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Abstract

Dataflow analysis and transformation of control-flow graphs is per-

vasive in optimizing compilers, but it is typically tightly interwo-
ven with the details of particular compiler. We describe Hoopl, a

reusable Haskell library that makes it unusually easy to define new

analyses and transformations famy compiler. Hoopl's interface

is modular and polymorphic, and it offers unusually strong static
guarantees. The implementation is also far from routine: it encap-
sulates state-of-the-art algorithms (interleaved analysis and rewrit-
ing, dynamic error isolation), and it cleanly separates their tricky

elements so that they can be understood independently.

1. Introduction

A mature optimizing compiler for an imperative language includes
many analyses, the results of which justify the optimizer's code-
improving transformations. Many of the most important analyses
and transformations—constant propagation, live-variable analysis,
inlining, sinking of loads, and so on—should be regarded as par-

ticular cases of a single general probledataflow analysis and
optimization Dataflow analysis is over thirty years old, but a re-

cent, seminal paper by Lerner, Grove, and Chambers (2002) goes

further, describing a powerful but subtle wayitterleaveanalysis
and transformation so that each piggybacks on the other.

Because optimizations based on dataflow analysis share a common
intellectual framework, and because that framework is subtle, it
it tempting to try to build a single reusable library that embodies
the subtle ideas, while making it easy for clients to instantiate the

library for different situations. Tempting, but difficult. Although
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e The paper by Lerner, Grove, and Chambers is inspiring but ab-

stract. We articulate their ideas in a concrete but simple API that
hides a subtle implementation (Sections 3land 4). You provide
a representation for assertions, a transfer function that trans-
forms assertions across a node, and a rewrite function that uses
a assertion to justify rewriting a node. Hoopl “lifts” these node-
level functions to work over control-flow graphs, sets up and
solves recursion equations, and interleaves rewriting with anal-
ysis. Designing good abstractions (data types, APIs) is surpris-
ingly hard; we have been through over a dozen significantly
different iterations, and we offer our API as a contribution.

Analyses and transformations built on Hoopl are small, sim-
ple, and easy to get right because the client only has to per-
form local reasoning {f is live beforex:=y+2”)/* Moreover,
Hoopl helps you write correct optimizations: it statically rules
out transformations that violate invariants of the control-flow
graph (Sections 3 and 4.3), and dynamically it can help find
the first transformation that introduces a fault in a test program

(Section 4.7).

Hoopl implements subtle algorithms, including (a) interleaved
analysis and rewriting, (b) speculative rewriting, (¢) computing
fixed points, and (d) dynamic fault isolation. Previous imple-
mentations of these algorithms—including three of our own—
are complicated and hard to understand, because the tricky
pieces are implemented all together, inseparably. A significant
contribution of this paper is a new way to structure the imple-
mentation so that each tricky piece is handled in just one place,
separate from all the others (Section 5). The result is sufficiently
elegant that we emphasize the implementation as an object of

some such frameworks exist, as we discuss in Section 6, they interestin its own right.
have complex APIs and implementations, and none implements the

Lerner/Grove/Chambers technique. A working prototype of Hoopl is available frotmttp: //ghc.cs.

tufts.edu/hoopl. Itis no toy: an ancestor of this library is part of

In this paper we present Hoopl (short for “higher-order optimiza- the Glasgow Haskell Compiler, where it optimizes the imperative
tion library”), a new Haskell library for dataflow analysis and opti- C-- code in GHC's back end. The new design is far nicer, and it

mization. It has the following distinctive characteristics: will be in GHC shortly.

e Hoopl is purely functional. Perhaps surprisingly, code that ma- The API for Hoopl seems quite natural, but it requires rglatively
nipulates control-flow graphs is easier to write, and far easier Sophisticated aspects of Haskell's type system, such as higher-rank

to write correctly, when written in a purely functional style
(Ramsey and Dias 2005). When analysis and rewriting are in- & compelling case study in the utility of these features.
terleaved, so that rewriting must be dapeculativelywithout

knowing whether the result of the rewrite will be retained or 2. Dataflow analysis & transformation by example
discarded, the benefit of a purely functional style is intensified
(Sections 2 and 4.8).

polymorphism, GADTs, and type functions. As such, Hoopl offers

We begin by setting the scene, introducing some vocabulary, and

showing a small motivating example. A control-flow graph, per-

¢ Hoopl is polymorphic. Just as a list library is polymorphic in the
list elements, so is Hoopl polymorphic, both in the nodes that 1ysing Hoopl, it is not necessary to have the more complex réiteis live
inhabit graphs, and in the dataflow facts that analyses computeafterx:=y+2 theny is live before it,” because if is not live afterx:=y+2,
over these graphs (Section 4). the assignment: =y+2 will be eliminated.
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haps representing the body of a procedure, is a collectidvaef if there are a number of interacting analyses and/or transforma-
sic blocks—or just “blocks”. Each block is a sequence of instruc- tions; for more substantial examples, consult Lerner, Grove, and
tions, beginning with a label and ending with a control-transfer in- Chambers (2002).

struction that branches to other blocks. The goal of dataflow op-
timization is to compute valicissertiongor dataflow facty then

use those assertions to justify code-improving transformations (or
rewriteg on acontrol-flow graph

Forwardsand backwards. Constant propagation worksrwards

and a fact is typically an assertion about the program state (such
as “variablex holds value7”). Some useful analyses wotkack-
wards A prime example is live-variable analysis, where a fact takes
Consider a concrete example: constant propagation with constantthe form “variablex is live” and is an assertion about thentinu-
folding. On the left we have a basic block; in the middle we have ation of a program point. For example, the faetis live” at a pro-
facts that hold between statements ifode3 in the block; and at gram point P is an assertion thais used on some program path
the right we have the result of transforming the block based on the starting at P. The accompanying transformation is called dead-code
assertions: elimination; if x is not live, this transformation replaces the node
x:=e With a no-op.

Before Facts After

———————————— - .
x = 3+4 x =7 3. Representing control-flow graphs

__________ Ge=Tymmmmmmmm Hooplis a library that makes it easy to define dataflow analyses, and
z = x>b5 z := True

transformations driven by these analyses, on control-flow graphs.
Graphs are composed from smaller units, which we discuss from

iz goto L1 the bottom up:
then goto L1
else goto L2 ¢ A nodeis defined by Hoopl’s client; Hoopl knows nothing about

. . the representation of nodes (Section 3.2).
Constant propagation works from top to bottom. We start with the P (Section 3.2)

empty fact. Given the empty fact and the nade=3+4 can we * A basicblockis a sequence of nodes (Section 3.3).
make a (constant-folding) transformation? Yes! We can replace the e A graphis an arbitrarily complicated control-flow graph, com-
node withx : =7. Now, given this transformed node, and the original posed from basic blocks (Section 3.4).

fact, what fact flows out of the bottom of the transformed node?
The fact{x=7}. Given the fact{x=7} and the nodez:=x>5, can 3.1 Shapes: Open and closed
we make a transformation? Yes: constant propagation can replac
the node withz:=7>5. Now, can we do another transformation?
Yes: constant folding can replace the node witsTrue. And so

the process continues to the end of the block, where we can replac
the conditional branch with an unconditional ogeto L1.

eNodes, blocks, and graphs share important properties in common.
In particular, each can lpen or closed at entgndopen or closed

at exit An openpoint is one at which control may implicitly “fall
e"[hrough;“ to transfer control at elosedpoint requires an explicit
control-transfer instruction. For example,

The example above is simple because the program has only
straightline code; when programs have loops, dataflow analysis
gets more complicated. For example, consider the following graph,
where we assumiet is the entry point:

e A shift-left instruction is open on entry (because control can
fall into it from the preceding instruction), and open on exit
(because control falls through to the next instruction).

L1 xe3: ved: if n L9 o1 L3 e An unconditional branch is open on entry, but closed on exit
¢ Xx=3; y=4; 11 z then goto L2 else goto (because control cannot fall through to the next instruction).
L2: x=7; goto L3

L3: ... e A label is closed on entry (because in Hoopl we do not allow

. control to fall through into a branch target), but open on exit.
Because control flows 3 from two places, we mugbin the facts

coming from those two places. All pathsit® produce the fact=4, These examples concern nodes, but the same classification applies
so we can conclude that this fact hold€.at But depending onthe  to blocks and graphs. For example the block

the path td.3, x may have different values, so we concluce T,
meaning that there is no single value held:bgt L3[Z The final

result of joining the dataflow facts that flow I is the new fact IS open on entry and closed on exit. This is the bloct®pe
x=T Ay=4 Az=T. which we often abbreviate “open/closed;” we may refer to an

“open/closed block.”

x:=7; y:=x+2; goto L

Interleaved transformation and analysis. Our exampleinter- . . o .
leavedransformation and analysis. Interleaving makes it far easier The sh_ape of a thing deter_mlnes that thing's control-flow properties.
to write effective analyses. If, instead, viiest analyzed the block N Particular, whenever E is a node, block, or graph,
andthentransformed it, the analysis would have to “predict” the e If E is open at the entry, it has a unique predecessor; if it is
transformations. For example, given the incoming faet7} and closed, it may have arbitrarily many predecessors—or none.
the instructionz: =x>5, a pure analysis could produce the outgoing
fact {x=7, z=True} by simplifying x>5 to True. But the subse-
quent transformation must perforexactly the same simplification
when it transforms the instruction to:=True! If instead wefirst 3.2 Nodes

rewrite the node ta:=True, andthenapply the transfer function '

to the new node, the transfer function becomes laughably simple: The primitive constituents of a Hoopl control-flow graph aceles

it merely has to see if the right hand side is a constant (you can which are defined by the client. Typically, a node might represent a
see actual code in Sectibn 4.6). The gain is even more compellingmachine instruction, such as an assignment, a call, or a conditional
branch. But Hoopl's graph representation is polymorphic in the

2 In this examplex really does vary a3, but in general the analysis might ~ node type, so each client can define nodes as it likes. Because they
be conservative. contain nodes defined by the client, graphs can include arbitrary

e If E is open at the exit, it has a unique successor; if it is closed,
it may have arbitrarily many successors—or none.
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data Node e x where

LabelNode :: Label -> Node C O

Assign :: Var -> Expr -> Node 0 O

Store :: Expr -> Expr -> Node 0 O

Branch :: Label -> Node 0 C

CondBranch :: Expr -> Label -> Label -> Node 0 C

. more constructors ...

