{- | Module : Language.Scheme.Compiler Copyright : Justin Ethier Licence : MIT (see LICENSE in the distribution) Maintainer : github.com/justinethier Stability : experimental Portability : portable This module contains a Scheme to Haskell compiler which performs the following transformations: > Scheme AST (LispVal) => Haskell AST (HaskAST) => Compiled Code (String) The GHC compiler is then used to create a native executable. At present, the focus has just been on creating a compiler that will generate correct, working code. Many optimizations could and need to be made for time and space... Note the following type is used for all functions generated by the compiler: > compiledFunc :: > Env -> -- Runtime Environment > LispVal -> -- Continuation > LispVal -> -- Value > Maybe [LispVal] -> -- Additional arguments > IOThrowsError LispVal -- Result -} module Language.Scheme.Compiler ( compile , compileApply , compileBlock , compileDivertedVars , compileExpr , compileLambdaList , compileLisp , compileScalar , compileSpecialForm , compileSpecialFormBody , compileSpecialFormEntryPoint , defineLambdaVars , defineTopLevelVars , divertVars , initializeCompiler , isPrim , mcompile , mfunc ) where import Language.Scheme.Compiler.Libraries as LSCL import Language.Scheme.Compiler.Types import qualified Language.Scheme.Core as LSC (apply, evalLisp, findFileOrLib) import qualified Language.Scheme.Macro import Language.Scheme.Primitives import Language.Scheme.Types import Language.Scheme.Variables import Control.Monad.Error import Data.Complex import qualified Data.List import Data.Ratio -- import Debug.Trace -- |Perform one-time initialization of the compiler's environment initializeCompiler :: Env -> IOThrowsError [HaskAST] initializeCompiler env = do -- Define imports var here as an empty list. -- This list is appended to by (load-ffi) instances, -- and the imports are explicitly added later on... _ <- defineNamespacedVar env 't' {-"internal"-} "imports" $ List [] return [] -- | Compile a file containing scheme code compileLisp :: Env -- ^ Compiler environment -> String -- ^ Filename -> String -- ^ Function entry point (code calls into this function) -> Maybe String -- ^ Function exit point, if any -> IOThrowsError [HaskAST] compileLisp env filename entryPoint exitPoint = do filename' <- LSC.findFileOrLib filename load filename' >>= compileBlock entryPoint exitPoint env [] -- |Compile a list (block) of Scheme code compileBlock :: String -> Maybe String -> Env -> [HaskAST] -> [LispVal] -> IOThrowsError [HaskAST] compileBlock symThisFunc symLastFunc env result lisps = do _ <- defineTopLevelVars env lisps _compileBlock symThisFunc symLastFunc env result lisps _compileBlock :: String -> Maybe String -> Env -> [HaskAST] -> [LispVal] -> IOThrowsError [HaskAST] _compileBlock symThisFunc symLastFunc env result [c] = do compiled <- mcompile env c $ CompileOptions symThisFunc False False symLastFunc return $ result ++ compiled _compileBlock symThisFunc symLastFunc env result (c:cs) = do Atom symNextFunc <- _gensym "f" compiled <- mcompile env c $ CompileOptions symThisFunc False False (Just symNextFunc) _compileBlock symNextFunc symLastFunc env (result ++ compiled) cs _compileBlock _ _ _ result [] = return result -- TODO: could everything just be regular function calls except when a continuation is 'added to the stack' via a makeCPS(makeCPSWArgs ...) ?? I think this could be made more efficient -- |Helper function to compile expressions consisting of a scalar compileScalar :: String -> CompOpts -> IOThrowsError [HaskAST] compileScalar val copts = do f <- return $ AstAssignM "x1" $ AstValue val c <- return $ createAstCont copts "x1" "" return [createAstFunc copts [f, c]] -- |Compile the list of arguments for a function compileLambdaList :: [LispVal] -> IOThrowsError String compileLambdaList l = do serialized <- mapM serialize l return $ "[" ++ concat (Data.List.intersperse "," serialized) ++ "]" where serialize (Atom a) = return $ (show a) serialize a = throwError $ Default $ "invalid parameter to lambda list: " ++ show a -- |Add lambda variables to the compiler's environment defineLambdaVars :: Env -> [LispVal] -> IOThrowsError LispVal defineLambdaVars env (Atom v : vs) = do _ <- defineVar env v $ Number 0 -- For now, actual