-- | Non-standard mathematical classes and class instances. module Sound.SC3.UGen.Math where import qualified Data.Fixed as F {- base -} import Data.Int import Sound.SC3.UGen.Bindings.DB (mulAdd) import Sound.SC3.UGen.Operator import Sound.SC3.UGen.Type -- | Pseudo-infinite constant UGen. dinf :: UGen dinf = constant (9e8::Float) -- | True is conventionally 1. The test to determine true is @> 0@. sc3_true :: Num n => n sc3_true = 1 -- | False is conventionally 0. sc3_false :: Num n => n sc3_false = 0 -- | Lifted 'not'. -- -- > sc3_not sc3_true == sc3_false -- > sc3_not sc3_false == sc3_true sc3_not :: (Ord n,Num n) => n -> n sc3_not = sc3_bool . not . (> 0) -- | Translate 'Bool' to 'sc3_true' and 'sc3_false'. sc3_bool :: Num n => Bool -> n sc3_bool b = if b then sc3_true else sc3_false -- | Lift comparison function. sc3_comparison :: Num n => (n -> n -> Bool) -> n -> n -> n sc3_comparison f p q = sc3_bool (f p q) -- | Lifted '=='. sc3_eq :: (Num n, Eq n) => n -> n -> n sc3_eq = sc3_comparison (==) -- | Lifted '/='. sc3_neq :: (Num n, Eq n) => n -> n -> n sc3_neq = sc3_comparison (/=) -- | Lifted '<'. sc3_lt :: (Num n, Ord n) => n -> n -> n sc3_lt = sc3_comparison (<) -- | Lifted '<='. sc3_lte :: (Num n, Ord n) => n -> n -> n sc3_lte = sc3_comparison (<=) -- | Lifted '>'. sc3_gt :: (Num n, Ord n) => n -> n -> n sc3_gt = sc3_comparison (>) -- | Lifted '>='. sc3_gte :: (Num n, Ord n) => n -> n -> n sc3_gte = sc3_comparison (>=) -- | Variant of @SC3@ @roundTo@ function. -- -- > let r = [0,0,0.25,0.25,0.5,0.5,0.5,0.75,0.75,1,1] -- > in map (`roundTo_` 0.25) [0,0.1 .. 1] == r roundTo_ :: (RealFrac n, Ord n) => n -> n -> n roundTo_ = sc3_round_to sc3_round_to :: (RealFrac n, Ord n) => n -> n -> n sc3_round_to a b = if b == 0 then a else sc3_floor ((a / b) + 0.5) * b sc3_idiv :: RealFrac n => n -> n -> n sc3_idiv a b = fromInteger (floor a `div` floor b) -- | Association table for 'Binary' to haskell function implementing operator. binop_hs_tbl :: (Real n,Floating n,RealFrac n,Ord n) => [(Binary,n -> n -> n)] binop_hs_tbl = [(Add,(+)) ,(Sub,(-)) ,(FDiv,(/)) ,(IDiv,sc3_idiv) ,(Mod,F.mod') ,(EQ_,sc3_eq) ,(NE,sc3_neq) ,(LT_,sc3_lt) ,(LE,sc3_lte) ,(GT_,sc3_gt) ,(GE,sc3_gte) ,(Min,min) ,(Max,max) ,(Mul,(*)) ,(Pow,(**)) ,(Min,min) ,(Max,max) ,(Round,sc3_round_to)] -- | 'lookup' 'binop_hs_tbl' via 'toEnum'. binop_special_hs :: (Real n,RealFrac n,Floating n, Ord n) => Int -> Maybe (n -> n -> n) binop_special_hs z = lookup (toEnum z) binop_hs_tbl -- | Association table for 'Unary' to haskell function implementing operator. uop_hs_tbl :: (RealFrac n,Floating n,Ord n) => [(Unary,n -> n)] uop_hs_tbl = [(Neg,negate) ,(Not,\z -> if z > 0 then 0 else 1) ,(Abs,abs) ,(Ceil,sc3_ceiling) ,(Floor,sc3_floor) ,(Squared,squared') ,(Cubed,cubed') ,(Sqrt,sqrt) ,(Recip,recip) ,(MIDICPS,midiCPS') ,(CPSMIDI,cpsMIDI') ,(Sin,sin) ,(Cos,cos) ,(Tan,tan)] -- | 'lookup' 'uop_hs_tbl' via 'toEnum'. uop_special_hs :: (RealFrac n,Floating n, Ord n) => Int -> Maybe (n -> n) uop_special_hs z = lookup (toEnum z) uop_hs_tbl -- The Eq and Ord classes in the Prelude require Bool, hence the name -- mangling. True is 