Figure 1. A typical node type as it might be defined by a client

client-specified data, including (say) C statements, method calls in
an object-oriented language, or whatever.

Hoopl knowsat compile timewhether a node is open or closed
at entry and exit: the type of a node has kireb*->*, where

the two type parameters are type-level flags, one for entry and
one for exit. Such a type parameter may be instantiated only with
type 0 (for open) or typeC (for closed). As an example, Figure 1
shows a typical node type as it might be written by one of Hoopl’s
clients. The type parameters are writterand x, for entry and

exit respectively. The type is a generalized algebraic data type; the JustO
syntax gives the type of each constructor. For example, constructor

LabelNode takes alLabel and returns a node of typéde C 0,
where the €” says “closed at entry” and thed* says “open at
exit”. The typesLabel, 0, andc are defined by Hoopl (Figure 2).

Similarly, anAssign node takes a variable and an expression, and
returns aNode open at both entry and exit; th&tore node is
similar. The type§ar andExpr are private to the client, and Hoopl
knows nothing of them. Finally, the control-transfer noBesnch
andCondBranch are open at entry and closed at exit.

Nodes closed on entry are the only targets of control transfers;

nodes open on entry and exit never perform control transfers; and

nodes closed on exit always perform control tranSfeBecause of
the position each type of node occupies in a basic block, we often
call themfirst, middle andlast nodes respectively.

3.3 Blocks

Hoopl combines the client’s nodes into blocks and graphs, which,
unlike the nodes, are defined by Hoopl (Figure 2)BRock is
parameterized over the node typas well as over the same flag
types that make it open or closed at entry and exit.

TheBUnit constructor lifts a node to become a blo8kat con-

catenates blocks in sequence. It makes sense to concatenate blocks

only when control can fall through from the first to the second;
therefore, two blocks may be concatenated only if each block is
open at the point of concatenation. This restriction is enforced by
the type ofBCat, whose first argument must be open on exit, and
whose second argument must be open on entry. It is statically im-
possible, for example, to concatenat®mnch immediately be-
fore anAssign. Indeed, theBlock type statically guarantees that
any closed/closeB1lock—which compiler writers normally call a
“basic block”—consists of exactly one closed/open node (such as
Label in Figure[ 1), followed by zero or more open/open nodes
(Assign or Store), and terminated with exactly one open/closed
node Branch or CondBranch). Using GADTSs to enforce these in-
variants is one of Hoopl’s innovations.

3To obey these invariants, a node for a conditional-bransirtntion,
which typically either transfers control falls through, must be represented
as a two-target conditional branch, with the fall-througtthpin a separate
block. This representation is standard (Appel 1998), andsts nothing in
practice: such code is easily sequentialized without lymers branches.
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data O
data C

-- Open
-- Closed

data Block n e x where
BUnit :: n e x -> Block n e x

BCat : Block n e 0 -> Block n 0 x -> Block n e x

data Graph n e x where

GNil : Graph n 0 O
GUnit :: Block n 0 0 -> Graph n 0 O
GMany :: MaybeO e (Block n 0O C)

-> Body n
-> MaybeO x (Block n C 0)
-> Graph n e x

data Body n where

BodyEmpty :: Body n
BodyUnit :: Block n C C -> Body n
BodyCat :: Body n -> Body n -> Body n

data MaybeO ex t where

:t t -> MaybeO O t
NothingQ :: MaybeO C t
newtype Label = Label Int

class Edges n where
entrylLabel :: n C x -> Label
successors :: n e C -> [Labell

Figure 2. The block and graph types defined by Hoopl

3.4 Graphs

Hoopl composes blocks into graphs, which are also defined in
Figurel 2. LikeBlock, the data typesraph is parameterized over
both nodesn and its open/closed shape é&ndx). It has three
constructors. The first two deal with the base cases of open/open
graphs: an empty graph is represente@iyl while a single-block
graph is represented I&ynit.

More general graphs are representedGiyny, which has three
fields: an optional entry sequence, a body, and an optional exit
sequence.

e If the graph is open at the entry, it contains an entry sequence of
typeBlock n 0 C. We could represent this sequence as a value
of type Maybe (Block n 0 C), but we can do better: a value

of Maybe type requires alynamictest, but we knovstatically,

at compile time, that the sequence is present if and only if
the graph is open at the entry. We express our compile-time
knowledge by using the typéaybe0 e (Block n 0 C), atype-
indexed version dffaybe which is also defined in Figure 2: the
typeMaybe0 0 a isisomorphic ta, while the typeMaybel C a

is isomorphic to().

e The body of the graph is a collection of closed/closed blocks.
To be able to concatenate bodies in constant time, we introduce

the representatioBody n.

The exit sequence is dual to the entry sequence, and like the
entry sequence, its presence or absence is deducible from the
static type of the graph.

We can splice graphs together nicely, in constant time. Unlike
blocks, two graphs may be spliced together not only when they are
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data FwdPass n f We have carefully crafted the types so thaBtfat andBodyCat

= FudPass { fp_lattice :: DataflowlLattice f are considered as associative operators, every graph has a unique
» fp_transfer :: FwdTransfer n f representation. To guarantee uniqueneskit is restricted to
» fp_rewrite :: FwdRewrite n f } open/open blocks. IEUnit were more polymorphic, there would
) be more than one way to represent some graphs, and it wouldn’t be
““““ Lattice —————————- obvious to a client which representation to choose—or if the choice
data DataflowLattice a = DataflowLattice made a difference.
{ fact_bot 1 a
, fact_extend :: a -> a -> (ChangeFlag, a) } 3.5 Labels and successors

If Hoopl knows nothing about nodes, how can it know where
a control transfer goes, or what is thabel at the start of a
block? To answer such questions, the standard Haskell idiom is to
define a type class whose methods provide exactly the operations
needed; Hoopl's type class, call@dges, is given in Figure 2.
The entryLabel method takes a first node (one closed on entry,
Sectior} 3.2) and returns itsabel; the successors method takes

a last node (closed on exit) and returns th&els to which it can
transfer control. A middle node, which is open at both entry and
exit, cannot refer to ankabels, so no corresponding interrogation
function is needed.

data ChangeFlag = NoChange | SomeChange

——————— Transfers --——--------
type FwdTransfer n f
= forall e x. n e x -> Fact e £ -> Fact x £

——————— Rewrites ----------
type FwdRewrite n f
= forall e x. n e x -> Fact e £
-> Maybe (FwdRes n f e x)

data FwdRes n f e x A node type defined by a client must be an instanc&dyes.
= FwdRes (AGraph n e x) (FwdRewrite n f) In Figure 1, the client’s instance declaration fiade would be

instance Edges Node where
entryLabel (LabelNode 1) = 1
successors (Branch b) = [b]
successors (CondBranch e bl b2) = [bil,b2]

Again, the pattern matching for both functions is exhaustive, and

——————— Fact-like things -------
type family Fact x f :: *

type instance Fact 0 f = £

type instance Fact C f = FactBase f

------- FactBase —--—----- the compiler statically checks this fact. HesatryLabel cannot
type FactBase f = LabellMap f be applied to adssign or Branch node, and any attempt to define
-- A finite mapping from Labels to facts f a case folssign or Branch would result in a type error.

