```-- | Matrix type and functions.
module Graphics.PS.Matrix (R,Matrix(Matrix)
,identity
,translation,scaling,rotation) where

-- | Synonym for 'Double'.
type R = Double

-- | Transformation matrix data type.
data Matrix = Matrix R R R R R R deriving (Eq,Show)

-- | Enumeration of 'Matrix' indices.
data Matrix_Index = I0 | I1 | I2

row :: Matrix -> Matrix_Index -> (R,R,R)
row (Matrix a b _ _ _ _) I0 = (a,b,0)
row (Matrix _ _ c d _ _) I1 = (c,d,0)
row (Matrix _ _ _ _ e f) I2 = (e,f,1)

col :: Matrix -> Matrix_Index -> (R,R,R)
col (Matrix a _ c _ e _) I0 = (a,c,e)
col (Matrix _ b _ d _ f) I1 = (b,d,f)
col (Matrix _ _ _ _ _ _) I2 = (0,0,1)

multiply :: Matrix -> Matrix -> Matrix
multiply a b =
let f i j = let (r1,r2,r3) = row a i
(c1,c2,c3) = col b j
in r1 * c1 + r2 * c2 + r3 * c3
m = Matrix
in m (f I0 I0) (f I0 I1) (f I1 I0) (f I1 I1) (f I2 I0) (f I2 I1)

pointwise :: (R -> R) -> Matrix -> Matrix
pointwise g (Matrix a b c d e f) =
Matrix (g a) (g b) (g c) (g d) (g e) (g f)

pointwise2 :: (R -> R -> R) -> Matrix -> Matrix -> Matrix
pointwise2 g (Matrix a b c d e f) (Matrix a' b' c' d' e' f') =
Matrix (g a a') (g b b') (g c c') (g d d') (g e e') (g f f')

instance Num Matrix where
(*) = multiply
(+) = pointwise2 (+)
(-) = pointwise2 (-)
abs = pointwise abs
signum = pointwise signum
fromInteger n = let n' = fromInteger n
in Matrix n' 0 0 n' 0 0

-- | A translation matrix with independent x and y offsets.
translation :: R -> R -> Matrix
translation = Matrix 1 0 0 1

-- | A scaling matrix with independent x and y scalars.
scaling :: R -> R -> Matrix
scaling x y = Matrix x 0 0 y 0 0

-- | A rotation matrix through the indicated angle (in radians).
rotation :: R -> Matrix
rotation a =
let c = cos a
s = sin a
t = negate s
in Matrix c s t c 0 0

-- | The identity matrix.
identity :: Matrix
identity = Matrix 1 0 0 1 0 0

{--
translate :: R -> R -> M -> M
translate x y m = m * (translation x y)

scale :: R -> R -> M -> M
scale x y m = m * (scaling x y)

rotate :: R -> M -> M
rotate r m = m * (rotation r)

scalarMultiply :: R -> M -> M
scalarMultiply scalar = pointwise (* scalar)

adjoint :: M -> M
adjoint (Matrix a b c d x y) = M d (-b) (-c) a (c * y - d * x) (b * x - a * y)

invert :: M -> M
invert m = scalarMultiply (recip d) (adjoint m)
where (Matrix xx yx xy yy _ _) = m
d = xx*yy - yx*xy
--}
```