-- | Graph (fgl) functions. module Music.Theory.Graph.FGL where import Data.List {- base -} import Data.Maybe {- base -} import qualified Data.Map as M {- containers -} import qualified Data.Graph.Inductive.Graph as G {- fgl -} import qualified Data.Graph.Inductive.Query as G {- fgl -} import qualified Data.Graph.Inductive.PatriciaTree as G {- fgl -} import qualified Control.Monad.Logic as L {- logict -} import qualified Music.Theory.List as T {- hmt -} -- | Synonym for 'G.noNodes'. g_degree :: G.Gr v e -> Int g_degree = G.noNodes -- | 'G.subgraph' of each of 'G.components'. g_partition :: G.Gr v e -> [G.Gr v e] g_partition gr = map (\n -> G.subgraph n gr) (G.components gr) -- | Find first 'G.Node' with given label. g_node_lookup :: (Eq v,G.Graph gr) => gr v e -> v -> Maybe G.Node g_node_lookup gr l = fmap fst (find ((== l) . snd) (G.labNodes gr)) -- | Erroring variant. g_node_lookup_err :: (Eq v,G.Graph gr) => gr v e -> v -> G.Node g_node_lookup_err gr = fromMaybe (error "g_node_lookup") . g_node_lookup gr -- | Set of nodes with given labels, plus all neighbours of these nodes. -- (impl = implications) ug_node_set_impl :: (Eq v,G.DynGraph gr) => gr v e -> [v] -> [G.Node] ug_node_set_impl gr nl = let n = map (g_node_lookup_err gr) nl in nub (sort (n ++ concatMap (G.neighbors gr) n)) -- * Hamiltonian type G_NODE_SEL_F v e = G.Gr v e -> G.Node -> [G.Node] -- | 'L.msum' '.' 'map' 'return'. ml_from_list :: L.MonadLogic m => [t] -> m t ml_from_list = L.msum . map return -- | Use /sel_f/ of 'G.pre' for directed graphs and 'G.neighbors' for undirected. g_hamiltonian_path_ml :: L.MonadLogic m => G_NODE_SEL_F v e -> G.Gr v e -> G.Node -> m [G.Node] g_hamiltonian_path_ml sel_f gr = let n_deg = g_degree gr recur r c = if length r == n_deg - 1 then return (c:r) else do i <- ml_from_list (sel_f gr c) L.guard (i `notElem` r) recur (c:r) i in recur [] -- > map (L.observeAll . ug_hamiltonian_path_ml_0) (g_partition gr) ug_hamiltonian_path_ml_0 :: L.MonadLogic m => G.Gr v e -> m [G.Node] ug_hamiltonian_path_ml_0 gr = g_hamiltonian_path_ml G.neighbors gr (G.nodes gr !! 0) -- * G (from edges) -- | Edge, no label. type EDGE v = (v,v) -- | Graph as set of edges. type GRAPH v = [EDGE v] -- | Edge, with label. type EDGE_L v l = (EDGE v,l) -- | Graph as set of labeled edges. type GRAPH_L v l = [EDGE_L v l] -- | Generate a graph given a set of labelled edges. g_from_edges_l :: (Eq v,Ord v) => GRAPH_L v e -> G.Gr v e g_from_edges_l e = let n = nub (concatMap (\((lhs,rhs),_) -> [lhs,rhs]) e) n_deg = length n n_id = [0 .. n_deg - 1] m = M.fromList (zip n n_id) m_get k = M.findWithDefault (error "g_from_edges: m_get") k m e' = map (\((lhs,rhs),label) -> (m_get lhs,m_get rhs,label)) e in G.mkGraph (zip n_id n) e' -- | Variant that supplies '()' as the (constant) edge label. -- -- > let g = G.mkGraph [(0,'a'),(1,'b'),(2,'c')] [(0,1,()),(1,2,())] -- > in g_from_edges_ul [('a','b'),('b','c')] == g g_from_edges :: Ord v => GRAPH v -> G.Gr v () g_from_edges = let f e = (e,()) in g_from_edges_l . map f -- * Edges -- | Label sequence of edges starting at one. e_label_seq :: [EDGE v] -> [EDGE_L v Int] e_label_seq = map (\(k,e) -> (e,k)) . zip [1..] -- | Normalised undirected labeled edge (ie. order nodes). e_normalise_l :: Ord v => EDGE_L v l -> EDGE_L v l e_normalise_l ((p,q),r) = ((min p q,max p q),r) -- | Collate labels for edges that are otherwise equal. e_collate_l :: Ord v => [EDGE_L v l] -> [EDGE_L v [l]] e_collate_l = T.collate -- | 'e_collate_l' of 'e_normalise_l'. e_collate_normalised_l :: Ord v => [EDGE_L v l] -> [EDGE_L v [l]] e_collate_normalised_l = e_collate_l . map e_normalise_l -- | Apply predicate to universe of possible edges. e_univ_select_edges :: (t -> t -> Bool) -> [t] -> [EDGE t] e_univ_select_edges f l = [(p,q) | p <- l, q <- l, f p q] -- | Consider only edges (p,q) where p < q. e_univ_select_u_edges :: Ord t => (t -> t -> Bool) -> [t] -> [EDGE t] e_univ_select_u_edges f = let g p q = p < q && f p q in e_univ_select_edges g -- | Sequence of connected vertices to edges. -- -- > e_path_to_edges "abcd" == [('a','b'),('b','c'),('c','d')] e_path_to_edges :: [t] -> [EDGE t] e_path_to_edges = T.adj2 1 -- | Undirected edge equality. e_undirected_eq :: Eq t => EDGE t -> EDGE t -> Bool e_undirected_eq (a,b) (c,d) = (a == c && b == d) || (a == d && b == c) elem_by :: (p -> q -> Bool) -> p -> [q] -> Bool elem_by f = any . f -- | Is the sequence of vertices a path at the graph, ie. are all -- adjacencies in the sequence edges. e_is_path :: Eq t => GRAPH t -> [t] -> Bool e_is_path e sq = case sq of p:q:sq' -> elem_by e_undirected_eq (p,q) e && e_is_path e (q:sq') _ -> True