While it is required for the client to provide this information about
nodes, it is very convenient for Hoopl to get the same information
about blocks. For its own internal use, Hoopl provides this instance
declaration for th@&lock type:

Eg:t?not%(zno?rt]srp:\llt\:lg E););rgsput also when they are both closed—and instance Edges n => Edges (Block n) where

entryLabel (BUnit n) = entryLabel n
entryLabel (BCat b _) = entrylLabel b

Figure 3. Hoopl API data types

Spli :: Graph -> Graph -> Graph .
ésgliz: GNierg =ng; @ rephnoa x rephm e x successors (BUnit n) = successors n
gSplice gl GNil = gl successors (BCat _ b) = successors b

Because the functionsntryLabel andsuccessors are used to
track control flomwithin a graph, Hoopl does not need to ask for the
gSplice (GUnit b) (GMany (JustO e) bs x) entry label or successors ofaaph itself. Indeed Graph cannot
= GMany (JustO (b ‘BCat‘ e)) bs x be an instance didges, because even if @raph is closed at the
entry, it does not have a unique entry label.

gSplice (GUnit b1l) (GUnit b2) = GUnit (bl ‘BCat‘ b2)

gSplice (GMany e bs (JustO x)) (GUnit b2)

= GMany e bs (JustD (x ‘BCat‘ b2)) 4. Using Hoopl to analyze and transform graphs
gSplice (GMany el bsl (JustO x1)) (GMany (JustD e2) bs2 x2)  Now that we have graphs, how do we optimize them? Hoopl makes
= GMany el (bsl ‘BodyCat‘ b ‘BodyCat‘ bs2) x2 it easy for a client to build a new dataflow analysis and optimiza-
where b = BodyUnit (x1 ‘BCat‘ e2) tion. The client must supply the following pieces:
gSplice (GMany el bsi Nothing0) (GMany NothingD bs2 x2) * Anode typgSection 3.2). Hoopl supplies tBaock andGraph
= GMany el (bsl ‘BodyCat‘ bs2) x2 types that let the client build control-flow graphs out of nodes.
) o ¢ A data type of factand some operations over those facts (Sec-
This definition illustrates the power of GADTSs: the pattern match- tion|4.1). Each analysis uses facts that are specific to that par-

ing is exhaustive, and all the open/closed invariants are stati- ticular analysis, which Hoopl accommodates by being polymor-
cally checked. For example, consider the second-last equation for  phic in the fact type.

gSplice. Since the exit link of the first argument Jist0 x1,
we know that type parameteris 0, and hence the entry link of . D
the second argument must best0 e2. Moreover, blockk1 must former, which takes a fact flowing into the node a_nd returns the
be closed/open, and bloe2 must be open/closed. We can there- transformed fact that flows out of the node (Section 4.2).

fore concatenate them wititat to produce a closed/closed block, ¢ A rewrite functionthat takes a node and an input fact, and
which is added to thBody of the result. which returns eitheNothing or (Just g) whereg is a graph

¢ A transfer functiorthat takes a node and returndaat trans-
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Specified Implemented 4.1 Dataflow lattices

Part of optimizer b b How man . . . )

P y y y For each analysis or transformation, the client must define a type
Control-flow graphs 5] Us One of dataflow facts. A dataflow fact often represents an assertion
Nodes in a You You One type per about a program poifftbut in general, dataflow analysis establishes
control-flow graph intermediate language properties opaths
Dataflow fact/” You You  One type perlogic e An assertion about all pattie a program point is established
Lattice operations 8 You One set perlogic by aforwards analysisFor example the assertios ‘= 3” at
Transfer functions Y You One peranalysis point P claims that variable holds value3 at P, regardless of
Rewrite functions ¥ You One per transformation the path by which P is reached.

Solve-and-rewrite Us Us  Two (forward, backward) ¢ An assertion about all patfi®m a program point is established
functions by abackwards analysig-or example, the assertion Is dead”
Table 4. Parts of an optimizer built with Hoopl at point P claims that no path from P uses variable

A set of dataflow facts must form a lattice, and Hoopl must know
(a) the bottom element of the lattice and (b) how to take the least
a graph that may include internal control flow is crucial for upper bound (join) of two elements. To ensure that analysis termi-

many code-improving transformations. We discuss the rewrite nates, it is enough if every fact has a finite number of distinct facts
function in Sections 4/3 and 4.4. ' above it, so that repeated joins eventually reach a fixed point.

that should replace the node. The ability to replacedeby

These requirements are summarized in Table 4. Because facts!N Practice, joins are computed at labelsfif is the fact currently

transfer functions, and rewrite functions work closely together, we associated with the labeil/, and if a transfer function propagates
represent their combination as a single record of typePass a new factfy., into the labelid, the dataflow engine replac¢s;

(Figurel 3). The elements @f«dPass are, and must be, polymor- with the join frew U fiqa. Furthermore, 'the dataflow eng.ine wants

phic functions—Hoopl must use higher-rank types. to know if f.’”‘f’w U f."‘i = fia, because if not, the analysis has not
) ) reached a fixed point.

Given a node typa and aFwdPass, a client can ask Hoopl to

analyze and rewrite a closed/closed graph representstigsn: The bottom element and join operation of a lattice of facts of type

are stored in a value of tyfgataflowLattice £ (Figure 3). As

analyzeAndRewriteFwd noted in the previous paragraph, Hoopl needs to know when the
:: Edges n —- Access to flow edges result of a join is equal to one of the arguments joined. Because
=> FudPass n f -- Lattice, transfer, this information is often available very cheaply at the time when
-- and rewrite functions the join is computed, Hoopl does not require a separate equality
-> Body n - Input body test on facts (which might be expensive). Instead, Hoopl requires
-> FactBase f -= Input fact(s) that fact_extend return aChangeFlag as well as the least up-
-> FuelMonad (Body n, -~ Result body per bound. The&hangeFlag should beNoChange if the result is
FactBase f) -- ...and its facts the same as the first argument (the old fact), aasleChange if

Given aFwdPass, the analyze-and-rewrite function transforms a the result differs. (Functiofiact_extend is not symmetric in its
Body into an optimizedBody. As its type shows, this function is ~ arguments.)

polymorphic in the types of nodasand factsf; these types are .
determined entirely by the client. 4.2 The transfer function
A forward transfer function is presented with the dataflow fact(s)
on the edge(s) coming into a node, and it computes dataflow fact(s)
on the outgoing edge(s). In a forward analysis, the dataflow engine
starts with the fact at the beginning of a block and applies the
transfer function to successive nodes in that block until eventually
the transfer function for the last node computes the facts that are
propagated to the block’s successors. For example, consider this
graph, with entry at1:

As well as taking and returningeady, the function also takes input
facts (theFactBase) and produces output facts. PactBase is
simply a finite mapping fromabel to facts. The outpufactBase
maps eaclLabel in the Body to its fact; if the Label is not
in the domain of theFactBase, its fact is the bottom element
of the lattice. Similarly the inpuFactBase supplies any facts
that hold on entry to théody. For example, in our constant-
propagation example from Section 2, if tBedy represents the

body of a procedure with parametetsy, z, we would map the L1: x=3; goto L2
entry Label to a factx=T A y=T A z=T, to specify that the L2: y=x+4; x=x-1;
procedure’s parameters may not be constants. if x>0 then goto L2 else return

The client’s model of howanalyzeAndRewriteFwd works is as A forward analysis starts with the bottom faL} at every label.
follows: Hoopl walks forward over each block in the graph. At AnalyzingL1 propagates this fact forward, by applying the transfer
each node, Hoopl applies the rewrite function to the node and the function successively to the nodes Iof, emerging with the fact
incoming fact. If the rewrite function return®thing, the node is {x=3} for L2. This new fact is joined with the existing (bottom)
retained as part of the output graph, the transfer function is usedfact for 2. Now the analysis propagateg’s fact forward, again

to compute the downstream fact, and Hoopl moves on to the nextusing the transfer function, this time emerging with a new fact
node. But if the rewrite function returnglust g), indicating that {x=2, y=7} for L2. Again, the new fact is joined with the existing

it wants to rewrite the node to the replacement grgpthen Hoopl fact forL2, and the process is iterated until the facts for each label
recursively analyzes and rewritgsbefore moving on to the next  reach a fixed point.

node. A node following a rewritten node sagsto-datefacts; that

is, its input fact is computed by analyzing the replacement graph. But wait! What is thetype of the transfer function? If the node is

open at exit, the transfer function produces a single fact. But what
In this section we flesh out thieterfaceto analyzeAndRewriteFud,
leaving the implementation for Section 5. 4In Hoopl, a program point is simply an edge in a control-flowpira
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type AGraph n e x
[Label]l -> (Graph n e x,

[Labell)

withLabels :: Int -> ([Label] -> AGraph n e x)
-> AGraph n e x
withLabels n fn = \1ls -> fn (take n 1s) (drop n 1ls)

mkIfThenElse :: Expr -> AGraph Node 0O 0

-> AGraph Node 0 0 -> AGraph Node 0 O
mkIfThenElse p t e
withLabels 3 $ \[11,12,13] —->
gUnit0C (BUnit (CondBranch p 11 12)) ‘gSplice‘
mkLabel 11 ‘gSplice‘ t ‘gSplice‘ mkBranch 13 ‘gSplice
mkLabel 12 ‘gSplice‘ e ‘gSplice‘ mkBranch 13 ‘gSplice

¢

¢

mkLabel 13
mkLabel 1 = gUnitCO (BUnit (LabelNode 1))
mkBranch 1 = gUnitOC (BUnit (Branch 1))
glnit0C b = GMany (JustO b) BodyEmpty Nothing0
gUnitCO b = GMany Nothing0 BodyEmpty  (JustO b)

Figure 5. The AGraph type and example constructions

if the node isclosedon exit? In that case the transfer function must
produce a list of [abel,fact) pairs, one for each outgoing edge.
So the type of the transfer function’s result depends on the shape
of the node’s exitFortunately, this dependency can be expressed
precisely, at compile time, by Haskell's (recently addet)exed
type families The relevant Hoopl definitions are given in Figure 3.
A forward transfer function, of type&FdTransfer n £), is a func-

tion polymorphic ine andx. It takes a node of typen(e x) and a
fact of typef, and it produces an outgoing “fact-like thing” of type
(Fact x £). The type constructdFact should be thought of as a
type-level function; its signature is given in thgpe family dec-
laration, while its definition is given by tweype instance dec-
larations. The first declaration says that the fact-like thing coming
out of a nodepenat the exit is just a fact. The second declaration
says that the fact-like thing coming out of a nadesedat the exit

is a mapping fronLabel to facts.

