-- | The unit-generator graph structure implemented by the -- SuperCollider synthesis server. module Sound.SC3.Server.Synthdef ( Node(..), FromPort(..), Graph(..) , synth, synthdef, synthstat ) where import qualified Data.ByteString.Lazy as B import qualified Data.Char as C import qualified Data.IntMap as M import Data.List import Data.Word import Sound.OpenSoundControl import Sound.SC3.UGen.UGen import Sound.SC3.UGen.Rate -- | Node identifier. type NodeId = Int -- | Port index. type PortIndex = Int -- | Type to represent unit generator graph. data Graph = Graph { nextId :: NodeId , constants :: [Node] , controls :: [Node] , ugens :: [Node] } deriving (Eq, Show) -- | Type to represent nodes in unit generator graph. data Node = NodeC { node_id :: NodeId , node_c_value :: Double } | NodeK { node_id :: NodeId , node_k_rate :: Rate , node_k_name :: String , node_k_default :: Double , node_k_type :: KType } | NodeU { node_id :: NodeId , node_u_rate :: Rate , node_u_name :: String , node_u_inputs :: [FromPort] , node_u_outputs :: [Output] , node_u_special :: Special , node_u_ugenid :: Int } | NodeP { node_id :: NodeId , node_p_node :: Node , node_p_index :: PortIndex } deriving (Eq, Show) -- There are four classes of controls. data KType = K_IR | K_KR | K_TR | K_AR deriving (Eq, Show, Ord) node_k_cmp :: Node -> Node -> Ordering node_k_cmp p q = compare (node_k_type p) (node_k_type q) -- Determine class of control given rate and name. ktype :: Rate -> Bool -> KType ktype r tr = if tr then case r of KR -> K_TR _ -> error "ktype" else case r of IR -> K_IR KR -> K_KR AR -> K_AR DR -> error "ktype" -- | Type to represent the left hand side of an edge in a unit -- generator graph. data FromPort = C NodeId | K NodeId KType | U NodeId PortIndex deriving (Eq, Show) -- | Transform a unit generator into a graph. synth :: UGen -> Graph synth u = let (_, g) = mk_node (prepare_root u) empty_graph (Graph _ cs ks us) = g ks' = sortBy node_k_cmp ks us' = if null ks' then reverse us else implicit ks' ++ reverse us in Graph (-1) cs ks' us' -- | Transform a unit generator into bytecode. synthdef :: String -> UGen -> [Word8] synthdef s = B.unpack . encode_graphdef s . synth -- | Simple statistical analysis of a unit generator graph. synthstat :: UGen -> String synthstat u = let s = synth u cs = constants s ks = controls s us = ugens s f g = let h (x:xs) = (x, length (x:xs)) h [] = undefined in show . map h . group . sort . map g in unlines ["number of constants : " ++ show (length cs) ,"number of controls : " ++ show (length ks) ,"control rates : " ++ f node_k_rate ks ,"number of unit generators : " ++ show (length us) ,"unit generator rates : " ++ f node_u_rate us] as_from_port :: Node -> FromPort as_from_port (NodeC n _) = C n as_from_port (NodeK n _ _ _ t) = K n t as_from_port (NodeU n _ _ _ _ _ _) = U n 0 as_from_port (NodeP _ u p) = U (node_id u) p -- The empty graph. empty_graph :: Graph empty_graph = Graph 0 [] [] [] -- Predicate to locate constant. find_c_p :: Double -> Node -> Bool find_c_p x (NodeC _ y) = x == y find_c_p _ _ = error "find_c_p" -- Insert a constant node into the graph. push_c :: Double -> Graph -> (Node, Graph) push_c x g = let n = NodeC (nextId g) x in (n, g { constants = n : constants g , nextId = nextId g + 1 }) -- Either find existing constant node, or insert a new node. mk_node_c :: UGen -> Graph -> (Node, Graph) mk_node_c (Constant x) g = let y = find (find_c_p x) (constants g) in maybe (push_c x g) (\y' -> (y', g)) y mk_node_c _ _ = error "mk_node_c" -- Predicate to locate control, names must be unique. find_k_p :: String -> Node -> Bool find_k_p x (NodeK _ _ y _ _) = x == y find_k_p _ _ = error "find_k_p" -- Insert a control node into the graph. push_k :: (Rate, String, Double, Bool) -> Graph -> (Node, Graph) push_k (r, nm, d, tr) g = let n = NodeK (nextId g) r nm d (ktype r tr) in (n, g { controls = n : controls g , nextId = nextId g + 1 }) -- Either find existing control node, or insert a new node. mk_node_k :: UGen -> Graph -> (Node, Graph) mk_node_k (Control r nm d tr) g = let y = find (find_k_p nm) (controls g) in maybe (push_k (r, nm, d, tr) g) (\y' -> (y', g)) y mk_node_k _ _ = error "mk_node_k" acc :: [UGen] -> [Node] -> Graph -> ([Node], Graph) acc [] n g = (reverse n, g) acc (x:xs) ys g = let (y, g') = mk_node x g in acc xs (y:ys) g' type UGenParts = (Rate, String, [FromPort], [Output], Special, Int) -- Predicate to locate primitive, names must be unique. find_u_p :: UGenParts -> Node -> Bool find_u_p (r, n, i, o, s, d) (NodeU _ r' n' i' o' s' d') = r == r' && n == n' && i == i' && o == o' && s == s' && d == d' find_u_p _ _ = error "find_u_p" -- Insert a primitive node into the graph. push_u :: UGenParts -> Graph -> (Node, Graph) push_u (r, nm, i, o, s, d) g = let n = NodeU (nextId g) r nm i o s d in (n, g { ugens = n : ugens g , nextId = nextId g + 1 }) -- Either find existing control node, or insert a new node. mk_node_u :: UGen -> Graph -> (Node, Graph) mk_node_u (Primitive r nm i o s d) g = let (i', g') = acc i [] g i'' = map as_from_port i' u = (r, nm, i'', o, s, d) y = find (find_u_p u) (ugens g') in maybe (push_u u g') (\y' -> (y', g')) y mk_node_u _ _ = error "mk_node_u" -- Proxies do not get stored in the graph. mk_node_p :: Node -> PortIndex -> Graph -> (Node, Graph) mk_node_p n p g = let z = nextId g in (NodeP z n p, g { nextId = z + 1 }) mk_node :: UGen -> Graph -> (Node, Graph) mk_node u g | isConstant u = mk_node_c u g | isControl u = mk_node_k u g | isUGen u = mk_node_u u g | isProxy u = let (n, g') = mk_node_u (proxySource u) g in mk_node_p n (proxyIndex u) g' | isMRG u = let (_, g') = mk_node (mrgRight u) g in mk_node (mrgLeft u) g' | isMCE u = error "mk_node: mce" | otherwise = error "mk_node" type Map = M.IntMap Int type Maps = (Map, [Node], Map, Map) -- Generate maps from node identifiers to synthdef indexes. mk_maps :: Graph -> Maps mk_maps (Graph _ cs ks us) = ( M.fromList (zip (map node_id cs) [0..]) , ks , M.fromList (zip (map node_id ks) [0..]) , M.fromList (zip (map node_id us) [0..]) ) -- Locate index in map given node identifer. fetch :: NodeId -> Map -> Int fetch = M.findWithDefault (error "fetch") data Input = Input Int Int deriving (Eq, Show) -- For controls we need to know not the overall index -- but in relation to controls of the same type. fetch_k :: NodeId -> KType -> [Node] -> Int fetch_k n t ks = let f _ [] = error "fetch_k" f i (x:xs) = if n == node_id x then i else if t == node_k_type x then f (i + 1) xs else f i xs in f 0 ks -- Construct input form required by byte-code generator. make_input :: Maps -> FromPort -> Input make_input (cs, _, _, _) (C n) = Input (-1) (fetch n cs) make_input (_, ks, _, _) (K n t) = let i = case t of K_IR -> 0 K_KR -> 1 K_TR -> 2 K_AR -> 3 in Input i (fetch_k n t ks) make_input (_, _, _, us) (U n p) = Input (fetch n us) p -- Byte-encode input value. encode_input :: Input -> B.ByteString encode_input (Input u p) = B.append (encode_i16 u) (encode_i16 p) -- Byte-encode control node. encode_node_k :: Maps -> Node -> B.ByteString encode_node_k (_, _, ks, _) (NodeK n _ nm _ _) = B.concat [ B.pack (str_pstr nm) , encode_i16 (fetch n ks) ] encode_node_k _ _ = error "encode_node_k" -- Byte-encode primitive node. encode_node_u :: Maps -> Node -> B.ByteString encode_node_u m (NodeU _ r nm i o s _) = let i' = map (encode_input . make_input m) i o' = map (encode_i8 . rateId) o (Special s') = s in B.concat [ B.pack (str_pstr nm) , encode_i8 (rateId r) , encode_i16 (length i) , encode_i16 (length o) , encode_i16 s' , B.concat i' , B.concat o' ] encode_node_u _ _ = error "encode_ugen: illegal input" -- Construct instrument definition bytecode. encode_graphdef :: String -> Graph -> B.ByteString encode_graphdef s g = let (Graph _ cs ks us) = g mm = mk_maps g in B.concat [ encode_str "SCgf" , encode_i32 0 , encode_i16 1 , B.pack (str_pstr s) , encode_i16 (length cs) , B.concat (map (encode_f32 . node_c_value) cs) , encode_i16 (length ks) , B.concat (map (encode_f32 . node_k_default) ks) , encode_i16 (length ks) , B.concat (map (encode_node_k mm) ks) , encode_i16 (length us) , B.concat (map (encode_node_u mm) us) ] type KS_COUNT = (Int,Int,Int,Int) ks_count :: [Node] -> KS_COUNT ks_count ks = let f r [] = r f (i,k,t,a) (x:xs) = let r' = case node_k_type x of K_IR -> (i+1,k,t,a) K_KR -> (i,k+1,t,a) K_TR -> (i,k,t+1,a) K_AR -> (i,k,t,a+1) in f r' xs in f (0,0,0,0) ks -- Construct implicit control unit generator nodes. implicit :: [Node] -> [Node] implicit ks = let (ni,nk,nt,na) = ks_count ks mk_n t n o = let (nm, r) = case t of K_IR -> ("Control", IR) K_KR -> ("Control", KR) K_TR -> ("TrigControl", KR) K_AR -> ("AudioControl", AR) i = replicate n r in NodeU (-1) r nm [] i (Special o) defaultID in [mk_n K_IR ni 0 ,mk_n K_KR nk ni ,mk_n K_TR nt (ni + nk) ,mk_n K_AR na (ni + nk + nt)] -- Transform mce nodes to mrg nodes prepare_root :: UGen -> UGen prepare_root u | isMCE u = mrg (mceProxies u) | isMRG u = MRG (prepare_root (mrgLeft u)) (prepare_root (mrgRight u)) | otherwise = u