{-# LANGUAGE GADTs, ScopedTypeVariables, FlexibleInstances, RankNTypes #-} module Compiler.Hoopl.Util ( gUnitOO, gUnitOC, gUnitCO, gUnitCC , catGraphNodeOC, catGraphNodeOO , catNodeCOGraph, catNodeOOGraph , graphMapBlocks , blockMapNodes, blockMapNodes3 , blockGraph , postorder_dfs, postorder_dfs_from, postorder_dfs_from_except , preorder_dfs, preorder_dfs_from_except , labelsDefined, labelsUsed, externalEntryLabels , LabelsPtr(..) ) where import Control.Monad import Compiler.Hoopl.Collections import Compiler.Hoopl.Graph import Compiler.Hoopl.Label ---------------------------------------------------------------- gUnitOO :: block n O O -> Graph' block n O O gUnitOC :: block n O C -> Graph' block n O C gUnitCO :: block n C O -> Graph' block n C O gUnitCC :: NonLocal (block n) => block n C C -> Graph' block n C C gUnitOO b = GUnit b gUnitOC b = GMany (JustO b) emptyBody NothingO gUnitCO b = GMany NothingO emptyBody (JustO b) gUnitCC b = GMany NothingO (addBlock b emptyBody) NothingO catGraphNodeOO :: Graph n e O -> n O O -> Graph n e O catGraphNodeOC :: NonLocal n => Graph n e O -> n O C -> Graph n e C catNodeOOGraph :: n O O -> Graph n O x -> Graph n O x catNodeCOGraph :: NonLocal n => n C O -> Graph n O x -> Graph n C x catGraphNodeOO GNil n = gUnitOO $ BMiddle n catGraphNodeOO (GUnit b) n = gUnitOO $ b `BCat` BMiddle n catGraphNodeOO (GMany e body (JustO x)) n = GMany e body (JustO $ x `BHead` n) catGraphNodeOC GNil n = gUnitOC $ BLast n catGraphNodeOC (GUnit b) n = gUnitOC $ addToLeft b $ BLast n where addToLeft :: Block n O O -> Block n O C -> Block n O C addToLeft (BMiddle m) g = m `BTail` g addToLeft (b1 `BCat` b2) g = addToLeft b1 $ addToLeft b2 g catGraphNodeOC (GMany e body (JustO x)) n = GMany e body' NothingO where body' = addBlock (x `BClosed` BLast n) body catNodeOOGraph n GNil = gUnitOO $ BMiddle n catNodeOOGraph n (GUnit b) = gUnitOO $ BMiddle n `BCat` b catNodeOOGraph n (GMany (JustO e) body x) = GMany (JustO $ n `BTail` e) body x catNodeCOGraph n GNil = gUnitCO $ BFirst n catNodeCOGraph n (GUnit b) = gUnitCO $ addToRight (BFirst n) b where addToRight :: Block n C O -> Block n O O -> Block n C O addToRight g (BMiddle m) = g `BHead` m addToRight g (b1 `BCat` b2) = addToRight (addToRight g b1) b2 catNodeCOGraph n (GMany (JustO e) body x) = GMany NothingO body' x where body' = addBlock (BFirst n `BClosed` e) body blockGraph :: NonLocal n => Block n e x -> Graph n e x blockGraph b@(BFirst {}) = gUnitCO b blockGraph b@(BMiddle {}) = gUnitOO b blockGraph b@(BLast {}) = gUnitOC b blockGraph b@(BCat {}) = gUnitOO b blockGraph b@(BHead {}) = gUnitCO b blockGraph b@(BTail {}) = gUnitOC b blockGraph b@(BClosed {}) = gUnitCC b -- | Function 'graphMapBlocks' enables a change of representation of blocks, -- nodes, or both. It lifts a polymorphic block transform into a polymorphic -- graph transform. When the block representation stabilizes, a similar -- function should be provided for blocks. graphMapBlocks :: forall block n block' n' e x . (forall e x . block n e x -> block' n' e x) -> (Graph' block n e x -> Graph' block' n' e x) graphMapBlocks f = map where map :: Graph' block n e x -> Graph' block' n' e x map GNil = GNil map (GUnit b) = GUnit (f b) map (GMany e b x) = GMany (fmap f e) (mapMap f b) (fmap f x) -- | Function 'blockMapNodes' enables a change of nodes in a block. blockMapNodes3 :: ( n C O -> n' C O , n O O -> n' O O , n O C -> n' O C) -> Block n e x -> Block n' e x blockMapNodes3 (f, _, _) (BFirst n) = BFirst (f n) blockMapNodes3 (_, m, _) (BMiddle n) = BMiddle (m n) blockMapNodes3 (_, _, l) (BLast n) = BLast (l n) blockMapNodes3 fs (BCat x y) = BCat (blockMapNodes3 fs x) (blockMapNodes3 fs y) blockMapNodes3 fs@(_, m, _) (BHead x n) = BHead (blockMapNodes3 fs x) (m n) blockMapNodes3 fs@(_, m, _) (BTail n x) = BTail (m n) (blockMapNodes3 fs x) blockMapNodes3 fs (BClosed x y) = BClosed (blockMapNodes3 fs x) (blockMapNodes3 fs y) blockMapNodes :: (forall e x. n e x -> n' e x) -> (Block n e x -> Block n' e x) blockMapNodes f = blockMapNodes3 (f, f, f) ---------------------------------------------------------------- class LabelsPtr l where targetLabels :: l -> [Label] instance NonLocal n => LabelsPtr (n e C) where targetLabels n = successors n instance LabelsPtr Label where targetLabels l = [l] instance LabelsPtr LabelSet where targetLabels = setElems instance LabelsPtr l => LabelsPtr [l] where targetLabels = concatMap targetLabels -- | Traversal: 'postorder_dfs' returns a list of blocks reachable -- from the entry of enterable graph. The entry and exit are *not* included. -- The list has the following property: -- -- Say a "back reference" exists if one of a block's -- control-flow successors precedes it in the output list -- -- Then there are as few back references as possible -- -- The output is suitable for use in -- a forward dataflow problem. For a backward problem, simply reverse -- the list. ('postorder_dfs' is