We have ordered the arguments such that if

transfer_fn :: FwdTransfer n f
node rrnex

then(transfer_fn node) is a predicate transformer:

transfer_fn node :: Fact e f -> Fact x £

4.3 The rewrite function

We compute dataflow facts in order to enable code-improving
transformations. In our constant-propagation example, the dataflow
facts may enable us to simplify an expression by performing con-
stant folding, or to turn a conditional branch into an unconditional
one. Similarly, a liveness analysis may allow us to replace a dead
assignment with a no-op.

A FudPass therefore includes @ewriting function whose type,
FwdRewrite, iS given in Figuré B. A rewriting function takes a
node and a fact, and optionally returns. .. what? At first one might
expect that rewriting should return a new node, but that is not
enough: We might want to remove a node by rewriting it to the
empty graph, or more ambitiously, we might want to replace a
high-level operation with a tree of conditional branches or a loop,
which would entail introducing new blocks with internal control
flow. In general, a rewrite function must be able to retugraph

Concretely, #wdRewrite takes a node and a suitably shaped fact,
and returns eithe@fothing, indicating that the node should not be
replaced, or(Just (FwdRes ¢ rw)), indicating that the node
should be replaced with: the replacement graph. You may have
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been expecting to have typeGraph n e x, but it actually has
typeAGraph n e x. The reason is that if the rewriter makes graphs
containing blocks, it may need freshbels. An AGraph provides
easy access to fresh labels, usingthLabels (Figure 5). The
figure also shows an implementation A@fraph and a few simple
functions typically used to buildGraphs.

The type ofFwdRewrite in Figure 3 guaranteest compile time

that the replacement graphhas thesameopen/closed shape as
the node being rewritten. For example, a branch instruction can
be replaced only by a graph closed at the exit. Moreover, because
only an open/open graph can be empty—Ilook at the typeiol

in Figurd 2—the type ofwdRewrite guarantees, at compile time,
that no head of a block (closed/open) or tail of a block (open/closed)
can ever be deleted by being rewritten to an empty graph.

4.4 Shallow vs deep rewriting

Once the rewrite has been performed, what then? The rewrite re-
turns a replacement graph, which must itself be analyzed, and its
nodes may be further rewritten. We catlalyzeAndRewriteFuwd

to process the replacement graph—but whatPass should we
use? There are two common situations:

e Sometimes we want to analyze and transform the replacement
graph with an unmodifie@wdPass, further rewriting the re-
placement graph. This procedure is calliegp rewritingWhen
deep rewriting is used, the client’s rewrite function must ensure
that the graphs it produces are not rewritten indefinitely (Sec-

tion[4.9).

e Sometimes we want to analybeit not further rewritethe re-
placement graph. This procedure is cal&thllow rewriting
It is easily implemented by using a modifieddPass whose
rewriting function always returngothing.

Deep rewriting is essential to achieve the full benefits of interleaved
analysis and transformation (Lerner, Grove, and Chambers 2002).
But shallow rewriting can be vital as well; for example, a forward
dataflow pass that inserts a spill before a call must not rewrite the
call again, lest it attempt to insert infinitely many spills.

An innovation of Hoopl is to build the choice of shallow or deep
rewriting into each rewrite function, an idea that is elegantly cap-
tured by theFwdRes type returned by &wdRewrite (Figure 3).

The first component of thBwdRes is the replacement graph, as
discussed earlier. The second component, is anew rewriting
functionto use when recursively processing the replacement graph.
For shallow rewriting this new function is the constaltthing
function; for deep rewriting it is the original rewriting function.

4.5 Composing rewrite functions and dataflow passes

By requiring each rewrite to return a new rewrite function, Hoopl
enables a variety of combinators over rewrite functions. For ex-
ample, here is a function that combines two rewriting functions in
sequence:

thenFwdRw :: FwdRewrite n f
-> FwdRewrite n f
-> FwdRewrite n f
thenFwdRw rwl rw2 n f
= case rwl n f of
Nothing ->rw2n f
Just (FwdRes g rwla) -> Just $ FwdRes g $
rwla ‘thenFwdRw‘ rw2

noFwdRw :: FwdRewrite n f
noFwdRw n f = Nothing

What a beautiful typehenFwdRw has! It triesrw1, and ifrw1 de-
clines to rewrite, it behaves likew2. But if rwl rewrites, returning
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a new rewriterrwla, then the overall call also succeeds, return- ~~ Types and definition of the lattice
ing a new rewrite function obtained by combiniagia with rw2. data HasConst = Top | B Bool | I Integer

K type ConstFact = Map.Map Var HasConst
(We cannot applywia or rw2 directly to the replacement gragh constlattice = Dataflowlattice

because-_l returns a graph ant2 expects a node.) The rewriter { fact_bot = Map.empty

noFwdRw is the identity ofthenFwdRw. Finally, thenFwdRw can , fact_extend = stdMapJoin constFactAdd }
combine a deep-rewriting function and a shallow-rewriting func-  where

tion, to produce a rewriting function that is a combination of deep constFactAdd old new = (c, j)

and shallow. where j = if new == old then new else Top

- . . N ¢ = if j == old then NoChange else SomeChange
nr:ageraic A Shallow rewriting function can be made deep by iterating it:

law wanted!

iterFwdRw :: FwdRewrite n f -> FwdRewrite n f

. -- Analysis: variable has constant value
iterFwdRw rw =

e £ o> ‘ of varHasConst :: FwdTransfer Node ConstFact
n cisetrngndR o 2 - varHasConst (LabelNode 1) f = lookupFact f 1
us wdhes g rw. varHasConst (Store _ _) f=1

Just $ FwdRes g (rw2 ‘thenFwdRw‘ iterFwdRw rw)

- . varHasConst (Assign x (Bool b)) f = Map.insert x (B b) £
Nothing -> Nothing

varHasConst (Assign x (Int 1i)) f = Map.insert x (I i) f

: ; * varHasConst (Assign x _) f = Map.insert x Top f
If we have shallow rewrites! and B then we can buildd B, A* B, varHasConst (Branch 1) £ = mkFactBase [(1, £)]

(AB)*, and so on: sequential compositiontisenFwdRw and the varHasConst (CondBranch (Var x) tid f£id) £

NR: Do we il Kleene star is terFwdRw. = mkFactBase [(tid, Map.insert x (B True) f),

clam? The combinators above operate on rewrite functions that share a (fid, Map.insert x (B False) f)]
common fact type and transfer function. It can also be useful to varHasConst (CondBranch _ tid fid) £
combine entire dataflow passes that use different facts. We invite - “xFactBase [(tid, £), (fid, )]
you to write one such combinator, with type

thenFwd :: FwdPass n f1 -- Constant propagation
-> FudPass n f2 constProp :: FwdRewrite Node ConstFact

constProp node facts
> FudPass n (£1,£2) = fmap toAGraph (mapE rewriteE node)

The two passes run interleaved, not sequentially, and each may where
help the other, yielding better results than runnitigand thenB rewriteE e (Var x)

or B and thenA (Lerner, Grove, and Chambers 2002). = Cajisfal(’élgg’k‘_‘f ’;uii‘C;SBgil b

Just (I i) -> Just $ Int i
_ -> Nothing
Figurel 6 shows client code for constant propagation and constant rewriteE e = Nothing

folding. For each variable at each point in a graph, the analysis
concludes one of three facts: the variable holds a constant value
(Boolean or integer), the variable might hold a non-constant value,
or nothing is known about what the variable holds. We repre-

4.6 Example: Constant propagation and constant folding

-- Simplification ("constant folding")
simplify :: FwdRewrite Node f
simplify (CondBranch (Bool b) t f) _

sent these facts using a finitg map .from a variable to a fact of " _"j..¢ ¢ toAGraph $ Branch (if b then t else f)
type (aybe HasConst). A variable with a constant value maps  simplify node _ = fmap toAGraph (mapE s_exp node)
to Just k, wherek is the constant value; a variable with a non- where

constant value maps tust Top; and a variable with an unknown s_exp (Binop Add (Int i1) (Int i2))

value maps tdlothing (i.e., it is not in the domain of the finite = Just $ Int § il + i2

map). ... -- more cases for constant folding

The definition of the latticedonstLattice) is straightforward. -- Rewriting expressions

The bottom element is an empty map (nothing is known about the mapE :: (Expr -> Maybe Expr)

contents of any variable). We use tsedMapJoin function to lift -> Node e x -> Maybe (Node e x)

the join operation for a single variablednstFactAdd) up to the mapE f (LabelNode _) = Nothing

map containing facts for all variables. mapE f (Assign x e) = fmap (Assign x) $ f e

