{-# LANGUAGE CPP, DeriveDataTypeable, TypeFamilies #-} module HERMIT.Dictionary.WorkerWrapper.Common ( externals , WWAssumptionTag(..) , WWAssumption(..) , assumptionAEqualityT , assumptionBEqualityT , assumptionCEqualityT , split1BetaR , split2BetaR , workLabel ) where import Control.Monad.IO.Class import Data.String (fromString) import Data.Typeable import HERMIT.Context import HERMIT.Core import HERMIT.External import HERMIT.GHC import HERMIT.Kure import HERMIT.Monad import HERMIT.ParserCore import HERMIT.Dictionary.Common import HERMIT.Dictionary.Function hiding (externals) import HERMIT.Dictionary.Reasoning hiding (externals) import HERMIT.Name -------------------------------------------------------------------------------------------------- -- | New Worker/Wrapper-related externals. externals :: [External] externals = map (.+ Proof) [ external "intro-ww-assumption-A" (\nm absC repC -> do eq <- parse2BeforeT assumptionAEqualityT absC repC insertLemmaR nm $ Lemma eq False False :: RewriteH Core) [ "Introduce a lemma for worker/wrapper assumption A" , "using given abs and rep functions." ] , external "intro-ww-assumption-B" (\nm absC repC bodyC -> do eq <- parse3BeforeT assumptionBEqualityT absC repC bodyC insertLemmaR nm $ Lemma eq False False :: RewriteH Core) [ "Introduce a lemma for worker/wrapper assumption B" , "using given abs, rep, and body functions." ] , external "intro-ww-assumption-C" (\nm absC repC bodyC -> do eq <- parse3BeforeT assumptionCEqualityT absC repC bodyC insertLemmaR nm $ Lemma eq False False :: RewriteH Core) [ "Introduce a lemma for worker/wrapper assumption C" , "using given abs, rep, and body functions." ] , external "split-1-beta" (\ nm absC -> promoteExprR . parse2BeforeT (split1BetaR nm) absC :: CoreString -> RewriteH Core) [ "split-1-beta " , "Perform worker/wrapper split with condition 1-beta." , "Given lemma name argument is used as prefix to two introduced lemmas." , " -assumption: unproven lemma for w/w assumption C." , " -fusion: assumed lemma for w/w fusion." ] , external "split-2-beta" (\ nm absC -> promoteExprR . parse2BeforeT (split2BetaR nm) absC :: CoreString -> RewriteH Core) [ "split-2-beta " , "Perform worker/wrapper split with condition 2-beta." , "Given lemma name argument is used as prefix to two introduced lemmas." , " -assumption: unproven lemma for w/w assumption C." , " -fusion: assumed lemma for w/w fusion." ] ] -------------------------------------------------------------------------------------------------- data WWAssumptionTag = A | B | C deriving (Eq,Ord,Show,Read,Typeable) instance Extern WWAssumptionTag where type Box WWAssumptionTag = WWAssumptionTag box i = i unbox i = i data WWAssumption = WWAssumption WWAssumptionTag (RewriteH CoreExpr) -------------------------------------------------------------------------------------------------- -- Note: The current approach to WW Fusion is a hack. -- I'm not sure what the best way to approach this is though. -- An alternative would be to have a generate command that adds ww-fusion to the dictionary, all preconditions verified in advance. -- That would have to exist at the Shell level though. -- This isn't entirely safe, as a malicious the user could define a label with this name. workLabel :: RememberedName workLabel = fromString "recursive-definition-of-work-for-use-by-ww-fusion" -------------------------------------------------------------------------------------------------- -- Given abs and rep expressions, build "abs . rep = id" assumptionAEqualityT :: ( BoundVars c, HasDynFlags m, HasHermitMEnv m, HasHscEnv m , MonadCatch m, MonadIO m, MonadThings m ) => CoreExpr -> CoreExpr -> Transform c m x Equality assumptionAEqualityT absE repE = prefixFailMsg "Building assumption A