value does not matter defineLambdaVars env vs defineLambdaVars env (_ : vs) = defineLambdaVars env vs defineLambdaVars _ [] = return $ Nil "" -- |Find all variables defined at "this" level and load their symbols into -- the environment. This allows the compiler validation to work even -- though a variable is used in a sub-form before it is defined further -- on down in the program defineTopLevelVars :: Env -> [LispVal] -> IOThrowsError LispVal defineTopLevelVars env (List [Atom "define", Atom var, _] : ls) = do _ <- defineTopLevelVar env var defineTopLevelVars env ls defineTopLevelVars env ((List (Atom "define" : List (Atom var : _) : _)) : ls) = do _ <- defineTopLevelVar env var defineTopLevelVars env ls defineTopLevelVars env ((List (Atom "define" : DottedList (Atom var : _) _ : _)) : ls) = do _ <- defineTopLevelVar env var defineTopLevelVars env ls defineTopLevelVars env (_ : ls) = defineTopLevelVars env ls defineTopLevelVars _ _ = return nullLisp defineTopLevelVar :: Env -> String -> IOThrowsError LispVal defineTopLevelVar env var = do defineVar env var $ Number 0 -- Actual value not loaded at the moment -- |Compile a Lisp expression to Haskell. Note this function does -- not expand macros; mcompile should be used instead if macros -- may appear in the expression. compile :: Env -> LispVal -> CompOpts -> IOThrowsError [HaskAST] -- Experimenting with r7rs library support compile env (List (Atom "import" : mods)) copts@(CompileOptions _ _ _ _) = do LispEnv meta <- getVar env "*meta-env*" LSCL.importAll env meta mods (CompileLibraryOptions compileBlock compileLisp) copts compile _ (Nil n) copts = compileScalar (" return $ Nil " ++ (show n)) copts compile _ (String s) copts = compileScalar (" return $ String " ++ (show s)) copts compile _ (Char c) copts = compileScalar (" return $ Char " ++ (show c)) copts compile _ (Complex c) copts = compileScalar (" return $ Complex $ (" ++ (show $ realPart c) ++ ") :+ (" ++ (show $ imagPart c) ++ ")") copts compile _ (Float f) copts = compileScalar (" return $ Float (" ++ (show f) ++ ")") copts compile _ (Rational r) copts = compileScalar (" return $ Rational $ (" ++ (show $ numerator r) ++ ") % (" ++ (show $ denominator r) ++ ")") copts compile _ (Number n) copts = compileScalar (" return $ Number (" ++ (show n) ++ ")") copts compile _ (Bool b) copts = compileScalar (" return $ Bool " ++ (show b)) copts compile _ v@(Vector _) copts = compileScalar (" return $ " ++ ast2Str v) copts compile _ v@(ByteVector _) copts = compileScalar (" return $ " ++ ast2Str v) copts compile _ ht@(HashTable _) copts = compileScalar (" return $ " ++ ast2Str ht) copts compile env (Atom a) copts = do isDefined <- liftIO $ isRecBound env a case isDefined of True -> do return [createAstFunc copts [ AstValue $ " val <- getRTVar env \"" ++ a ++ "\""], createAstCont copts "val" ""] False -> throwError $ UnboundVar "Variable is not defined" a compile _ (List [Atom "quote", val]) copts = compileScalar (" return $ " ++ ast2Str val) copts compile env ast@(List [Atom "expand", _body]) copts = do compileSpecialFormBody env ast copts (\ _ -> do val <- Language.Scheme.Macro.expand env False _body LSC.apply compileScalar (" return $ " ++ ast2Str val) copts) compile env ast@(List (Atom "let-syntax" : List _bindings : _body)) copts = do compileSpecialFormBody env ast copts (\ _ -> do bodyEnv <- liftIO $ extendEnv env [] _ <- Language.Scheme.Macro.loadMacros env bodyEnv Nothing False _bindings -- Expand whole body as a single continuous macro, to ensure hygiene expanded <- Language.Scheme.Macro.expand bodyEnv False (List _body) LSC.apply divertVars bodyEnv expanded copts compexp) where -- Pick up execution here after expansion compexp bodyEnv' expanded' copts' = do case expanded' of List e -> compile bodyEnv' (List $ Atom "begin" : e) copts' e -> compile bodyEnv' e copts' compile env ast@(List (Atom "letrec-syntax" : List _bindings : _body)) copts = do compileSpecialFormBody env ast copts (\ _ -> do bodyEnv <- liftIO $ extendEnv env [] _ <- Language.Scheme.Macro.loadMacros bodyEnv bodyEnv Nothing False _bindings -- Expand whole body as a single continuous macro, to ensure hygiene expanded <- Language.Scheme.Macro.expand bodyEnv False (List _body) LSC.apply divertVars bodyEnv expanded copts