-- more cases for rewriting expressions

For the transfer functionsarHasConst, there are two interesting
kinds of nodes: assignment and conditional branch. In the first -
two cases for assignment, a variable gets a constant value, so we - Defining the forward dataflow pass
produce a dataflow fact mapping the variable to its value. In the C°nSt1f’r°PPas? = FwdPass )
third case for assignment, the variable gets a non-constant value, { fp—iiz;:;:r - 3;?;:222;::9
so we produce a dataflow fact mapping the variabl&dp. The ’ fp‘ : _ ¢ PR,

. . . L . . , fp_rewrite = constProp ‘thenFwdRw‘ simplify }
last interesting case is a conditional branch where the condition is
a variable. If the conditional branch flows to the true successor, Figure 6. The client for constant propagation and constant folding
the variable holdSrue, and similarly for the false successor. We
update the fact flowing to each successor accordingly.

npossible to write the simplest imaginable transfer functions, with-

We do not need to consider complicated cases such as an assig Ut missing opportunities to improve the code

mentx:=y wherey holds a constant value Instead, we rely on
the interleaving of transformation and analysis to first transform The rewrite function for constant propagati@enstProp, Simply

the assignment te: =k, which is exactly what our simple transfer  rewrites each use of a variable to its constant value. We use the
function expects. As we mention in Section 2, interleaving makes it auxiliary functionmapE to applyrewriteE to each use of a vari-
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able in each kind of node; in turn, thewriteE function checks

in the conditional branch were<10 instead ofx==10? Again the

if the variable has a constant value and makes the substitution. Wefirst iteration would begin with the tentative fact=0}. Using that

assume an auxiliary function
toAGraph :: Node e x -> AGraph Node e x

Figurel 6 also gives a completely separate rewrite function to per-
form constant folding, calledimplify. It rewrites a conditional

branch on a boolean constant to an unconditional branch, and to

find constant subexpressions, it rufisexp on every subexpres-
sion. Functiorsimplify does not need to check whether a variable
holds a constant value; it relies eanstProp to have replaced the
variable by the constant. Indeeglimplify does not consult the
incoming fact at all, and hence is polymorphicfin

We have written twoFwdRewrite functions because they are
independently useful. But in this case we want to appbth

of them, so we compose them witthenFwdRw. The composed
rewrite functions, along with the lattice and the transfer func-
tion, go into constPropPass (bottom of Figure 6). To improve

a particular graph, we passonstPropPass and the graph to
analyzeAndRewriteFwd.

4.7 Throttling the dataflow engine using “optimization fuel”

Debugging an optimization can be tricky: an optimization may

rewrite hundreds of nodes, and any of those rewrites could be in-
correct. To debug dataflow optimizations, we use Whalley’s (1994)
powerful technique to identify the first rewrite that transforms a

program from working code to faulty code.

The key idea is to limit the number of rewrites that are performed
while optimizing a graph. In Hoopl, the limit is callegbtimization
fuel: each rewrite costs one unit of fuel, and when the fuel is

exhausted, no more rewrites are permitted. Because each rewrite
leaves the observable behavior of the program unchanged, it is safe

to stop rewriting at any point. Given a program that fails when
compiled with optimization, a test infrastructure uses binary search
on the amount of optimization fuel, until it finds that the program
works correctly aften — 1 rewrites but fails after, rewrites. The

nth rewrite is faulty.

You may have noticed thainalyzeAndRewriteFwd returns a
value in theFuelMonad (Section 4). TheFuelMonad is a simple

fact, we would rewrite the conditional branch to an unconditional
branchgoto L3. No new fact would propagate 12, and we would
have successfully (and soundly) eliminated the loop. This example
is contrived, but it illustrates that for best results we should

e Perform the rewrites on every iteration.
e Begin each new iteration with the original, virgin graph.

This sort of algorithm is hard to implement in an imperative setting,
where rewrites mutate a graph in place. But with an immutable
graph, implementing the algorithm is trivially easy: we simply

revert to the original graph at the start of each fixed-point iteration.

4.9 Correctness

Facts computed bynalyzeAndRewriteFwd depend on graphs
produced by the rewrite function, which in turn depend on facts
computed by the transfer function. How do we know this algorithm
is sound, or if it terminates? A proof requires a POPL paper (Lerner,
Grove, and Chambers 2002), but we can give some intuition.

Hoopl requires that a client’s functions meet these preconditions:

e The lattice must have nifinite ascending chainghat is,
every sequence of calls fact_extend must eventually return
NoChange.

¢ The transfer function must bmonotonic given a more infor-
mative fact in, it should produce a more informative fact out.

¢ The rewrite function must bsound if it replaces a noda by a
replacement grapg, theng must be observationally equivalent
ton under the assumptions expressed by the incoming dataflow
factf.

¢ The rewrite function must beonsistenwith the transfer func-
tion; that is,transfer n f C transfer g f. For example, if
the analysis says thatis dead before the nodg then it had
better still be dead i is replaced bys.

¢ To ensure termination, a transformation that uses deep rewriting
must not return replacement graphs which contain nodes that
could be rewritten indefinitely.

state monad maintaining the supply of unused fuel. It also holds a Without the conditions on monotonicity and consistency, our algo-
supply of fresh labels, which are used by the rewriter for making rithm will terminate, but there is no guarantee that it will compute a
new blocks; more precisely, Hoopl uses these labels to take thefixed point of the analysis. And that in turn threatens the soundness

AGraph returned by a pass’s rewrite function (Figure 3) and convert
it to aGraph.

4.8 Fixed points and speculative rewrites

Are rewrites sound, especially when there are loops? Many analy-

ses compute a fixed point starting from unsound “facts”; for exam-
ple, a live-variable analysis starts from the assumption that all vari-
ables are dead. This meanesvrites performed before a fixed point

is reached may be unsound, and their results must be discarded
Each iteration of the fixed-point computation must start afresh with
the original graph.

Although the rewrites may be unsourtigy must be performed
(speculatively, and possibly recursively), so that the facts down-
stream of the replacement graphs are as accurate as possibl
For example, consider this graph, with entry.at

L1: x=0; goto L2
L2: x=x+1; if x==10 then goto L3 else goto L2

The first traversal of block2 starts with the unsound “fac{x=0};
but analysis of the block propagates the new factl} to L2,
which joins the existing fact to gdix=T }. What if the predicate
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of rewrites based on possibly bogus “facts”.
However, when the preconditions above are met,

e The algorithm terminates. The fixed-point loop must terminate
because the lattice has no infinite ascending chains. And the
client is responsible for avoiding infinite recursion when deep
rewriting is used.

¢ The algorithm is sound. Why? Because if each rewrite is sound
(in the sense given above), then applying a succession of
rewrites is also sound. Moreover, a sound analysis of the re-
placement graph may generate only dataflow facts that could
have been generated by a more complicated analysis of the
original graph.

%. Hoopl’'s implementation

Section 4 gives a client’s-eye view of Hoopl, showing how to use it
to create analyses and transformations. Hoopl’s interface is simple,
but theimplementatiomf interleaved analysis and rewriting is quite
complicated. Lerner, Grove, and Chambers (2002) do not describe
their implementation. We have written at least three previous im-
plementations, all of which were long and hard to understand, and
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NR: Not too
happy with
calling this
“concatenation”

NR: Within
Hoopl, the

RG type is a great
convenience.
Mutter mutter: it
carries facts as
well as blocks,
and it frees the
client's rewrite
functions from
any obligation to
respect the
invariants of type
Graph—I'm not
convinced.

data RG n f e x where arfNode :: Edges n => ARF n n

RGNil ~ :: RGn f a a arfBlock :: Edges n => ARF (Block n) n

RGCat0 :: RGn f e 0 ->RGn f0x->RGnifex arfBody :: Edges n

RGCatC :: RGnfeC->RGnfCx->RGnifex => FwdPass n f -> Body n -> FactBase f
RGUnit :: Fact e £f -> Blockne x ->RGnfex -> FuelMonad (RG n f C C, FactBase f)

Figure 7. The data typ&G of rewritten graphs arfGraph :: Edges n => ARF (Graph n) n

e The arfNode function processes nodes (Section|5.3). It han-
dles the subtleties of interleaved analysis and rewriting, and it
deals with fuel consumption. It callerfGraph to analyze and
transform rewritten graphs.

only one of which provided compile-time guarantees about open
and closed shapes. We are not confident that any of these imple-
mentations are correct.

. . . ) , e Based onarfNode it is extremely easy to writearfBlock,
In this paper we describe our new implementation. It is short (about

5 . which lifts the analysis and rewriting from nodes to blocks
a third of the size of our last attempt), elegant, and offers strong B

. A ) (Section 5.2).
static shape guarantees. The whole thing is about 300 lines of ) . .
code, excluding comments; this count includes both forward and ® Using arfBlock we definearfBody, which analyzes and

backward dataflow analysis and transformation. revv_rites aBody: a group of closed/_closed blocks linked by

) ) ) ) arbitrary control flow. BecauseBody is always closed/closed
We describe the implementation fafrward analysis and transfor- and does not take shape parameters, functicfBody is less
mation. The implementations of backward analysis and transfor-  polymorphic than the others; its type is what would be obtained
mation are exactly analogous and are included in Hoopl. by expanding and specializing the definitionsaf for athing

which is always closed/closed and is equivalent Body.

