{-# LANGUAGE NoMonomorphismRestriction#-} {-| 'AccountName's are strings like @assets:cash:petty@. From a set of these we derive the account hierarchy. -} module Ledger.AccountName where import Ledger.Utils import Ledger.Types import Data.Map (Map) import qualified Data.Map as M -- change to use a different separator for nested accounts acctsepchar = ':' accountNameComponents :: AccountName -> [String] accountNameComponents = splitAtElement acctsepchar accountNameFromComponents :: [String] -> AccountName accountNameFromComponents = concat . intersperse [acctsepchar] accountLeafName :: AccountName -> String accountLeafName = last . accountNameComponents accountNameLevel :: AccountName -> Int accountNameLevel "" = 0 accountNameLevel a = length (filter (==acctsepchar) a) + 1 -- | ["a:b:c","d:e"] -> ["a","a:b","a:b:c","d","d:e"] expandAccountNames :: [AccountName] -> [AccountName] expandAccountNames as = nub $ concatMap expand as where expand = map accountNameFromComponents . tail . inits . accountNameComponents -- | ["a:b:c","d:e"] -> ["a","d"] topAccountNames :: [AccountName] -> [AccountName] topAccountNames as = [a | a <- expandAccountNames as, accountNameLevel a == 1] parentAccountName :: AccountName -> AccountName parentAccountName = accountNameFromComponents . init . accountNameComponents parentAccountNames :: AccountName -> [AccountName] parentAccountNames a = parentAccountNames' $ parentAccountName a where parentAccountNames' "" = [] parentAccountNames' a = a : parentAccountNames' (parentAccountName a) isAccountNamePrefixOf :: AccountName -> AccountName -> Bool isAccountNamePrefixOf = isPrefixOf . (++ [acctsepchar]) isSubAccountNameOf :: AccountName -> AccountName -> Bool s `isSubAccountNameOf` p = (p `isAccountNamePrefixOf` s) && (accountNameLevel s == (accountNameLevel p + 1)) -- | From a list of account names, select those which are direct -- subaccounts of the given account name. subAccountNamesFrom :: [AccountName] -> AccountName -> [AccountName] subAccountNamesFrom accts a = filter (`isSubAccountNameOf` a) accts -- | Convert a list of account names to a tree. accountNameTreeFrom :: [AccountName] -> Tree AccountName accountNameTreeFrom = accountNameTreeFrom1 accountNameTreeFrom1 accts = Node "top" (accounttreesfrom (topAccountNames accts)) where accounttreesfrom :: [AccountName] -> [Tree AccountName] accounttreesfrom [] = [] accounttreesfrom as = [Node a (accounttreesfrom $ subs a) | a <- as] subs = subAccountNamesFrom (expandAccountNames accts) accountNameTreeFrom2 accts = Node "top" $ unfoldForest (\a -> (a, subs a)) $ topAccountNames accts where subs = subAccountNamesFrom allaccts allaccts = expandAccountNames accts -- subs' a = subsmap ! a -- subsmap :: Map AccountName [AccountName] -- subsmap = Data.Map.fromList [(a, subAccountNamesFrom allaccts a) | a <- allaccts] accountNameTreeFrom3 accts = Node "top" $ forestfrom allaccts $ topAccountNames accts where -- drop accts from the list of potential subs as we add them to the tree forestfrom :: [AccountName] -> [AccountName] -> Forest AccountName forestfrom subaccts accts = [let subaccts' = subaccts \\ accts in Node a $ forestfrom subaccts' (subAccountNamesFrom subaccts' a) | a <- accts] allaccts = expandAccountNames accts -- a more efficient tree builder from Cale Gibbard newtype Tree' a = T (Map a (Tree' a)) deriving (Show, Eq, Ord) mergeTrees :: (Ord a) => Tree' a -> Tree' a -> Tree' a mergeTrees (T m) (T m') = T (M.unionWith mergeTrees m m') emptyTree = T M.empty pathtree :: [a] -> Tree' a pathtree [] = T M.empty pathtree (x:xs) = T (M.singleton x (pathtree xs)) fromPaths :: (Ord a) => [[a]] -> Tree' a fromPaths = foldl' mergeTrees emptyTree . map pathtree -- the above, but trying to build Tree directly -- mergeTrees' :: (Ord a) => Tree a -> Tree a -> Tree a -- mergeTrees' (Node m ms) (Node m' ms') = Node undefined (ms `union` ms') -- emptyTree' = Node "top" [] -- pathtree' :: [a] -> Tree a -- pathtree' [] = Node undefined [] -- pathtree' (x:xs) = Node x [pathtree' xs] -- fromPaths' :: (Ord a) => [[a]] -> Tree a -- fromPaths' = foldl' mergeTrees' emptyTree' . map pathtree' -- converttree :: [AccountName] -> Tree' AccountName -> [Tree AccountName] -- converttree parents (T m) = [Node (accountNameFromComponents $ parents ++ [a]) (converttree (parents++[a]) b) | (a,b) <- M.toList m] -- accountNameTreeFrom4 :: [AccountName] -> Tree AccountName -- accountNameTreeFrom4 accts = Node "top" (converttree [] $ fromPaths $ map accountNameComponents accts) converttree :: Tree' AccountName -> [Tree AccountName] converttree (T m) = [Node a (converttree b) | (a,b) <- M.toList m] expandTreeNames :: Tree AccountName -> Tree AccountName expandTreeNames (Node x ts) = Node x (map (treemap (\n -> accountNameFromComponents [x,n]) . expandTreeNames) ts) accountNameTreeFrom4 :: [AccountName] -> Tree AccountName accountNameTreeFrom4 = Node "top" . map expandTreeNames . converttree . fromPaths . map accountNameComponents -- | Elide an account name to fit in the specified width. -- From the ledger 2.6 news: -- -- @ -- What Ledger now does is that if an account name is too long, it will -- start abbreviating the first parts of the account name down to two -- letters in length. If this results in a string that is still too -- long, the front will be elided -- not the end. For example: -- -- Expenses:Cash ; OK, not too long -- Ex:Wednesday:Cash ; "Expenses" was abbreviated to fit -- Ex:We:Afternoon:Cash ; "Expenses" and "Wednesday" abbreviated -- ; Expenses:Wednesday:Afternoon:Lunch:Snack:Candy:Chocolate:Cash -- ..:Af:Lu:Sn:Ca:Ch:Cash ; Abbreviated and elided! -- @ elideAccountName :: Int -> AccountName -> AccountName elideAccountName width s = elideLeft width $ accountNameFromComponents $ elideparts width [] $ accountNameComponents s where elideparts :: Int -> [String] -> [String] -> [String] elideparts width done ss | length (accountNameFromComponents $ done++ss) <= width = done++ss | length ss > 1 = elideparts width (done++[take 2 $ head ss]) (tail ss) | otherwise = done++ss