{-# LANGUAGE ScopedTypeVariables #-} {- Suggest removal of unnecessary extensions i.e. They have {-# LANGUAGE RecursiveDo #-} but no mdo keywords {-# LANGUAGE Arrows #-} \ f = id -- {-# LANGUAGE RebindableSyntax #-} \ f = id {-# LANGUAGE RebindableSyntax, ParallelListComp, ImplicitParams #-} \ f = [(a,c) | a <- b | c <- d] -- {-# LANGUAGE RebindableSyntax, ParallelListComp #-} {-# LANGUAGE EmptyDataDecls #-} \ data Foo {-# LANGUAGE TemplateHaskell #-} \ $(deriveNewtypes typeInfo) {-# LANGUAGE TemplateHaskell #-} \ main = foo ''Bar {-# LANGUAGE PatternGuards #-} \ test = case x of _ | y <- z -> w {-# LANGUAGE TemplateHaskell,EmptyDataDecls #-} \ $(fmap return $ dataD (return []) (mkName "Void") [] [] []) {-# LANGUAGE RecursiveDo #-} \ main = mdo x <- y; return y {-# LANGUAGE RecursiveDo #-} \ main = do {rec {x <- return 1}; print x} {-# LANGUAGE ImplicitParams, BangPatterns #-} \ sort :: (?cmp :: a -> a -> Bool) => [a] -> [a] \ sort !f = undefined {-# LANGUAGE KindSignatures #-} \ data Set (cxt :: * -> *) a = Set [a] {-# LANGUAGE RecordWildCards #-} \ record field = Record{..} {-# LANGUAGE RecordWildCards #-} \ record = 1 -- @Note may require `{-# LANGUAGE DisambiguateRecordFields #-}` adding to the top of the file {-# LANGUAGE RecordWildCards #-} \ {-# LANGUAGE DisambiguateRecordFields #-} \ record = 1 -- @NoNote {-# LANGUAGE UnboxedTuples #-} \ record = 1 -- {-# LANGUAGE TemplateHaskell #-} \ foo {-# LANGUAGE GeneralizedNewtypeDeriving, DeriveDataTypeable #-} \ record = 1 -- {-# LANGUAGE GeneralizedNewtypeDeriving, DeriveDataTypeable #-} \ newtype Foo = Foo Int deriving Data -- {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GeneralizedNewtypeDeriving, DeriveDataTypeable #-} \ data Foo = Foo Int deriving Data -- {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GeneralizedNewtypeDeriving, DeriveDataTypeable #-} \ newtype Foo = Foo Int deriving Class -- {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE GeneralizedNewtypeDeriving, DeriveDataTypeable #-} \ data Foo = Foo Int deriving Class -- {-# LANGUAGE DeriveFunctor #-} \ data Foo = Foo Int deriving Functor {-# LANGUAGE DeriveFunctor #-} \ newtype Foo = Foo Int deriving Functor {-# LANGUAGE GeneralizedNewtypeDeriving #-} \ newtype Foo = Foo Int deriving Functor {-# LANGUAGE GeneralizedNewtypeDeriving #-} \ newtype Foo = Foo Int deriving Data -- {-# LANGUAGE DeriveFunctor, GeneralizedNewtypeDeriving, StandaloneDeriving #-} \ deriving instance Functor Bar {-# LANGUAGE DeriveFunctor, GeneralizedNewtypeDeriving, StandaloneDeriving #-} \ deriving instance Show Bar -- {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE DeriveGeneric, GeneralizedNewtypeDeriving #-} \ newtype Micro = Micro Int deriving Generic -- {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} \ instance Class Int where {newtype MyIO a = MyIO a deriving NewClass} {-# LANGUAGE UnboxedTuples #-} \ f :: Int -> (# Int, Int #) {-# LANGUAGE UnboxedTuples #-} \ f :: x -> (x, x); f x = (x, x) -- {-# LANGUAGE DefaultSignatures #-} \ class Val a where; val :: a -- {-# LANGUAGE DefaultSignatures #-} \ class Val a where; val :: a; default val :: Int {-# LANGUAGE TypeApplications #-} \ foo = id -- {-# LANGUAGE TypeApplications #-} \ foo = id @Int {-# LANGUAGE LambdaCase #-} \ foo = id -- {-# LANGUAGE LambdaCase #-} \ foo = \case () -> () {-# LANGUAGE NumDecimals #-} \ foo = 12.3e2 {-# LANGUAGE NumDecimals #-} \ foo = id -- {-# LANGUAGE NumDecimals #-} \ foo = 12.345e2 -- {-# LANGUAGE TupleSections #-} \ main = map (,1,2) xs {-# LANGUAGE TupleSections #-} \ main = id -- {-# LANGUAGE OverloadedStrings #-} \ main = "test" {-# LANGUAGE OverloadedStrings #-} \ main = id -- {-# LANGUAGE DeriveAnyClass #-} \ main = id -- {-# LANGUAGE DeriveAnyClass #-} \ data Foo = Foo deriving Bob {-# LANGUAGE DeriveAnyClass #-} \ data Foo a = Foo a deriving (Eq,Data,Functor) -- {-# LANGUAGE MagicHash #-} \ foo# = id {-# LANGUAGE MagicHash #-} \ main = "foo"# {-# LANGUAGE MagicHash #-} \ main = 5# {-# LANGUAGE MagicHash #-} \ main = 'a'# {-# LANGUAGE MagicHash #-} \ main = 5.6# {-# LANGUAGE MagicHash #-} \ foo = id -- {-# LANGUAGE