_ _ FunctionarfBody takes care of fixed points (Section 5.4).
We concentrate on implementiagalyzeAndRewriteFwd, whose « Based B iti i itenrs b (Section 5.2
type is in Section 4. Its implementation is built on the hierarchy of ased omarfBody it is €asy to writearfGraph (Section 5.2).

nodes, blocks, and graphs described in Section 3. For each thing inGjven these functions, writing the main analyzer is a simple matter
the hierarchy, we develop a function of this type: of matching the external API to the internal functions:
type ARF thing n

= forall f e x. FwdPass n £

5.1 Overview

analyzeAndRewriteFwd
:: forall n f. Edges n

-> thing e x -> Fact e f => FwdPass n f -> Body n -> FactBase f
-> FuelMonad (RG n e x, Fact x f) -> FuelMonad (Body n, FactBase f)
An ARF (short for “analyze and rewrite forward”) is a combination
of a rewrite and transfer function. ABRF takes aFwdPass, a analyzeAndRewriteFwd pass body facts
thing (a node, block, or graph), and an input fact, and it returns a = do { (rg, _) <- arfBody pass body facts
rewritten graph of typéRG n e x) of the same shape as thieing, ; return (normalizeBody rg) }

plus a suitably shaped output fact. The tyads internal to Hoopl;
itis not seen by any client. We use it, niataph, for two reasons: 5.2 From nodes to blocks
We begin our explanation with the second task: writirgBlock,

¢ The client is often interested not only in the facts flowing out of which analyzes and transforms blocks.

the graph (which are returned in tBect x £), but also in the
facts on thenternal blocks of the graph. A replacement graph arfBlock :: Edges n => ARF (Block n) n
of type (RG n e x) is decorated with these internal facts. arfBlock pass (BUnit node) f
= arfNode pass node f
arfBlock pass (BCat bl b2) f
= do { (g1,f1) <- arfBlock pass bl f
; (g2,f2) <- arfBlock pass b2 f1
; return (gl ‘RGCat0¢ g2, £2) }

e A Graph has deliberately restrictive invariants; for example, a
GMany with a Just0 is always open at exit (Figure 2). It turns
out to be awkward to maintain these invariashising rewriting,
but easy to restore theafter rewriting by “normalizing” arRG.

The information in amG is returned to the client by the normaliza-
tion functionnormalizeBody, which splits arRG into aBody and
its correspondin@actBase:

The code is delightfully simple. TH&Unit case is implemented by

arfNode. TheBCat case is implemented by recursively applying

arfBlock to the two sub-blocks, threading the output fact from

normalizeBody :: Edges n => RGn f C C the first as the input to the second. Each recursive call produces a
-> (Body n, FactBase f) rewritten graph; we concatenate them wAttCat0.

The constructors d&G are given in Figure 7. The essential points FunctionarfGraph is equally straightforward:

are that constructoRGUnit is polymorphic in the shape of a . _

block, RGUnit carries a fact as well as a block, and the concate- arigrapi o Edg;fln => ARF c (Srapltl n) I(IRGN.I o
nation constructors record the shapes of the graphs at the poimarfcraph N (GIlJ it blk) f = refgin X . ,blk £
of concatenation(A record of the shapes is needed so that when arfcraph pass (GMnl Nothingd :rd ;Cthl?asg) P
normalizeBody is presented with a block carried BgUnit, it is arthiraph pass LuHany Tothingt body Torhing

= 1) -
known whether the block is an entry sequence, an exit sequence, or do { i::izn’ (i:()iyf ?gBidy pass body 1
abasmlﬂOCkg arfGraph pass (GMany Nothing0 body (JustO exit)) £

We exploit the type distinctions of node&,ock, Body, andGraph = do { (body’, fb) <- arfBody pass body f
to structure the code into several small pieces, each of which can ; (exit’, fx) <- arfBlock pass exit fb
be understood independently. Specifically, we define a layered set ; return (body’ ‘RGCatC‘ exit’, fx) }
of functions, each of which calls the previous one: -- ... two more equations for GMany ...

Sat 17 Apr 2010, 10:05 PM [MD5: bloodless Canton invader Biggles] 9 2010/4/18



The pattern is the same as farfBlock: thread facts through the

FunctionforwardBlockList takes a list of possible entry points

sequence, and concatenate the results. Because the constructoendBody, and it returns a linear list of blocks, sorted into an order

of type RG are more polymorphic than those 6faph, type RG
can represent graphs more simply tiGarmph; for example, each
element of aGMany becomes a singl@G object, and thes&G
objects are then concatenated to form a single result offgpe

5.3 Analyzing and rewriting nodes

Although interleaving analysis with transformation is tricky, we
have succeeded in isolating the algorithm in just two functions,
arfNode and its backward analogrbNode:

arfNode :: Edges n => ARF n n
arfNode pass n £
= do { mb_g <- withFuel (fp_rewrite pass n f)
; case mb_g of
Nothing -> return (RGUnit f (BUnit n),
fp_transfer pass n f)
Just (FwdRes ag rw) ->
do { g <- graphOfAGraph ag
; let pass’ = pass { fp_rewrite
; arfGraph pass’ g £ } }

rw }

The code here is more complicated, but still admirably brief. Using
thefp_rewrite record selector (Figure 3), we begin by extracting
the rewriting function from th&wdPass, and we apply it to the
noden and the incoming fact.

The resultinglaybe is passed taithFuel, which deals with fuel
accounting:

withFuel :: Maybe a -> FuelMonad (Maybe a)

If withFuel’s argument iflothing, or if we have run out of op-
timization fuel (Sectioh 4.7)yithFuel returnsNothing. Other-
wise,withFuel consumes one unit of fuel and returns its argument
(which will be aJust). That is all we need say about fuel.

In the Nothing case, no rewrite takes place—either because the
rewrite function didn't want one or because fuel is exhausted.
We return a single-node graptRGUnit £ (BUnit n)), deco-
rated with its incoming fact. We also apply the transfer function
(fp_transfer pass) to the incoming fact to produce the outgo-
ing fact. (Likefp_rewrite, fp_transfer is a record selector of
FwdPass.)

In the Just case, we receive a replacemeégiaph ag and a new
rewrite functionrw. We convertg to aGraph, using

graphOfAGraph :: AGraph n e x -> FuelMonad (Graph n e x)

and we analyze the resulti@gaph with arfGraph. This analysis
usespass’, which contains the original lattice and transfer func-
tion from pass, together with the new rewrite functiarg.

And that’s it! If the client wanted deep rewriting, it is implemented
by the call toarfGraph; if the client wanted shallow rewriting,
the rewrite function will have returnesloFwdRw as rw, which is
implanted inpass’ (Section 4.4).

5.4 Fixed points

Lastly, arfBody deals with the fixed-point calculation. This part of
the implementation is the only really tricky part, and it is cleanly
separated from everything else:

arfBody :: Edges n
=> FwdPass n f -> Body n -> FactBase f
-> FuelMonad (RG n f C C, FactBase f)
arfBody pass body fbase
= fixpoint (fp_lattice pass) (arfBlock pass) fbase §

forwardBlockList (factBaseLabels fbase) body
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that makes forward dataflow efficient:

forwardBlockList
:: Edges n => [Labell]
-> Body n -> [(Label,Block n C C)]

For example, if theBody starts at blockL2, and L2 branches

to L1, but not vice versa, then Hoopl will reach a fixed point
more quickly if we procesg.2 beforeLi. To find an efficient
order,forwardBlockList uses the methods of theges class—
entryLabel and successors—to perform a reverse depth-first
traversal of the control-flow graph. The order of the blocks does
not affect the fixed point or any other part of the answer; it affects
only the number of iterations needed to reach the fixed point.

How do we know what entry points to passfierwardBlockList?
We treat any block with an entry in the in-flowifg.ctBase as an
entry point.

The rest of the work is done i xpoint, which is shared by both
forward and backward analyses:

fixpoint :: forall n f£.
Edges n
Bool -- going Forward?
DataflowLattice f
(Block n C C -> FactBase f —>
FuelMonad (RG n f C C, FactBase f))
FactBase f
[(Label, Block n C C)]

FuelMonad (RG n £ C C, FactBase f)

Except for the mysteriou8ool passed as the first argument,
the type signature tells the story. The third argument is a func-
tion that analyzes and rewrites a single blotkxpoint applies

that function successively to all the blocks, which are passed as
the fifth argument. The&ixpoint function maintains a “Current
FactBase” which grows monotonically: the initial value of the
CurrentFactBase is the fourth argument tdixpoint, and the
CurrentFactBase is augmented with the new facts that flow out
of eachBlock as it is analyzed. Théixpoint function keeps
analyzing blocks until the CurreRactBase reaches a fixed point.

The code forfixpoint is a massive 70 lines long; for complete-
ness, it appears in Appendix A. The code is mostly straightforward,
although we try to be a bit clever about deciding when a new fact
means that another iteration over the blocks will be required. There
is one more subtle point worth mentioning, which we highlight by
considering a forward analysis of this graph, where execution starts
atL1:

L1: x:=3; goto L4
L2: x:=4; goto L4
L4: if x>3 goto L2 else goto L5

Block L2 is unreachable. But if we iiely process all the blocks
(say in ordelL1, L4, L2), then we will start with the bottom fact for
L2, propagate{x=4} to L4, where it will join with {x=3} to yield
{x=T}. Givenx=T, the conditional ir.4 cannot be rewritten, and
L2 seems reachable. We have lost a good optimization.

