{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} {-# LANGUAGE TupleSections #-} module HERMIT.ParserCore ( parseCore , parseCoreExprT , parse2BeforeT , parse3BeforeT , parse2beforeBiR , parse3beforeBiR , parse4beforeBiR , parse5beforeBiR , Token(..) , parseError , lexer ) where import Control.Arrow import Control.Monad.Reader import Data.Char (isSpace, isDigit) import qualified Data.Map as M import HERMIT.Context import HERMIT.External import HERMIT.GHC import HERMIT.Kure import HERMIT.Monad import HERMIT.Name import HERMIT.Syntax (isCoreInfixIdChar, isCoreIdFirstChar, isCoreIdChar) import Language.KURE.MonadCatch (prefixFailMsg) import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) import Control.Monad (ap) -- parser produced by Happy Version 1.19.5 newtype HappyAbsSyn t4 t5 t6 t7 t8 t9 = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: t4 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t4 happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyIn5 :: t5 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t5 happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: t6 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t6 happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: t7 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t7 happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: t8 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t8 happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: t9 -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> t9 happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut9 #-} happyInTok :: (Token) -> (HappyAbsSyn t4 t5 t6 t7 t8 t9) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn t4 t5 t6 t7 t8 t9) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\xf8\xff\xf8\xff\xf8\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf5\xff\x00\x00\x00\x00\x00\x00\xf0\xff\xf6\xff\x00\x00\x00\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x0b\x00\x18\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\xfc\xff\xf8\xff\xf7\xff\xf9\xff\x00\x00\xf4\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\xfa\xff\xfd\xff\xfb\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x0c\x00\x0d\x00\x0d\x00\x0c\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x1c\x00\x22\x00\x1e\x00\x1c\x00\x20\x00\x1e\x00\xff\xff\x20\x00\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x02\x00\x03\x00\x04\x00\x05\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x08\x00\x0e\x00\x10\x00\x08\x00\x0c\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x09\x00\xff\xff\x0a\x00\x09\x00\x0b\x00\x0a\x00\x00\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x0e\x00\x04\x00\x05\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 11) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11) ] happy_n_terms = 35 :: Int happy_n_nonterms = 6 :: Int happyReduce_1 = happySpecReduce_1 0# happyReduction_1 happyReduction_1 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> happyIn4 (happy_var_1 )} happyReduce_2 = happySpecReduce_2 1# happyReduction_2 happyReduction_2 happy_x_2 happy_x_1 = case happyOut5 happy_x_1 of { happy_var_1 -> case happyOut6 happy_x_2 of { happy_var_2 -> happyIn5 (App happy_var_1 happy_var_2 )}} happyReduce_3 = happySpecReduce_1 1# happyReduction_3 happyReduction_3 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> happyIn5 (happy_var_1 )} happyReduce_4 = happySpecReduce_3 2# happyReduction_4 happyReduction_4 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn6 (happy_var_2 )} happyReduce_5 = happyMonadReduce 2# 2# happyReduction_5 happyReduction_5 (happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) tk = happyThen (( lookupName "()") ) (\r -> happyReturn (happyIn6 r)) happyReduce_6 = happySpecReduce_1 2# happyReduction_6 happyReduction_6 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> happyIn6 (happy_var_1 )} happyReduce_7 = happySpecReduce_1 2# happyReduction_7 happyReduction_7 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> happyIn6 (happy_var_1 )} happyReduce_8 = happySpecReduce_1 2# happyReduction_8 happyReduction_8 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn6 (happy_var_1 )} happyReduce_9 = happyMonadReduce 1# 3# happyReduction_9 happyReduction_9 (happy_x_1 `HappyStk` happyRest) tk = happyThen (case happyOutTok happy_x_1 of { (Tinteger happy_var_1) -> ( mkIntExpr' happy_var_1)} ) (\r -> happyReturn (happyIn7 r)) happyReduce_10 = happyMonadReduce 1# 4# happyReduction_10 happyReduction_10 (happy_x_1 `HappyStk` happyRest) tk = happyThen (case happyOutTok happy_x_1 of { (Tstring happy_var_1) -> ( lift $ mkStringExpr happy_var_1)} ) (\r -> happyReturn (happyIn8 r)) happyReduce_11 = happyMonadReduce 1# 5# happyReduction_11 happyReduction_11 (happy_x_1 `HappyStk` happyRest) tk = happyThen (case happyOutTok happy_x_1 of { (Tname happy_var_1) -> ( lookupName happy_var_1)} ) (\r -> happyReturn (happyIn9 r)) happyNewToken action sts stk [] = happyDoAction 34# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { Tforall -> cont 1#; Trec -> cont 2#; Tlet -> cont 3#; Tin -> cont 4#; Tcase -> cont 5#; Tof -> cont 6#; Tcast -> cont 7#; Tnote -> cont 8#; Texternal -> cont 9#; Tlocal -> cont 10#; Twild -> cont 11#; Toparen -> cont 12#; Tcparen -> cont 13#; Tobrace -> cont 14#; Tcbrace -> cont 15#; Thash -> cont 16#; Teq -> cont 17#; Tcolon -> cont 18#; Tcoloncolon -> cont 19#; Tcoloneqcolon -> cont 20#; Tstar -> cont 21#; Tarrow -> cont 22#; Tlambda -> cont 23#; Tat -> cont 24#; Tdot -> cont 25#; Tquestion -> cont 26#; Tsemicolon -> cont 27#; Tname happy_dollar_dollar -> cont 28#; Tcname happy_dollar_dollar -> cont 29#; Tinteger happy_dollar_dollar -> cont 30#; Trational happy_dollar_dollar -> cont 31#; Tstring happy_dollar_dollar -> cont 32#; Tchar happy_dollar_dollar -> cont 33#; _ -> happyError' (tk:tks) } happyError_ 34# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) happyThen :: () => CoreParseM a -> (a -> CoreParseM b) -> CoreParseM b happyThen = (>>=) happyReturn :: () => a -> CoreParseM a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> CoreParseM a happyReturn1 = \a tks -> (return) a happyError' :: () => [(Token)] -> CoreParseM a happyError' = parseError parser tks = happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq mkIntExpr' :: Integer -> CoreParseM CoreExpr mkIntExpr' i = do dflags <- lift getDynFlags return $ mkIntExpr dflags i lookupName :: String -> CoreParseM CoreExpr lookupName nm = do vset <- ask v <- lift $ prefixFailMsg (nm ++ " lookup: ") $ findId (parseName nm) vset return $ varToCoreExpr v type CoreParseM a = ReaderT VarSet HermitM a parseError :: Monad m => [Token] -> m a parseError ts = fail $ "core parse error: " ++ show ts data Token = Tforall | Trec | Tlet | Tin | Tcase | Tof | Tcast | Tnote | Texternal | Tlocal | Twild -- | Toparen -- | Tcparen -- | Tobrace | Tcbrace | Thash | Teq | Tcolon -- | Tcoloncolon -- | Tcoloneqcolon | Tstar | Tarrow | Tdoublearrow | Tlambda -- | Tat | Tdot | Tquestion | Tsemicolon | Tname String | Tcname String | Tinteger Integer | Trational Float | Tstring String | Tchar Char deriving (Eq, Show) lexer :: String -> Either String [Token] lexer [] = Right [] lexer ('_' :cs) = fmap (Twild:) $ lexer cs lexer ('(' :cs) = fmap (Toparen:) $ lexer cs lexer (')' :cs) = fmap (Tcparen:) $ lexer cs lexer (':':':':cs) = fmap (Tcoloncolon:) $ lexer cs -- lexer (':' :cs) = fmap (Tcolon:) $ lexer cs lexer ('\\':cs) = fmap (Tlambda:) $ lexer cs lexer ('-':'>':cs) = fmap (Tarrow:) $ lexer cs lexer ('=':'>':cs) = fmap (Tdoublearrow:) $ lexer cs lexer ('\"':cs) = let (str,rest) = span (/='\"') cs in case rest of ('\"':cs') -> fmap (Tstring str:) $ lexer cs' _ -> Left "lexer: no matching quote" lexer s@(c:cs) | isSpace c = lexer cs | isDigit c = let (i,s') = span isDigit s in fmap (Tinteger (read i):) $ lexer s' | isCoreIdFirstChar c = let (i,s') = span isCoreIdChar s in fmap (Tname i:) $ lexer s' | isCoreInfixIdChar c = let (op,s') = span isCoreInfixIdChar s in fmap (Tname op:) $ lexer s' lexer s = Left $ "lexer: no match on " ++ s --------------------------------------------- parseCore :: ReadBindings c => CoreString -> c -> HermitM CoreExpr parseCore (CoreString s) c = case lexer s of Left msg -> fail msg Right tokens -> -- Since we are comparing occurrence names, only take the -- most recently defined (deepest) when variables shadow each other. let comb v1@(_,d1) v2@(_,d2) = if d1 > d2 then v1 else v2 vars = mkVarSet . map fst . M.elems $ M.mapKeysWith comb getOccString $ M.mapWithKey (\k -> (k,) . hbDepth) $ hermitBindings c in runReaderT (parser tokens) vars --------------------------------------------- -- These should probably go somewhere else. -- | Parse a 'CoreString' to a 'CoreExpr', using the current context. parseCoreExprT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m) => CoreString -> Transform c m a CoreExpr parseCoreExprT cs = contextonlyT $ embedHermitM . parseCore cs parse2BeforeT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m) => (CoreExpr -> CoreExpr -> Translate c m a b) -> CoreString -> CoreString -> Translate c m a b parse2BeforeT f s1 s2 = parseCoreExprT s1 &&& parseCoreExprT s2 >>= uncurry f parse3BeforeT :: (ReadBindings c, HasHermitMEnv m, HasLemmas m, LiftCoreM m) => (CoreExpr -> CoreExpr -> CoreExpr -> Translate c m a b) -> CoreString -> CoreString -> CoreString -> Translate c m a b parse3BeforeT f s1 s2 s3 = (parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3 >>= (uncurry . uncurry $ f) parse2beforeBiR :: (CoreExpr -> CoreExpr -> BiRewriteH a) -> CoreString -> CoreString -> BiRewriteH a parse2beforeBiR f s1 s2 = beforeBiR (parseCoreExprT s1 &&& parseCoreExprT s2) (uncurry f) parse3beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a) -> CoreString -> CoreString -> CoreString -> BiRewriteH a parse3beforeBiR f s1 s2 s3 = beforeBiR ((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) ((uncurry.uncurry) f) parse4beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a) -> CoreString -> CoreString -> CoreString -> CoreString -> BiRewriteH a parse4beforeBiR f s1 s2 s3 s4 = beforeBiR (((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) &&& parseCoreExprT s4) ((uncurry.uncurry.uncurry) f) parse5beforeBiR :: (CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr -> BiRewriteH a) -> CoreString -> CoreString -> CoreString -> CoreString -> CoreString -> BiRewriteH a parse5beforeBiR f s1 s2 s3 s4 s5 = beforeBiR ((((parseCoreExprT s1 &&& parseCoreExprT s2) &&& parseCoreExprT s3) &&& parseCoreExprT s4) &&& parseCoreExprT s5) ((uncurry.uncurry.uncurry.uncurry) f) --------------------------------------------- {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 13 "templates/GenericTemplate.hs" #-} -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif {-# LINE 46 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 67 "templates/GenericTemplate.hs" #-} {-# LINE 77 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.