sufficiently tricky to implement that -- one doesn't want to try and maintain both forward and backward -- versions.) postorder_dfs :: NonLocal (block n) => Graph' block n O x -> [block n C C] preorder_dfs :: NonLocal (block n) => Graph' block n O x -> [block n C C] -- | This is the most important traversal over this data structure. It drops -- unreachable code and puts blocks in an order that is good for solving forward -- dataflow problems quickly. The reverse order is good for solving backward -- dataflow problems quickly. The forward order is also reasonably good for -- emitting instructions, except that it will not usually exploit Forrest -- Baskett's trick of eliminating the unconditional branch from a loop. For -- that you would need a more serious analysis, probably based on dominators, to -- identify loop headers. -- -- The ubiquity of 'postorder_dfs' is one reason for the ubiquity of the 'LGraph' -- representation, when for most purposes the plain 'Graph' representation is -- more mathematically elegant (but results in more complicated code). -- -- Here's an easy way to go wrong! Consider -- @ -- A -> [B,C] -- B -> D -- C -> D -- @ -- Then ordinary dfs would give [A,B,D,C] which has a back ref from C to D. -- Better to get [A,B,C,D] graphDfs :: (NonLocal (block n)) => (LabelMap (block n C C) -> block n O C -> LabelSet -> [block n C C]) -> (Graph' block n O x -> [block n C C]) graphDfs _ (GNil) = [] graphDfs _ (GUnit{}) = [] graphDfs order (GMany (JustO entry) body _) = order body entry setEmpty postorder_dfs = graphDfs postorder_dfs_from_except preorder_dfs = graphDfs preorder_dfs_from_except postorder_dfs_from_except :: forall block e . (NonLocal block, LabelsPtr e) => LabelMap (block C C) -> e -> LabelSet -> [block C C] postorder_dfs_from_except blocks b visited = vchildren (get_children b) (\acc _visited -> acc) [] visited where vnode :: block C C -> ([block C C] -> LabelSet -> a) -> [block C C] -> LabelSet -> a vnode block cont acc visited = if setMember id visited then cont acc visited else let cont' acc visited = cont (block:acc) visited in vchildren (get_children block) cont' acc (setInsert id visited) where id = entryLabel block vchildren bs cont acc visited = next bs acc visited where next children acc visited = case children of [] -> cont acc visited (b:bs) -> vnode b (next bs) acc visited get_children block = foldr add_id [] $ targetLabels block add_id id rst = case lookupFact id blocks of Just b -> b : rst Nothing -> rst postorder_dfs_from :: (NonLocal block, LabelsPtr b) => LabelMap (block C C) -> b -> [block C C] postorder_dfs_from blocks b = postorder_dfs_from_except blocks b setEmpty ---------------------------------------------------------------- data VM a = VM { unVM :: LabelSet -> (a, LabelSet) } marked :: Label -> VM Bool mark :: Label -> VM () instance Monad VM where return a = VM $ \visited -> (a, visited) m >>= k = VM $ \visited -> let (a, v') = unVM m visited in unVM (k a) v' marked l = VM $ \v -> (setMember l v, v) mark l = VM $ \v -> ((), setInsert l v) preorder_dfs_from_except :: forall block e . (NonLocal block, LabelsPtr e) => LabelMap (block C C) -> e -> LabelSet -> [block C C] preorder_dfs_from_except blocks b visited = (fst $ unVM (children (get_children b)) visited) [] where children [] = return id children (b:bs) = liftM2 (.) (visit b) (children bs) visit :: block C C -> VM (HL (block C C)) visit b = do already <- marked (entryLabel b) if already then return id else do mark (entryLabel b) bs <- children $ get_children b return $ b `cons` bs get_children block = foldr add_id [] $ targetLabels block add_id id rst = case lookupFact id blocks of Just b -> b : rst Nothing -> rst type HL a = [a] -> [a] -- Hughes list (constant-time concatenation) cons :: a -> HL a -> HL a cons a as tail = a : as tail ---------------------------------------------------------------- labelsDefined :: forall block n e x . NonLocal (block n) => Graph' block n e x -> LabelSet labelsDefined GNil = setEmpty labelsDefined (GUnit{}) = setEmpty labelsDefined (GMany _ body x) = mapFoldWithKey addEntry (exitLabel x) body where addEntry label _ labels = setInsert label labels exitLabel :: MaybeO x (block n C O) -> LabelSet exitLabel NothingO = setEmpty exitLabel (JustO b) = setSingleton (entryLabel b) labelsUsed :: forall block n e x. NonLocal (block n) => Graph' block n e x -> LabelSet labelsUsed GNil = setEmpty labelsUsed (GUnit{}) = setEmpty labelsUsed (GMany e body _) = mapFold addTargets (entryTargets e) body where addTargets block labels = setInsertList (successors block) labels entryTargets :: MaybeO e (block n O C) -> LabelSet entryTargets NothingO = setEmpty entryTargets (JustO b) = addTargets b setEmpty externalEntryLabels :: forall n . NonLocal n => LabelMap (Block n C C) -> LabelSet externalEntryLabels body = defined `setDifference` used where defined = labelsDefined g used = labelsUsed g g = GMany NothingO body NothingO