar_dollar -> cont 30#;
	Tinteger happy_dollar_dollar -> cont 31#;
	Trational happy_dollar_dollar -> cont 32#;
	Tstring happy_dollar_dollar -> cont 33#;
	Tchar happy_dollar_dollar -> cont 34#;
	_ -> happyError' (tk:tks)
	}

happyError_ 35# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)

happyThen :: () => TypeParseM a -> (a -> TypeParseM b) -> TypeParseM b
happyThen = (>>=)
happyReturn :: () => a -> TypeParseM a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> TypeParseM a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> TypeParseM a
happyError' = parseError

parser tks = happySomeParser where
  happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


lookupName :: String -> TypeParseM Type
lookupName nm = do
    c <- getContext
    et <- lift $ attemptM $ findType (parseName nm) c
    either (const (addTyVar nm)) return et

catchFrees :: Type -> TypeParseM ([TyVar], Type)
catchFrees ty = do
    used <- gets tpUsed
    let frees = varSetElems $ freeVarsType ty
        quants = filter (`elem` used) frees
    modify $ \ st -> st { tpUsed = filter (`notElem` frees) (tpUsed st) }
    return (quants, ty)

data TPState = TPState { tpContext :: HermitC
                       , tpUsed :: [TyVar]
                       }

type TypeParseM a = StateT TPState HermitM a

getContext :: TypeParseM HermitC
getContext = gets tpContext

addTyVar :: String -> TypeParseM Type
addTyVar tvStr = do
    used <- gets tpUsed
    case [ tv | tv <- used, unqualifiedName tv == tvStr ] of
        [] -> do tv <- lift $ newTyVarH tvStr liftedTypeKind
                 modify $ \ st -> st { tpUsed = tv : tpUsed st }
                 return $ mkTyVarTy tv
        [tv] -> return $ mkTyVarTy tv
        other -> fail "addTyVar: impossible case"

---------------------------------------------

-- | Parse a CoreString into a Type, where all type variables must be bound.
parseType :: CoreString -> HermitC -> HermitM Type
parseType cs c = do
    (ty, holes) <- parseTypeWithHoles cs c
    guardMsg (null holes) "type contains unbound type variables."
    return ty

-- | Parse a CoreString into a Type, any unbound variables are returned.
parseTypeWithHoles :: CoreString -> HermitC -> HermitM (Type, [TyVar])
parseTypeWithHoles (CoreString s) c =
    case lexer s of
        Left msg -> fail msg
        Right tokens -> do
            (ty,st) <- runStateT (parser tokens) (TPState c [])
            return (ty,tpUsed st)

---------------------------------------------

-- | Parse a 'CoreString' to a 'Type', using the current context.
parseTypeT :: CoreString -> TransformH a Type
parseTypeT = contextonlyT . parseType

-- | Parse a 'CoreString' to a 'Type', using the current context, returning unbound type variables.
parseTypeWithHolesT :: CoreString -> TransformH a (Type, [TyVar])
parseTypeWithHolesT = contextonlyT . parseTypeWithHoles

---------------------------------------------
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 


{-# LINE 13 "templates/GenericTemplate.hs" #-}





-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif

{-# LINE 46 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList






{-# LINE 67 "templates/GenericTemplate.hs" #-}


{-# LINE 77 "templates/GenericTemplate.hs" #-}










infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}
          

          case action of
                0#           -> {- nothing -}
                                     happyFail i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}
                                                   
                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}
                                     

                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = indexShortOffAddr happyActOffsets st
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st


indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)


{-# LINE 170 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = indexShortOffAddr happyGotoOffsets st1
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i



          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = indexShortOffAddr happyGotoOffsets st
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.