failed: " $ do comp <- buildCompositionT absE repE let (_,compBody) = collectTyBinders comp (tvs, xTy, _) <- splitFunTypeM (exprType comp) idE <- buildIdT xTy return $ Equality tvs compBody idE -- Given abs, rep, and f expressions, build "abs . rep . f = f" assumptionBEqualityT :: ( BoundVars c, HasDynFlags m, HasHermitMEnv m, HasHscEnv m , MonadCatch m, MonadIO m, MonadThings m) => CoreExpr -> CoreExpr -> CoreExpr -> Transform c m x Equality assumptionBEqualityT absE repE fE = prefixFailMsg "Building assumption B failed: " $ do repAfterF <- buildCompositionT repE fE comp <- buildCompositionT absE repAfterF let (tvs,lhs) = collectTyBinders comp rhs <- appArgM 5 lhs >>= appArgM 5 -- get f with proper tvs applied return $ Equality tvs lhs rhs -- Given abs, rep, and f expressions, build "fix (abs . rep . f) = fix f" assumptionCEqualityT :: (BoundVars c, HasDynFlags m, HasHermitMEnv m, HasHscEnv m, MonadCatch m, MonadIO m, MonadThings m) => CoreExpr -> CoreExpr -> CoreExpr -> Transform c m x Equality assumptionCEqualityT absE repE fE = prefixFailMsg "Building assumption C failed: " $ do Equality vs lhs rhs <- assumptionBEqualityT absE repE fE lhs' <- buildFixT lhs rhs' <- buildFixT rhs return $ Equality vs lhs' rhs' -- Given abs, rep, and 'fix g' expressions, build "rep (abs (fix g)) = fix g" wwFusionEqualityT :: (HasDynFlags m, MonadCatch m, MonadIO m) => CoreExpr -> CoreExpr -> CoreExpr -> Transform c m x Equality wwFusionEqualityT absE repE fixgE = prefixFailMsg "Building worker/wrapper fusion lemma failed: " $ do protoLhs <- buildApplicationM repE =<< buildApplicationM absE fixgE let (tvs, lhs) = collectTyBinders protoLhs -- This way, the rhs is applied to the proper type variables. rhs <- case lhs of (App _ (App _ rhs)) -> return rhs _ -> fail "lhs malformed" return $ Equality tvs lhs rhs -- Perform the worker/wrapper split using condition 1-beta, introducing -- an unproven lemma for assumption C, and an appropriate w/w fusion lemma. split1BetaR :: ( BoundVars c, HasDynFlags m, HasHermitMEnv m, HasHscEnv m, HasLemmas m , MonadCatch m, MonadIO m, MonadThings m, MonadUnique m ) => LemmaName -> CoreExpr -> CoreExpr -> Rewrite c m CoreExpr split1BetaR nm absE repE = do (_fixId, [_tyA, f]) <- callNameT $ fromString "Data.Function.fix" g <- buildCompositionT repE =<< buildCompositionT f absE gId <- constT $ newIdH "g" $ exprType g workRhs <- buildFixT $ varToCoreExpr gId workId <- constT $ newIdH "worker" $ exprType workRhs newRhs <- buildApplicationM absE (varToCoreExpr workId) assumptionEq <- assumptionCEqualityT absE repE f _ <- insertLemmaR (fromString (show nm ++ "-assumption")) $ Lemma assumptionEq False True -- unproven, used wwFusionEq <- wwFusionEqualityT absE repE workRhs _ <- insertLemmaR (fromString (show nm ++ "-fusion")) $ Lemma wwFusionEq True False -- proven (assumed), unused return $ mkCoreLets [NonRec gId g, NonRec workId workRhs] newRhs split2BetaR :: ( BoundVars c, HasDynFlags m, HasHermitMEnv m, HasHscEnv m, HasLemmas m , MonadCatch m, MonadIO m, MonadThings m, MonadUnique m ) => LemmaName -> CoreExpr -> CoreExpr -> Rewrite c m CoreExpr split2BetaR nm absE repE = do (_fixId, [_tyA, f]) <- callNameT $ fromString "Data.Function.fix" fixfE <- idR repFixFE <- buildApplicationM repE fixfE workId <- constT $ newIdH "worker" $ exprType repFixFE newRhs <- buildApplicationM absE (varToCoreExpr workId) assumptionEq <- assumptionCEqualityT absE repE f _ <- insertLemmaR (fromString (show nm ++ "-assumption")) $ Lemma assumptionEq False True -- unproven, used wwFusionEq <- wwFusionEqualityT absE repE (varToCoreExpr workId) _ <- insertLemmaR (fromString (show nm ++ "-fusion")) $ Lemma wwFusionEq True False -- proven (assumed), unused return $ mkCoreLets [NonRec workId repFixFE] newRhs