1.0, False is 0.0 -- | Variant on Eq class, result is of the same type as the values compared. class (Eq a,Num a) => EqE a where (==*) :: a -> a -> a (==*) = sc3_eq (/=*) :: a -> a -> a (/=*) = sc3_neq instance EqE Int where instance EqE Integer where instance EqE Int32 where instance EqE Int64 where instance EqE Float where instance EqE Double where instance EqE UGen where (==*) = mkBinaryOperator EQ_ (==*) (/=*) = mkBinaryOperator NE (/=*) -- | Variant on Ord class, result is of the same type as the values compared. class (Ord a,Num a) => OrdE a where (<*) :: a -> a -> a (<*) = sc3_lt (<=*) :: a -> a -> a (<=*) = sc3_lte (>*) :: a -> a -> a (>*) = sc3_gt (>=*) :: a -> a -> a (>=*) = sc3_gte instance OrdE Int instance OrdE Integer instance OrdE Int32 where instance OrdE Int64 where instance OrdE Float instance OrdE Double instance OrdE UGen where (<*) = mkBinaryOperator LT_ sc3_lt (<=*) = mkBinaryOperator LE sc3_lte (>*) = mkBinaryOperator GT_ sc3_gt (>=*) = mkBinaryOperator GE sc3_gte sc3_properFraction :: (RealFrac t, Num t) => t -> (t,t) sc3_properFraction a = let (p,q) = properFraction a in (fromInteger p,q) sc3_truncate :: (RealFrac a, Num a) => a -> a sc3_truncate a = fromInteger (truncate a) sc3_round :: (RealFrac a, Num a) => a -> a sc3_round a = fromInteger (round a) sc3_ceiling :: (RealFrac a, Num a) => a -> a sc3_ceiling a = fromInteger (ceiling a) sc3_floor :: (RealFrac a, Num a) => a -> a sc3_floor a = fromInteger (floor a) -- | Variant of 'RealFrac' with non 'Integral' results. class RealFrac a => RealFracE a where properFractionE :: a -> (a,a) properFractionE = sc3_properFraction truncateE :: a -> a truncateE = sc3_truncate roundE :: a -> a roundE = sc3_round ceilingE :: a -> a ceilingE = sc3_ceiling floorE :: a -> a floorE = sc3_floor instance RealFracE Float instance RealFracE Double -- | 'UGen' form or 'roundTo_'. roundTo :: UGen -> UGen -> UGen roundTo = mkBinaryOperator Round roundTo_ instance RealFracE UGen where properFractionE = error "UGen.properFractionE" truncateE = error "UGen.truncateE" roundE i = roundTo i 1 ceilingE = mkUnaryOperator Ceil ceilingE floorE = mkUnaryOperator Floor floorE -- | 'UGen' form of 'ceilingE'. ceil :: UGen -> UGen ceil = ceilingE -- | 'Floating' form of 'midiCPS'. midiCPS' :: Floating a => a -> a midiCPS' i = 440.0 * (2.0 ** ((i - 69.0) * (1.0 / 12.0))) -- | 'Floating' form of 'cpsMIDI'. cpsMIDI' :: Floating a => a -> a cpsMIDI' a = (logBase 2 (a * (1.0 / 440.0)) * 12.0) + 69.0 cpsOct' :: Floating a => a -> a cpsOct' a = logBase 2 (a * (1.0 / 440.0)) + 4.75 ampDb' :: Floating a => a -> a ampDb' a = logBase 10 a * 20 dbAmp' :: Floating a => a -> a dbAmp' a = 10 ** (a * 0.05) cubed' :: Num a => a -> a cubed' a = a * a * a midiRatio' :: Floating a => a -> a midiRatio' a = 2.0 ** (a * (1.0 / 12.0)) octCPS' :: Floating a => a -> a octCPS' a = 440.0 * (2.0 ** (a - 4.75)) ratioMIDI' :: Floating a => a -> a ratioMIDI' a = 12.0 * logBase 2 a squared' :: Num a => a -> a squared' a = a * a -- | Unary operator class. -- -- > map (floor . (* 1e4) . dbAmp) [-90,-60,-30,0] == [0,10,316,10000] class (Floating a, Ord a) => UnaryOp a