{- | Module : Numeric.GSL.ODE Copyright : (c) Alberto Ruiz 2010 License : GPL Maintainer : Alberto Ruiz (aruiz at um dot es) Stability : provisional Portability : uses ffi Solution of ordinary differential equation (ODE) initial value problems. A simple example: @import Numeric.GSL import Numeric.LinearAlgebra import Graphics.Plot xdot t [x,v] = [v, -0.95*x - 0.1*v] ts = linspace 100 (0,20) sol = odeSolve xdot [10,0] ts main = mplot (ts : toColumns sol)@ -} ----------------------------------------------------------------------------- module Numeric.GSL.ODE ( odeSolve, odeSolveV, ODEMethod(..) ) where import Data.Packed.Internal import Foreign import Foreign.C.Types(CInt) import Numeric.GSL.Internal ------------------------------------------------------------------------- -- | Stepping functions data ODEMethod = RK2 -- ^ Embedded Runge-Kutta (2, 3) method. | RK4 -- ^ 4th order (classical) Runge-Kutta. The error estimate is obtained by halving the step-size. For more efficient estimate of the error, use 'RKf45'. | RKf45 -- ^ Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator. | RKck -- ^ Embedded Runge-Kutta Cash-Karp (4, 5) method. | RK8pd -- ^ Embedded Runge-Kutta Prince-Dormand (8,9) method. | RK2imp -- ^ Implicit 2nd order Runge-Kutta at Gaussian points. | RK4imp -- ^ Implicit 4th order Runge-Kutta at Gaussian points. | BSimp -- ^ Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian. | Gear1 -- ^ M=1 implicit Gear method. | Gear2 -- ^ M=2 implicit Gear method. deriving (Enum,Eq,Show,Bounded) -- | A version of 'odeSolveV' with reasonable default parameters and system of equations defined using lists. odeSolve :: (Double -> [Double] -> [Double]) -- ^ xdot(t,x) -> [Double] -- ^ initial conditions -> Vector Double -- ^ desired solution times -> Matrix Double -- ^ solution odeSolve xdot xi ts = odeSolveV RKf45 hi epsAbs epsRel (l2v xdot) Nothing (fromList xi) ts where hi = (ts@>1 - ts@>0)/100 epsAbs = 1.49012e-08 epsRel = 1.49012e-08 l2v f = \t -> fromList . f t . toList -- | Evolution of the system with adaptive step-size control. odeSolveV :: ODEMethod -> Double -- ^ initial step size -> Double -- ^ absolute tolerance for the state vector -> Double -- ^ relative tolerance for the state vector -> (Double -> Vector Double -> Vector Double) -- ^ xdot(t,x) -> Maybe (Double -> Vector Double -> Matrix Double) -- ^ optional jacobian -> Vector Double -- ^ initial conditions -> Vector Double -- ^ desired solution times -> Matrix Double -- ^ solution odeSolveV method h epsAbs epsRel f mbjac xiv ts = unsafePerformIO $ do let n = dim xiv fp <- mkDoubleVecVecfun (\t -> aux_vTov (checkdim1 n . f t)) jp <- case mbjac of Just jac -> mkDoubleVecMatfun (\t -> aux_vTom (checkdim2 n . jac t)) Nothing -> return nullFunPtr sol <- vec xiv $ \xiv' -> vec (checkTimes ts) $ \ts' -> createMIO (dim ts) n (ode_c (fi (fromEnum method)) h epsAbs epsRel fp jp // xiv' // ts' ) "ode" freeHaskellFunPtr fp return sol foreign import ccall "ode" ode_c :: CInt -> Double -> Double -> Double -> FunPtr (Double -> TVV) -> FunPtr (Double -> TVM) -> TVVM ------------------------------------------------------- checkdim1 n v | dim v == n = v | otherwise = error $ "Error: "++ show n ++ " components expected in the result of the function supplied to odeSolve" checkdim2 n m | rows m == n && cols m == n = m | otherwise = error $ "Error: "++ show n ++ "x" ++ show n ++ " Jacobian expected in odeSolve" checkTimes ts | dim ts > 1 && all (>0) (zipWith subtract ts' (tail ts')) = ts | otherwise = error "odeSolve requires increasing times" where ts' = toList ts