Our implementation solves this problem through a clever trick that
is safe only for a forward analysisixpoint analyzes a block only

if the block is reachable from an entry point. This trick is not safe
for a backward analysis, which is wixpoint takes aBool as

its first argument: it must know if the analysis goes forward.

Although the trick can be implemented in just a couple of lines of
code, the reasoning behind it is quite subtle—exactly the sort of
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thing that should be implemented once in Hoopl, so clients don't table representation of control-flow graphs, a problem we have dis-
have to worry about it. cussed elsewhere (Ramsey and Dias 2005).

Because speculative transformation is difficult in an imperative set-
6. Related work ting, Whirlwind’s implementation is split into two phases. The first
phase runs the interleaved analyses and transformations to compute
the final dataflow facts and a representation of the transformations
that should be applied to the input graph. The second phase exe-
cutes the transformations. In Hoopl, because control-flow graphs
are immutable, speculative transformations can be applied imme-
diately, and there is no need for a phase distinction.

Foundations When transfer functions are monotone and lattices |n previous work (Ramsey and Dias 2005), we described a zipper-
are finite in height, iterative dataflow analysis converges to a fixed based representation of control-flow graphs, stressing the advan-
point (Kam and Ullman 1976). If the lattice’s join operation dis- tages of immutability. Our new representation, described in Sec-
tributes over transfer functions, this fixed point is equivalent to tjon/3, is a significant improvement:

a join-over-all-paths solution to the recursive dataflow equations ) )
(Kildall 1973)® Kam and Ullman (1977) generalize to some mono-  ® We can concatenate nodes, blocks, and graphs in constant time.
tone functions. Each client of Hoopl must guarantee monotonicity. e We can do a backward analysis without having to “unzip” (and
allocate a copy of) each block.

While there is a vast body of literature on dataflow analysis and op-
timization, relatively little can be found on tliesignof optimizers,
which is the topic of this paper. We therefore focus on the foun-
dations of dataflow analysis and on the implementations of some
comparable dataflow frameworks.

Cousot and Cousot (1977, 1979) introduce abstract interpretation as
a technique for developing lattices for program analysis. Schmidt e Using GADTs, we can represent a flow-graph node using a sin-
(1998) shows that an all-paths dataflow problem can be viewed as  gle type, instead of the triple of first, middle, and last types
model checking an abstract interpretation. used in our earlier representation. This change simplifies the
interface significantly: instead of providing three transfer func-
tions and three rewrite functions per pass—one for each type
of node—a client of Hoopl provides only one transfer function
The soundness of interleaving analysis and transformation, even  and one rewrite function per pass.

when not all speculative transformations are performed on later o gyrors in concatenation are ruled out at compile-compile time
iterations, was shown by Lerner, Grove, and Chambers (2002). by Haskell's static type system. In earlier implementations,
such errors were not detected until the compiler ran, at which
point we tried to compensate for the errors—but the compen-
sation code harbored subtle faults, which we discovered while
developing a new back end for the Glasgow Haskell Compiler.

Muchnick (1997) presents many examples of both particular anal-
yses and related algorithms.

Frameworks Most dataflow frameworks support only analysis,
not transformation. The framework computes a fixed point of trans-
fer functions, and it is up to the client of the framework to use that
fixed point for transformation. Omitting transformation makes it
much easier to build frameworks, and one can find a spectrum of The implementation of Hoopl is also much better than our earlier
designs. We describe two representative designs, then move on tdmplementations. Not only is the code simpler conceptually, but it
the prior frameworks that support interleaved analysis and transfor- is also shorter: our new implementation is about a third as long as
mation. the previous version, which is part of GHC, version 6.12.

The CIL toolkit (Necula et al. 2002) provides an analysis-only
framework for C programs. The framework is limited to one repre- 7. What we learned
sentation of control-flow graphs and one representation of instruc-
tions, both of which are provided by the framework. The API is
complicated; much of the complexity is needed to enable the client
to affect which instructions the analysis iterates over.

We have spent six years implementing and reimplementing frame-
works for dataflow analysis and transformation. This formidable
design problem taught us two kinds of lessons: we learned some
very specific lessons about representations and algorithms for op-
The Soot framework is designed for analysis of Java programs timizing compilers, and we were forcibly reminded of some very
(Vallée-Rai et al. 2000). While Soot's dataflow library supports general, old lessons that are well known not just to functional pro-
only analysis, not transformation, we found much to admire in its grammers, but to programmers everywhere.

design. Soot’s library is abstracted over the representation of the
control-flow graph and the representation of instructions. Soot’s in-
terface for defining lattice and analysis functions is like our own,
although because Soot is implemented in an imperative style, addi-
tional functions are needed to copy lattice elements. Like CIL, Soot
provides only analysis, not transformation.

Our main goal for Hoopl was to combine three good ideas (inter-
leaved analysis and transformation, optimization fuel, and an ap-
plicative control-flow graph) in a way that could easily be reused
by many, many compiler writers. Reuse requires abstraction, and as
is well known, designing good abstractions is challenging. Hoopl's
data types and the functions over those types have been through
The Whirlwind compiler contains the dataflow framework imple- dozensof revisions. As we were refining our design, we found it
mented by Lerner, Grove, and Chambers (2002), who were the firstinvaluable to operate in two modes: In the first mode, we designed,
to interleave analysis and transformation. Their implementation is built, and used a framework as an important component of a real
much like our early efforts: it is a complicated mix of code that si- compiler (first Quick G-, then GHC). In the second mode, we de-
multaneously manages interleaving, deep rewriting, and fixed-point signed and built a standalone library, then redesigned and rebuilt
computation. By separating these tasks, our implementation sim-it, sometimes going through several significant changes in a week.
plifies the problem dramatically. Whirlwind's implementation also  Operating in the first mode—inside a live compiler—forced us to
suffers from the difficulty of maintaining pointer invariants inamu- make sure that no corners were cut, that we were solving a real
problem, and that we did not inadvertently cripple some other part

5Kildall uses meets, not joins. Lattice orientation is coniemal, and of the compiler. Operating in the second mode—as a standalone
conventions have changed. We use Dana Scott's orientatiatjch higher library—enabled us to iterate furiously, trying out many more ideas
elements carry more information. than would have been possible in the first mode. We have learned
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for dataflow passes (Section 4.5), optimization fuel (Section 4.7),
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A. Code for fixpoint
data TxFactBase n f

= TxFB { tfb_fbase :: FactBase f
, tfb_rg :: RG n £ C C -- Transformed blocks
, tfb_cha : ChangeFlag
, tfb_lbls : LabelSet }

-- Set the tfb_cha flag iff

- (a) the fact in tfb_fbase for or a block L changes
- (b) L is in tfb_1bls.

-- The tfb_lbls are all Labels of the *originalx

-- (not transformed) blocks

updateFact :: DataflowLattice f -> LabelSet -> (Label, f)
-> (ChangeFlag, FactBase f)
-> (ChangeFlag, FactBase f)
updateFact lat lbls (1bl, new_fact) (cha, fbase)
| NoChange <- cha2 (cha, fbase)
| 1bl ‘elemLabelSet‘ 1lbls (SomeChange, new_fbase)
| otherwise (cha, new_fbase)
where
(cha2, res_fact)
= case lookupFact fbase 1bl of
Nothing -> (SomeChange, new_fact)
Just old_fact -> fact_extend lat old_fact new_fact
new_fbase = extendFactBase fbase 1bl res_fact

fixpoint :: forall n f. Edges n
=> Bool -- Going forwards?
-> DataflowLattice f
-> (Block n C C -> FactBase f
-> FuelMonad (RG n f C C, FactBase f))
-> FactBase f -> [(Label, Block n C C)]
-> FuelMonad (RG n f C C, FactBase f)
fixpoint is_fwd lat do_block init_fbase blocks
= do { fuel <- getFuel
; tx_fb <- loop fuel init_fbase
; return (tfb_rg tx_fb,
tfb_fbase tx_fb ‘delFromFactBase‘ blocks) }
-- The outgoing FactBase contains facts only for
-- Labels *not* in the blocks of the graph
where
tx_blocks :: [(Label, Block n C C)]
-> TxFactBase n f -> FuelMonad (TxFactBase n f)
tx_blocks [] tx_fb = return tx_fb
tx_blocks ((1bl,blk):bs) tx_fb = tx_block 1bl blk tx_fb
>>= tx_blocks bs

tx_block :: Label -> Block n C C
-> TxFactBase n f -> FuelMonad (TxFactBase n f)
tx_block 1bl blk tx_fb@(TxFB { tfb_fbase = fbase
, tfb_1lbls = 1lbls
, tfb_rg = blks
, tfb_cha = cha })

is_fwd && not (1bl ‘elemFactBase‘ fbase)
return tx_fb -- Note [Unreachable blocks]
otherwise
do { (rg, out_facts) <- do_block blk fbase
; let (cha’, fbase’)
= foldr (updateFact lat 1lbls) (cha,fbase)
(factBaseList out_facts)
; return (TxFB { tfb_lbls = extendLabelSet 1lbls 1bl
, tfb_rg = rg

‘RGCatC‘ blks
, tfb_fbase = fbase’
, tfb_cha = cha’ }) }

loop :: Fuel -> FactBase f -> FuelMonad (TxFactBase n f)
loop fuel fbase

= do { let init_tx_fb = TxFB { tfb_fbase = fbase
, tfb_cha = NoChange
, tfb_rg = RGNil
, tfb_1bls = emptyLabelSet}

; tx_fb <- tx_blocks blocks init_tx_fb
; case tfb_cha tx_fb of
NoChange -> return tx_fb
SomeChange -> setFuel fuel >>
loop fuel (tfb_fbase tx_fb) }
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B. Index of defined identifiers

This appendix lists every nontrivial identifier used in the body
of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the page
on which the identifier is first referred to.

