{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {- | Counterparts to functions in "Math.HiddenMarkovModel.Private" that normalize interim results. We need to do this in order to prevent to round very small probabilities to zero. -} module Math.HiddenMarkovModel.Normalized where import qualified Math.HiddenMarkovModel.Distribution as Distr import Math.HiddenMarkovModel.Private (T(..), Trained(..), emission, biscaleTransition, matrixMaxMul, sumTransitions) import Math.HiddenMarkovModel.Distribution (State(State)) import Math.HiddenMarkovModel.Utility (normalizeFactor, normalizeProb) import qualified Numeric.Container as NC import qualified Data.Packed.Development as Dev import qualified Data.Packed.Vector as Vector import Numeric.Container ((<>)) import Data.Packed.Matrix (Matrix) import Data.Packed.Vector (Vector) import qualified Control.Functor.HT as Functor import qualified Data.NonEmpty.Class as NonEmptyC import qualified Data.NonEmpty as NonEmpty import qualified Data.Foldable as Fold import qualified Data.List as List import Data.Traversable (Traversable, mapAccumL) import Data.Tuple.HT (mapFst, mapSnd, swap) {- | Logarithm of the likelihood to observe the given sequence. We return the logarithm because the likelihood can be so small that it may be rounded to zero in the choosen number type. -} logLikelihood :: (Distr.EmissionProb distr, Floating prob, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f) => T distr prob -> NonEmpty.T f emission -> prob logLikelihood hmm = Fold.sum . fmap (log . fst) . alpha hmm alpha :: (Distr.EmissionProb distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f) => T distr prob -> NonEmpty.T f emission -> NonEmpty.T f (prob, Vector prob) alpha hmm (NonEmpty.Cons x xs) = let normMulEmiss y = normalizeFactor . NC.mul (emission hmm y) in NonEmpty.scanl (\(_,alphai) xi -> normMulEmiss xi (transition hmm <> alphai)) (normMulEmiss x (initial hmm)) xs beta :: (Distr.EmissionProb distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f, NonEmptyC.Reverse f) => T distr prob -> f (prob, emission) -> NonEmpty.T f (Vector prob) beta hmm = nonEmptyScanr (\(ci,xi) betai -> NC.scale (recip ci) $ NC.mul (emission hmm xi) betai <> transition hmm) (NC.constant 1 (NC.dim $ initial hmm)) alphaBeta :: (Distr.EmissionProb distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f, NonEmptyC.Zip f, NonEmptyC.Reverse f) => T distr prob -> NonEmpty.T f emission -> (NonEmpty.T f (prob, Vector prob), NonEmpty.T f (Vector prob)) alphaBeta hmm xs = let calphas = alpha hmm xs in (calphas, beta hmm $ NonEmpty.tail $ NonEmptyC.zip (fmap fst calphas) xs) xiFromAlphaBeta :: (Distr.EmissionProb distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f, NonEmptyC.Zip f) => T distr prob -> NonEmpty.T f emission -> NonEmpty.T f (prob, Vector prob) -> NonEmpty.T f (Vector prob) -> f (Matrix prob) xiFromAlphaBeta hmm xs calphas betas = let (cs,alphas) = Functor.unzip calphas in NonEmptyC.zipWith4 (\x alpha0 c1 beta1 -> NC.scale (recip c1) $ biscaleTransition hmm x alpha0 beta1) (NonEmpty.tail xs) (NonEmpty.init alphas) (NonEmpty.tail cs) (NonEmpty.tail betas) zetaFromAlphaBeta :: (NC.Container Vector prob, NonEmptyC.Zip f) => NonEmpty.T f (prob, Vector prob) -> NonEmpty.T f (Vector prob) -> NonEmpty.T f (Vector prob) zetaFromAlphaBeta calphas betas = NonEmptyC.zipWith (NC.mul . snd) calphas betas {- | Reveal the state sequence that led most likely to the observed sequence of emissions. It is found using the Viterbi algorithm. -} reveal :: (Distr.EmissionProb distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission, Traversable f, NonEmptyC.Reverse f) => T distr prob -> NonEmpty.T f emission -> NonEmpty.T f State reveal hmm (NonEmpty.Cons x xs) = fmap State $ uncurry (nonEmptyScanr Dev.at') $ mapFst NC.maxIndex $ mapAccumL (\alphai xi -> swap $ mapSnd (NC.mul (emission hmm xi)) $ matrixMaxMul (transition hmm) $ normalizeProb alphai) (NC.mul (emission hmm x) (initial hmm)) xs {- | Variant of NonEmpty.scanr with less stack consumption. -} nonEmptyScanr :: (Traversable f, NonEmptyC.Reverse f) => (a -> b -> b) -> b -> f a -> NonEmpty.T f b nonEmptyScanr f x = NonEmptyC.reverse . NonEmpty.scanl (flip f) x . NonEmptyC.reverse {- | Consider a superposition of all possible state sequences weighted by the likelihood to produce the observed emission sequence. Now train the model with respect to all of these sequences with respect to the weights. This is done by the Baum-Welch algorithm. -} trainUnsupervised :: (Distr.Estimate tdistr distr, Distr.Probability distr ~ prob, Distr.Emission distr ~ emission) => T distr prob -> NonEmpty.T [] emission -> Trained tdistr prob trainUnsupervised hmm xs = let (alphas, betas) = alphaBeta hmm xs zetas = zetaFromAlphaBeta alphas betas in Trained { trainedInitial = NonEmpty.head zetas, trainedTransition = sumTransitions hmm $ xiFromAlphaBeta hmm xs alphas betas, trainedDistribution = Distr.accumulateEmissions $ map (zip (NonEmpty.flatten xs)) $ List.transpose $ map Vector.toList $ NonEmpty.flatten zetas }