where ampDb :: a -> a ampDb = ampDb' asFloat :: a -> a asFloat = error "asFloat" asInt :: a -> a asInt = error "asInt" cpsMIDI :: a -> a cpsMIDI = cpsMIDI' cpsOct :: a -> a cpsOct = cpsOct' cubed :: a -> a cubed = cubed' dbAmp :: a -> a dbAmp = dbAmp' distort :: a -> a distort = error "distort" frac :: a -> a frac = error "frac" isNil :: a -> a isNil a = if a == 0.0 then 0.0 else 1.0 log10 :: a -> a log10 = logBase 10 log2 :: a -> a log2 = logBase 2 midiCPS :: a -> a midiCPS = midiCPS' midiRatio :: a -> a midiRatio = midiRatio' notE :: a -> a notE a = if a > 0.0 then 0.0 else 1.0 notNil :: a -> a notNil a = if a /= 0.0 then 0.0 else 1.0 octCPS :: a -> a octCPS = octCPS' ramp_ :: a -> a ramp_ _ = error "ramp_" ratioMIDI :: a -> a ratioMIDI = ratioMIDI' softClip :: a -> a softClip = error "softClip" squared :: a -> a squared = squared' instance UnaryOp Float where instance UnaryOp Double where instance UnaryOp UGen where ampDb = mkUnaryOperator AmpDb ampDb asFloat = mkUnaryOperator AsFloat asFloat asInt = mkUnaryOperator AsInt asInt cpsMIDI = mkUnaryOperator CPSMIDI cpsMIDI cpsOct = mkUnaryOperator CPSOct cpsOct cubed = mkUnaryOperator Cubed cubed dbAmp = mkUnaryOperator DbAmp dbAmp distort = mkUnaryOperator Distort distort frac = mkUnaryOperator Frac frac isNil = mkUnaryOperator IsNil isNil log10 = mkUnaryOperator Log10 log10 log2 = mkUnaryOperator Log2 log2 midiCPS = mkUnaryOperator MIDICPS midiCPS midiRatio = mkUnaryOperator MIDIRatio midiRatio notE = mkUnaryOperator Not notE notNil = mkUnaryOperator NotNil notNil octCPS = mkUnaryOperator OctCPS octCPS ramp_ = mkUnaryOperator Ramp_ ramp_ ratioMIDI = mkUnaryOperator RatioMIDI ratioMIDI softClip = mkUnaryOperator SoftClip softClip squared = mkUnaryOperator Squared squared difSqr' :: Num a => a -> a -> a difSqr' a b = (a * a) - (b * b) hypotx' :: (Ord a, Floating a) => a -> a -> a hypotx' x y = abs x + abs y - ((sqrt 2 - 1) * min (abs x) (abs y)) -- | Binary operator class. class (Floating a,RealFrac a, Ord a) => BinaryOp a where absDif :: a -> a -> a absDif a b = abs (a - b) amClip :: a -> a -> a amClip a b = if b <= 0 then 0 else a * b atan2E :: a -> a -> a atan2E a b = atan (b/a) clip2 :: a -> a -> a clip2 a b = clip_ a (-b) b difSqr :: a -> a -> a difSqr = difSqr' excess :: a -> a -> a excess a b = a - clip_ a (-b) b exprandRange :: a -> a -> a exprandRange = error "exprandRange" fill :: a -> a -> a fill = error "fill" firstArg :: a -> a -> a firstArg a _ = a fold2 :: a -> a -> a fold2 a b = fold_ a (-b) b gcdE :: a -> a -> a gcdE = error "gcdE" hypot :: a -> a -> a hypot x y = sqrt (x * x + y * y) hypotx :: a -> a -> a hypotx = hypotx' iDiv :: a -> a -> a iDiv = sc3_idiv lcmE :: a -> a -> a lcmE = error "lcmE" modE :: a -> a -> a modE = error "modE" randRange :: a -> a -> a randRange = error "randRange" ring1 :: a -> a -> a ring1 a b = a * b + a ring2 :: a -> a -> a ring2 a b = a * b + a + b ring3 :: a -> a -> a ring3 a b = a * a * b ring4 :: a -> a -> a ring4 a b = a * a * b - a * b * b roundUp :: a -> a -> a roundUp = error "roundUp" scaleNeg :: a -> a -> a scaleNeg a b = (abs a - a) * b' + a where b' = 0.5 * b + 