GeneralizedNewtypeDeriving #-} \ newtype X = X Int deriving newtype Show {-# LANGUAGE EmptyCase #-} \ main = case () of {} {-# LANGUAGE EmptyCase #-} \ main = case () of x -> x -- {-# LANGUAGE EmptyCase #-} \ main = case () of x -> x -- {-# LANGUAGE PolyKinds, KindSignatures #-} -- {-# LANGUAGE PolyKinds #-} {-# LANGUAGE PolyKinds, KindSignatures #-} \ data Set (cxt :: * -> *) a = Set [a] -- @Note Extension KindSignatures is implied by PolyKinds {-# LANGUAGE QuasiQuotes, OverloadedStrings #-} \ main = putStrLn [f|{T.intercalate "blah" []}|] -} module Hint.Extensions(extensionsHint) where import Hint.Type import Control.Monad.Extra import Data.Maybe import Data.List.Extra import Data.Ratio import Data.Data import Refact.Types import Data.Semigroup import qualified Data.Set as Set import qualified Data.Map as Map import Prelude extensionsHint :: ModuHint extensionsHint _ x = [ rawIdea Warning "Unused LANGUAGE pragma" (srcInfoSpan sl) (prettyPrint o) (Just newPragma) ( [RequiresExtension $ prettyExtension gone | x <- before \\ after, gone <- Map.findWithDefault [] x disappear] ++ [ Note $ "Extension " ++ prettyExtension x ++ " is " ++ reason x | x <- explainedRemovals]) [ModifyComment (toSS o) newPragma] | o@(LanguagePragma sl exts) <- modulePragmas x , let before = map (parseExtension . prettyPrint) exts , let after = filter (`Set.member` keep) before , before /= after , let explainedRemovals | null after && not (any (`Map.member` implied) before) = [] | otherwise = before \\ after , let newPragma = if null after then "" else prettyPrint $ LanguagePragma sl $ map (toNamed . prettyExtension) after ] where usedTH = used TemplateHaskell x || used QuasiQuotes x -- if TH or QuasiQuotes is on, can use all other extensions programmatically -- all the extensions defined to be used extensions = Set.fromList [parseExtension $ fromNamed e | LanguagePragma _ exts <- modulePragmas x, e <- exts] -- those extensions we detect to be useful useful = if usedTH then extensions else Set.filter (`usedExt` x) extensions -- those extensions which are useful, but implied by other useful extensions implied = Map.fromList [ (e, a) | e <- Set.toList useful , a:_ <- [filter (`Set.member` useful) $ extensionImpliedBy e]] -- those we should keep keep = useful `Set.difference` Map.keysSet implied -- (a,b) means a used to imply b, but has gone, so suggest enabling b disappear = Map.fromListWith (++) $ nubOrdOn snd -- only keep one instance for each of a [ (e, [a]) | e <- Set.toList $ extensions `Set.difference` keep , a <- extensionImplies e , a `Set.notMember` useful , usedTH || usedExt a x ] reason x = case Map.lookup x implied of Just a -> "implied by " ++ prettyExtension a Nothing -> "not used" deriveHaskell = ["Eq","Ord","Enum","Ix","Bounded","Read","Show"] deriveGenerics = ["Data","Typeable","Generic","Generic1","Lift"] deriveCategory = ["Functor","Foldable","Traversable"] -- | Classes that can't require newtype deriving noDeriveNewtype = delete "Enum" deriveHaskell ++ -- Enum can't always be derived on a newtype deriveGenerics -- Generics stuff can't newtype derive since it has the ctor in it -- | Classes that can appear as stock, and can't appear as anyclass deriveStock = deriveHaskell ++ deriveGenerics ++ deriveCategory usedExt :: Extension -> Module_ -> Bool usedExt (EnableExtension x) = used x usedExt (UnknownExtension "NumDecimals") = hasS isWholeFrac usedExt (UnknownExtension "DeriveLift") = hasDerive ["Lift"] usedExt (UnknownExtension "DeriveAnyClass") = not . null . derivesAnyclass . derives usedExt _ = const True used :: KnownExtension -> Module_ -> Bool used RecursiveDo = hasS isMDo ||^ hasS isRecStmt used ParallelListComp = hasS isParComp used FunctionalDependencies = hasT (un :: FunDep S) used ImplicitParams = hasT (un :: IPName S) used TypeApplications = hasS isTypeApp used EmptyDataDecls = hasS f where f (DataDecl _ _ _ _ [] _) = True f (GDataDecl _ _ _ _ _ [] _) = True f _ = False used EmptyCase = hasS f where f (Case _ _ []) = True f (LCase _ []) = True f (_ :: Exp_) = False used KindSignatures = hasT (un :: Kind S) used BangPatterns = hasS isPBangPat used TemplateHaskell = hasT2 (un :: (Bracket S, Splice S)) ||^ hasS f ||^ hasS isSpliceDecl where f VarQuote{} = True f TypQuote{} = True f _ = False used ForeignFunctionInterface = hasT (un :: CallConv S) used PatternGuards = hasS f where f (GuardedRhs _ xs _) = g xs g [] = False g [Qualifier{}] = False g _ = True used StandaloneDeriving = hasS isDerivDecl used PatternSignatures = hasS isPatTypeSig used RecordWildCards = hasS isPFieldWildcard ||^ hasS isFieldWildcard used RecordPuns = hasS isPFieldPun ||^ hasS isFieldPun used NamedFieldPuns = hasS isPFieldPun ||^ hasS isFieldPun used UnboxedTuples = has (not . isBoxed) used PackageImports = hasS (isJust . importPkg) used QuasiQuotes = hasS isQuasiQuote ||^ hasS isTyQuasiQuote used ViewPatterns = hasS isPViewPat used DefaultSignatures = hasS isClsDefSig used DeriveDataTypeable = hasDerive ["Data","Typeable"] used DeriveFunctor = hasDerive ["Functor"] used DeriveFoldable = hasDerive ["Foldable"] used DeriveTraversable = hasDerive ["Traversable","Foldable","Functor"] used DeriveGeneric = hasDerive ["Generic","Generic1"] used GeneralizedNewtypeDeriving = not . null . derivesNewtype . derives used LambdaCase = hasS isLCase used TupleSections = hasS isTupleSection used OverloadedStrings = hasS isString used Arrows = hasS f where f Proc{} = True f LeftArrApp{} = True f RightArrApp{} = True f LeftArrHighApp{} = True f RightArrHighApp{} = True f _ = False used TransformListComp = hasS f where f QualStmt{} = False f _ = True used MagicHash = hasS f ||^ hasS isPrimLiteral where f (Ident _ s) = "#" `isSuffixOf` s f _ = False -- for forwards compatibility, if things ever get added to the extension enumeration used x = usedExt $ UnknownExtension $ show x hasDerive :: [String] -> Module_ -> Bool hasDerive want = any (`elem` want) . derivesStock . derives -- Derivations can be implemented using any one of 3 strategies, so for each derivation -- add it to all the strategies that might plausibly implement it data Derives = Derives {derivesStock :: [String] ,derivesAnyclass :: [String] ,derivesNewtype :: [String] } instance Semigroup Derives where Derives x1 x2 x3 <> Derives y1 y2 y3 = Derives (x1++y1) (x2++y2) (x3++y3) instance Monoid Derives where mempty = Derives [] [] [] mappend = (<>) addDerives :: Maybe (DataOrNew S) -> Maybe (DerivStrategy S) -> [String] -> Derives addDerives _ (Just s) xs = case s of DerivStock{} -> mempty{derivesStock = xs} DerivAnyclass{} -> mempty{derivesAnyclass = xs} DerivNewtype{} -> mempty{derivesNewtype = xs} DerivVia{} -> mempty addDerives nt _ xs = mempty {derivesStock = stock ,derivesAnyclass = other ,derivesNewtype = if maybe True isNewType nt then filter (`notElem` noDeriveNewtype) xs else []} where (stock, other) = partition (`elem` deriveStock) xs -- | What is derived on newtype, and on data type -- 'deriving' declarations may be on either, so we approximate as both newtype and data derives :: Module_ -> Derives derives m = mconcat $ map decl (childrenBi m) ++ map idecl (childrenBi m) where idecl :: InstDecl S -> Derives idecl (InsData _ dn _ _ ds) = g dn ds idecl (InsGData _ dn _ _ _ ds) = g dn ds idecl _ = mempty decl :: Decl_ -> Derives decl (DataDecl _ dn _ _ _ ds) = g dn ds decl (GDataDecl _ dn _ _ _ _ ds) = g dn ds decl (DataInsDecl _ dn _ _ ds) = g dn ds decl (GDataInsDecl _ dn _ _ _ ds) = g dn ds decl (DerivDecl _ strategy _ hd) = addDerives Nothing strategy [ir hd] decl _ = mempty g dn ds = mconcat [addDerives (Just dn) strategy $ map ir rules | Deriving _ strategy rules <- ds] ir (IRule _ _ _ x) = ih x ir (IParen _ x) = ir x ih (IHCon _ a) = prettyPrint $ unqual a ih (IHInfix _ _ a) = prettyPrint $ unqual a ih (IHParen _ a) = ih a ih (IHApp _ a _) = ih a un = undefined hasT t x = not $ null (universeBi x `asTypeOf` [t]) hasT2 ~(t1,t2) = hasT t1 ||^ hasT t2 hasS :: (Data x, Data (f S)) => (f S -> Bool) -> x -> Bool hasS test = any test . universeBi has f = any f . universeBi -- Only whole number fractions are permitted by NumDecimals extension. -- Anything not-whole raises an error. isWholeFrac :: Literal S -> Bool isWholeFrac (Frac _ v _) = denominator v == 1 isWholeFrac _ = False