Some identifiers used in the text are defined in the Haskell Prelude;
for those readers less familiar with Haskell, these identifiers are
listed in Appendix C.

Add :: Operator not shown (but see page 7).
ag let- or \-bound on page 10.

AGraph defined in Figure 5 on page 6.
analyzeAndRewriteFwd defined on page 9.
arbNode defined on page 10.

ARF defined on page/9.

arfBlock defined on pagel 9.

arfBody defined on pade 10.

arfGraph defined on page 10.

arfNode defined on pade 10.

Assign defined in Figure 1 on page 3.

B defined in Figurg 6 on page 7.

b1 let- or A\-bound on page 4.

b2 let- or A\-bound on page 4.

BCat defined in Figure 2 on page 3.

Binop :: Operator -> Expr -> Expr -> Expr not shown
(but see page 7).

blk let- or \-bound on page 13.

blks let- or \-bound on page 13.

Block defined in Figure 2 on page 3.

blocks let- or \-bound on page 13.

Body defined in Figurk 2 on page 3.

body let- or \-bound on page 9.

body’ let- or \-bound on page 10.

BodyCat defined in Figuré 2 on page 3.
BodyEmpty defined in Figure 2 on page 3.
BodyUnit defined in Figure 2 on page 3.
Branch defined in Figure 1 on page 3.

bs let- or \-bound on page 4.

bs1 let- or \-bound on page 4.

bs2 let- or A\-bound on pagde 4.

BUnit defined in Figure 2 on page 3.

¢ defined in Figuré 2 on page 3.

cha let- or \-bound on page 13.

cha’ let- or \-bound on page 13.

cha2 let- or \-bound on page 13.

ChangeFlag defined in Figure 3 on page 4.
CondBranch defined in Figure 1 on page 3.
ConstFact defined in Figure 6 on page 7.
constFactAdd defined in Figuré 6 on page 7.
constLattice defined in Figuré 6 on page 7.
constProp defined in Figurg 6 on page 7.
constPropPass defined in Figure 6 on page 7.
DataflowLattice defined in Figure 3 on page 4.
delFromFactBase :: FactBase f -> [(Label,f)] ->
FactBase f notshown (but see page 13).
do_block let- or A\-bound on page 13.

Edges defined in Figure 2 on page 3.

elemFactBase :: Label -> FactBase f -> Bool not
shown (but see page 13).

elemLabelSet :: Label -> LabelSet -> Bool not shown
(but see page 13).

emptyLabelSet :: LabelSet not shown (but see page]l13).

entryLabel defined in Figure 2 on page 3.
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ex let- or \-bound in Figure R on page 3.

exit let- or \-bound on page 10.

exit’ let- or \-bound on page 10.

Expr defined on page 3.

extendFactBase :: FactBase f -> Label -> f ->
FactBase f notshown (but see page 13).

extendLabelSet :: LabelSet -> Label -> LabelSet not
shown (but see page 13).

Fact defined in Figurg 3 on page 4.

FactBase defined in Figure 3 on page 4.

factBaseLabels :: FactBase f -> [Label] not shown (but
see page 13).

factBaselList :: FactBase f -> [(Label, f)] notshown
(but see page 13).

fact_bot defined in Figure 3 on page 4.
fact_extend defined in Figuré 3 on page 4.
facts let- or \-bound in Figuré 6 on page 7.
£b let- or A-bound on page 10.

fbase let- or \-bound on page 10.

fbase’ let- or \-bound on page 13.

fid let- or A\-bound in Figuré 6 on page 7.
fixpoint defined on pagde 10.

£n let- or \-bound in Figure 5 on page 6.
forwardBlockList defined on page 10.
fp_lattice defined in Figure 3 on page 4.
fp_rewrite defined in Figure 3 on page 4.
fp_transfer defined in Figure 3 on page 4.
Fuel defined on page 10.

fuel let- or \-bound on page 13.
FuelMonad defined on page 8.

FudPass defined in Figure 3 on page 4.
FwdRes defined in Figure 3 on page 4.
FudRewrite defined in Figure 3 on page 4.
FwdTransfer defined in Figuré 3 on page 4.
£x let- or \-bound on page 10.

getFuel :: FuelMonad Fuel notshown (but see pagel13).
GMany defined in Figure 2 on page 3.

GNil defined in Figure 2 on page 3.

Graph defined in Figure 2 on page 3.
graphOf AGraph defined on pade 10.
gSplice defined on pagde 4.

GUnit defined in Figure 2 on page 3.
gUnitCO defined in Figuré 5 on page 6.
gUnit0C defined in Figure 5 on page 6.
HasConst defined in Figure 6 on page 7.

I defined in Figurg 6 on page 7.
init_fbase let- or \-bound on page 13.
init_tx_fb let- or \-bound on page 13.
is_fwd let- or \-bound on page 13.
iterFwdRw defined on page 7.

Just0 defined in Figure 2 on page 3.

Label defined in Figure 2 on page 3.
LabelMap (a type) not shown (but see page 13).
LabelNode defined in Figure 1 on page 3.
LabelSet (a type) not shown (but see page 13).
lat let- or \-bound on page 13.

1bl let- or \-bound on page 13.

1bls let- or A-bound on page 13.
lookupFact :: FactBase f -> Label -> Maybe f not
shown (but see page 13).

loop defined on pade 13.

1s let- or \-bound in Figure 5 on page 6.
mapE defined in Figure 6 on page 7.

Maybe0 defined in Figure 2 on page 3.

mb_g let- or A-bound on page 10.
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mkBranch defined in Figure 5 on page 6.
mkFactBase ::
(but see pade 4).
mkIfThenElse defined in Figure 5 on page 6.
mkLabel defined in Figuré 5 on page 6.
new let- or A\-bound in Figuré 6 on page 7.
new_fact let- or \-bound on page 13.
new_fbase let- or \-bound on page 13.
NoChange defined in Figurg 3 on page 4.
Node defined in Figuré 1 on page 3.

node defined on page 6.

noFwdRw defined on page 6.
normalizeBody defined on pagel9.
Nothing0 defined in Figure 2 on page 3.

0 defined in Figurée 2 on page 3.

old let- or \-bound in Figuré 6 on page 7.
old_fact let- or \-bound on page 13.
out_facts let- or A\-bound on page 13.
pass let- or \-bound on page 10.

pass’ let- or \-bound on page 10.
res_fact let- or \-bound on page 13.
rewriteE defined in Figure 6 on page 7.
RG defined in Figure 7 on page 9.

rg let- or \-bound on page 9.

RGCatC defined in Figure 7 on page 9.
RGCat0 defined in Figure 7 on page 9.
RGNil defined in Figurg 7 on page 9.
RGUnit defined in Figure 7 on page 9.

rw let- or A-bound on page 10.

rw1 let- or A\-bound on page 6.

rwia let- or \-bound on page 6.

rw?2 let- or \-bound on page 6.

setFuel ::
page 13).
s_exp defined in Figure 6 on page 7.

simplify defined in Figuré 6 on page 7.
SomeChange defined in Figure 3 on page 4.
stdMapJoin :: Ord k => JoinFun v -> JoinFun
(Map.Map k v) not shown (but see page 7).
Store defined in Figuré 1 on page 3.

successors defined in Figure 2 on page 3.
tfb_cha defined on page 13.

tfb_fbase defined on pagde 13.

tfb_1bls defined on page 13.

tfb_rg defined on page 13.

thenFwd defined on pade 7.

thenFwdRw defined on page 6.

thing let- or \-bound on pagel9.

tid let- or A-bound in Figure 6 on page 7.
toAGraph defined on pagel8.

Top defined in Figuré 6 on page 7.

transfer defined on pagel8.

transfer_fn defined on page 6.

tx_block defined on page 13.

tx_blocks defined on page 13.

TxFactBase defined on pade 13.

TxFB defined on page 13.

tx_fb let- or \-bound on page 13.

updateFact defined on page 13.

Var defined on pagel3.

varHasConst defined in Figuré 6 on page 7.
withFuel defined on page 10.

withLabels defined in Figure 5 on page 6.

[(Label, f)] -> FactBase f notshown

Fuel -> FuelMonad () notshown (but see
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C. Identifiers defined in Haskell Prelude or a
standard library

1,8, &, &&, %, +, ++, -, ., /,==,>,>=,>> >>= Bool, const,
curry, Data.Map, drop, False, flip, fmap, foldl, foldr,
fst, head, id, Int, Integer, Just, last, 1iftM, map,
Map.empty, Map.insert, Map.lookup, Map.Map, mapM.,
Maybe, not, Nothing, otherwise, return, snd, String, tail,
take, True, uncurry, undefined .
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