0.5 sqrDif :: a -> a -> a sqrDif a b = (a-b) * (a-b) sqrSum :: a -> a -> a sqrSum a b = (a+b) * (a+b) sumSqr :: a -> a -> a sumSqr a b = (a*a) + (b*b) thresh :: a -> a -> a thresh a b = if a < b then 0 else a trunc :: a -> a -> a trunc = error "trunc" wrap2 :: a -> a -> a wrap2 = error "wrap2" -- | The SC3 @%@ operator is the 'F.mod'' function. -- -- > > 1.5 % 1.2 // ~= 0.3 -- > > -1.5 % 1.2 // ~= 0.9 -- > > 1.5 % -1.2 // ~= -0.9 -- > > -1.5 % -1.2 // ~= -0.3 -- -- > 1.5 `fmod_f32` 1.2 -- ~= 0.3 -- > (-1.5) `fmod_f32` 1.2 -- ~= 0.9 -- > 1.5 `fmod_f32` (-1.2) -- ~= -0.9 -- > (-1.5) `fmod_f32` (-1.2) -- ~= -0.3 -- -- > > 1.2 % 1.5 // ~= 1.2 -- > > -1.2 % 1.5 // ~= 0.3 -- > 1.2 % -1.5 // ~= -0.3 -- > -1.2 % -1.5 // ~= -1.2 -- -- > 1.2 `fmod_f32` 1.5 -- ~= 1.2 -- > (-1.2) `fmod_f32` 1.5 -- ~= 0.3 -- > 1.2 `fmod_f32` (-1.5) -- ~= -0.3 -- > (-1.2) `fmod_f32` (-1.5) -- ~= -1.2 fmod_f32 :: Float -> Float -> Float fmod_f32 = F.mod' instance BinaryOp Float where fold2 a b = fold_ a (-b) b modE = F.mod' roundUp a b = if b == 0 then a else ceilingE (a/b + 0.5) * b wrap2 a b = wrap_ a (-b) b instance BinaryOp Double where fold2 a b = fold_ a (-b) b modE = F.mod' roundUp a b = if b == 0 then a else ceilingE (a/b + 0.5) * b wrap2 a b = wrap_ a (-b) b instance BinaryOp UGen where iDiv = mkBinaryOperator IDiv iDiv modE = mkBinaryOperator Mod F.mod' lcmE = mkBinaryOperator LCM lcmE gcdE = mkBinaryOperator GCD gcdE roundUp = mkBinaryOperator RoundUp roundUp trunc = mkBinaryOperator Trunc trunc atan2E = mkBinaryOperator Atan2 atan2E hypot = mkBinaryOperator Hypot hypot hypotx = mkBinaryOperator Hypotx hypotx fill = mkBinaryOperator Fill fill ring1 = mkBinaryOperator Ring1 ring1 ring2 = mkBinaryOperator Ring2 ring2 ring3 = mkBinaryOperator Ring3 ring3 ring4 = mkBinaryOperator Ring4 ring4 difSqr = mkBinaryOperator DifSqr difSqr sumSqr = mkBinaryOperator SumSqr sumSqr sqrSum = mkBinaryOperator SqrSum sqrSum sqrDif = mkBinaryOperator SqrDif sqrDif absDif = mkBinaryOperator AbsDif absDif thresh = mkBinaryOperator Thresh thresh amClip = mkBinaryOperator AMClip amClip scaleNeg = mkBinaryOperator ScaleNeg scaleNeg clip2 = mkBinaryOperator Clip2 clip2 excess = mkBinaryOperator Excess excess fold2 = mkBinaryOperator Fold2 fold2 wrap2 = mkBinaryOperator Wrap2 wrap2 firstArg = mkBinaryOperator FirstArg firstArg randRange = mkBinaryOperator RandRange randRange exprandRange = mkBinaryOperator ExpRandRange exprandRange -- | Ternary operator class. class Num a => TernaryOp a where mul_add :: a -> a -> a -> a mul_add i m a = i * m + a instance TernaryOp UGen where mul_add = mulAdd instance TernaryOp Float where instance TernaryOp Double where -- | Wrap /k/ to within range /(i,j)/, ie. @AbstractFunction.wrap@. -- -- > > [5,6].wrap(0,5) == [5,0] -- > map (wrap' 0 5) [5,6] == [5,0] -- -- > > [9,10,5,6,7,8,9,10,5,6].wrap(5,10) == [9,10,5,6,7,8,9,10,5,6] -- > map (wrap' 5 10) [3..12] == [9,10,5,6,7,8,9,10,5,6] wrap' :: RealFracE n => n -> n -> n -> n wrap' i j k = let r = j - i + 1 in if k >= i && k <= j then k else k - r * floorE ((k-i) / r) -- | Generic variant of 'wrap''. -- -- > > [5,6].wrap(0,5) == [5,0] -- > map (genericWrap 0 5) [5,6] == [5,0] -- -- > > [9,10,5,6,7,8,9,10,5,6].wrap(5,10) == [9,10,5,6,7,8,9,10,5,6] -- > map (genericWrap (5::Integer) 10) [3..12] == [9,10,5,6,7,8,9,10,5,6] genericWrap :: (Ord a, Num a) => a -> a -> a -> a genericWrap l r n = let d = r - l + 1 f = genericWrap l r in if n < l then f (n + d) else if n > r then f (n - d) else n -- | Variant of 'wrap'' with @SC3@ argument ordering. -- -- > map (\n -> wrap_ n 5 10) [3..12] == map (wrap' 5 10) [3..12] wrap_ :: RealFracE n => n -> n -> n -> n wrap_ a b c = wrap' b c a -- | Fold /k/ to within range /(i,j)/, ie. @AbstractFunction.fold@ -- -- > map (foldToRange 5 10) [3..12] == [7,6,5,6,7,8,9,10,9,8] foldToRange :: (Ord a,Num a) => a -> a -> a -> a foldToRange i j = let f n = if n > j then f (j - (n - j)) else if n < i then f (i - (n - i)) else n in f -- | Variant of 'foldToRange' with @SC3@ argument ordering. fold_ :: (Ord a,Num a) => a -> a -> a -> a fold_ n i j = foldToRange i j n -- | Clip /k/ to within range /(i,j)/, -- -- > map (clip' 5 10) [3..12] == [5,5,5,6,7,8,9,10,10,10] clip' :: (Ord a) => a -> a -> a -> a clip' i j n = if n < i then i else if n > j then j else n -- | Variant of 'clip'' with @SC3@ argument ordering. clip_ :: (Ord a) => a -> a -> a -> a clip_ n i j = clip' i j n hypot_ :: (Floating a) => a -> a -> a hypot_ x y = sqrt (x * x + y * y) -- | Calculate multiplier and add values for 'linLin' transform. -- -- > range_muladd 3 4 == (0.5,3.5) -- > linLin_muladd (-1) 1 3 4 == (0.5,3.5) -- > linLin_muladd 0 1 3 4 == (1,3) -- > linLin_muladd (-1) 1 0 1 == (0.5,0.5) linLin_muladd :: Fractional t => t -> t -> t -> t -> (t, t) linLin_muladd sl sr dl dr = let m = (dr - dl) / (sr - sl) a = dl - (m * sl) in (m,a) -- | Map from one linear range to another linear range. linlin :: (Fractional a,TernaryOp a) => a -> a -> a -> a -> a -> a linlin i sl sr dl dr = let (m,a) = linLin_muladd sl sr dl dr in mul_add i m a -- | Variant without 'TernaryOp' constraint. linlin' :: Fractional a => a -> a -> a -> a -> a -> a linlin' i sl sr dl dr = let (m,a) = linLin_muladd sl sr dl dr in i * m + a -- | Scale uni-polar (0,1) input to linear (l,r) range -- -- > map (urange 3 4) [0,0.5,1] == [3,3.5,4] urange :: (Fractional a,TernaryOp a) => a -> a -> a -> a urange l r i = let m = r - l in mul_add i m l -- | Variant without 'TernaryOp' constraint. urange' :: Fractional a => a -> a -> a -> a urange' l r i = let m = r - l in i * m + l -- | Calculate multiplier and add values for 'range' transform. -- -- > range_muladd 3 4 == (0.5,3.5) range_muladd :: Fractional t => t -> t -> (t, t) range_muladd = linLin_muladd (-1) 1 -- | Scale bi-polar (-1,1) input to linear (l,r) range. Note that the -- argument order is not the same as 'linLin'. -- -- > map (range 3 4) [-1,0,1] == [3,3.5,4] -- > map (\x -> let (m,a) = linLin_muladd (-1) 1 3 4 in x * m + a) [-1,0,1] range :: (Fractional a,TernaryOp a) => a -> a -> a -> a range l r i = let (m,a) = range_muladd l r in mul_add i m a -- | Variant without 'TernaryOp' constraint. range' :: Fractional a => a -> a -> a -> a range' l r i = let (m,a) = range_muladd l r in i * m + a