compexp) where -- Pick up execution here after expansion compexp bodyEnv' expanded' copts' = do case expanded' of List e -> compile bodyEnv' (List $ Atom "begin" : e) copts' e -> compile bodyEnv' e copts' -- A non-standard way to rebind a macro to another keyword compile env (List [Atom "define-syntax", Atom newKeyword, Atom keyword]) copts = do bound <- getNamespacedVar' env macroNamespace keyword case bound of Just m -> do _ <- defineNamespacedVar env macroNamespace newKeyword m compFunc <- return $ [ AstValue $ " bound <- getNamespacedVar' env macroNamespace \"" ++ keyword ++ "\"", AstValue $ " case bound of ", AstValue $ " Just m -> ", AstValue $ " defineNamespacedVar env macroNamespace \"" ++ newKeyword ++ "\" m", AstValue $ " Nothing -> throwError $ TypeMismatch \"macro\" $ " ++ "Atom \"" ++ keyword ++ "\"", createAstCont copts "(Nil \"\")" ""] return $ [createAstFunc copts compFunc] Nothing -> throwError $ TypeMismatch "macro" $ Atom keyword compile env ast@(List [Atom "define-syntax", Atom keyword, (List [Atom "er-macro-transformer", (List (Atom "lambda" : List fparams : fbody))])]) copts = do _ <- validateFuncParams fparams (Just 3) compileSpecialFormBody env ast copts (\ _ -> do let fparamsStr = asts2Str fparams fbodyStr = asts2Str fbody f <- makeNormalFunc env fparams fbody _ <- defineNamespacedVar env macroNamespace keyword $ SyntaxExplicitRenaming f compFunc <- return $ [ AstValue $ " f <- makeNormalFunc env " ++ fparamsStr ++ " " ++ fbodyStr, AstValue $ " defineNamespacedVar env macroNamespace \"" ++ keyword ++ "\" $ SyntaxExplicitRenaming f", createAstCont copts "(Nil \"\")" ""] return $ [createAstFunc copts compFunc]) compile env lisp@(List [Atom "define-syntax", Atom keyword, (List (Atom "syntax-rules" : Atom ellipsis : (List identifiers : rules)))]) copts = do compileSpecialFormBody env lisp copts (\ _ -> do let idStr = asts2Str identifiers ruleStr = asts2Str rules -- Make macro available at compile time _ <- defineNamespacedVar env macroNamespace keyword $ Syntax (Just env) Nothing False ellipsis identifiers rules -- And load it at runtime as well -- Env should be identical to the one loaded at compile time... compileScalar (" defineNamespacedVar env macroNamespace \"" ++ keyword ++ "\" $ Syntax (Just env) Nothing False \"" ++ ellipsis ++ "\" " ++ idStr ++ " " ++ ruleStr) copts) compile env lisp@(List [Atom "define-syntax", Atom keyword, (List (Atom "syntax-rules" : (List identifiers : rules)))]) copts = do compileSpecialFormBody env lisp copts (\ _ -> do let idStr = asts2Str identifiers ruleStr = asts2Str rules -- Make macro available at compile time _ <- defineNamespacedVar env macroNamespace keyword $ Syntax (Just env) Nothing False "..." identifiers rules -- And load it at runtime as well -- Env should be identical to the one loaded at compile time... compileScalar (" defineNamespacedVar env macroNamespace \"" ++ keyword ++ "\" $ Syntax (Just env) Nothing False \"...\" " ++ idStr ++ " " ++ ruleStr) copts) compile env ast@(List [Atom "if", predic, conseq]) copts = compileSpecialFormBody env ast copts (\ _ -> do compile env (List [Atom "if", predic, conseq, Nil ""]) copts) compile env ast@(List [Atom "if", predic, conseq, alt]) copts = do compileSpecialFormBody env ast copts (\ nextFunc -> do Atom symPredicate <- _gensym "ifPredic" Atom symCheckPredicate <- _gensym "compiledIfPredicate" Atom symConsequence <- _gensym "compiledConsequence" Atom symAlternate <- _gensym "compiledAlternative" -- Entry point; ensure if is not rebound f <- return [AstValue $ " " ++ symPredicate ++ " env (makeCPSWArgs env cont " ++ symCheckPredicate ++ " []) " ++ " (Nil \"\") (Just []) "] -- Compile expression for if's args compPredicate <- compileExpr env predic symPredicate Nothing -- Do not want to call into nextFunc in the middle of (if) compConsequence <- compileExpr env conseq symConsequence nextFunc -- pick up at nextFunc after consequence compAlternate <- compileExpr env alt symAlternate nextFunc -- or...pick up at nextFunc after alternate -- Special case because we need to check the predicate's value compCheckPredicate <- return $ AstFunction symCheckPredicate " env cont result _ " [ AstValue $ " case result of ", AstValue $ " Bool False -> " ++ symAlternate ++ " env cont (Nil \"\") (Just []) ", AstValue $ " _ -> " ++ symConsequence ++ " env cont (Nil \"\") (Just []) "] -- Join compiled code together return $ [createAstFunc copts f] ++ compPredicate ++ [compCheckPredicate] ++ compConsequence ++ compAlternate) compile env ast@(List [Atom "set!", Atom var, form]) copts@(CompileOptions _ _ _ _) = do compileSpecialFormBody env ast copts (\ _ -> do Atom symDefine <- _gensym "setFunc" Atom symMakeDefine <- _gensym "setFuncMakeSet" -- Store var in huskc's env for macro processing _ <- setVar env var form entryPt <- compileSpecialFormEntryPoint "set!" symDefine copts compDefine <- compileExpr env form symDefine $ Just symMakeDefine compMakeDefine <- return $ AstFunction symMakeDefine " env cont result _ " [ AstValue $ " _ <- setVar env \"" ++ var ++ "\" result", createAstCont copts "result" ""] return $ [entryPt] ++ compDefine ++ [compMakeDefine]) compile env ast@(List [Atom "set!", nonvar, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set!" ("throwError $ NumArgs 2 $ [String \"" ++ (show args) ++ "\"]") copts -- Cheesy to use a string, but fine for now... return [f]) compile env ast@(List [Atom "define", Atom var, form]) copts@(CompileOptions _ _ _ _) = do compileSpecialFormBody env ast copts (\ _ -> do Atom symDefine <- _gensym "defineFuncDefine" Atom symMakeDefine <- _gensym "defineFuncMakeDef" -- Store var in huskc's env for macro processing (and same for other vers of define) _ <- defineVar env var form -- WORKAROUND #1 -- Special case to support require-extension _ <- case form of List [Atom "current-environment"] -> defineVar env var $ LispEnv env _ -> return $ Nil "" -- End special case -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " " ++ symDefine ++ " env cont (Nil \"\") (Just [])" ] compDefine <- compileExpr env form symDefine $ Just symMakeDefine compMakeDefine <- return $ AstFunction symMakeDefine " env cont result _ " [ AstValue $ " _ <- defineVar env \"" ++ var ++ "\" result", createAstCont copts "result" ""] return $ [createAstFunc copts f] ++ compDefine ++ [compMakeDefine]) compile env ast@(List (Atom "define" : List (Atom var : fparams) : fbody)) copts@(CompileOptions _ _ _ _) = do _ <- validateFuncParams fparams Nothing compileSpecialFormBody env ast copts (\ _ -> do bodyEnv <- liftIO $ extendEnv env [] -- bind lambda params in the extended env _ <- defineLambdaVars bodyEnv (Atom var : fparams) Atom symCallfunc <- _gensym "defineFuncEntryPt" compiledParams <- compileLambdaList fparams compiledBody <- compileBlock symCallfunc Nothing bodyEnv [] fbody -- Cache macro expansions within function body ebody <- mapM (\ lisp -> Language.Scheme.Macro.macroEval env lisp LSC.apply) fbody -- Store var in huskc's env for macro processing (and same for other vers of define) _ <- makeNormalFunc env fparams ebody >>= defineVar env var -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " result <- makeNormalHFunc env (" ++ compiledParams ++ ") " ++ symCallfunc, AstValue $ " _ <- defineVar env \"" ++ var ++ "\" result ", createAstCont copts "result" "" ] return $ [createAstFunc copts f] ++ compiledBody) compile env ast@(List (Atom "define" : DottedList (Atom var : fparams) varargs : fbody)) copts@(CompileOptions _ _ _ _) = do _ <- validateFuncParams (fparams ++ [varargs]) Nothing compileSpecialFormBody env ast copts (\ _ -> do bodyEnv <- liftIO $ extendEnv env [] -- bind lambda params in the extended env _ <- defineLambdaVars bodyEnv $ (Atom var : fparams) ++ [varargs] Atom symCallfunc <- _gensym "defineFuncEntryPt" compiledParams <- compileLambdaList fparams compiledBody <- compileBlock symCallfunc Nothing bodyEnv [] fbody -- Store var in huskc's env for macro processing (and same for other vers of define) ebody <- mapM (\ lisp -> Language.Scheme.Macro.macroEval env lisp LSC.apply) fbody _ <- makeVarargs varargs env fparams ebody >>= defineVar env var -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " result <- makeHVarargs (" ++ ast2Str varargs ++ ") env (" ++ compiledParams ++ ") " ++ symCallfunc, AstValue $ " _ <- defineVar env \"" ++ var ++ "\" result ", createAstCont copts "result" "" ] return $ [createAstFunc copts f] ++ compiledBody) compile env ast@(List (Atom "lambda" : List fparams : fbody)) copts@(CompileOptions _ _ _ _) = do _ <- validateFuncParams fparams Nothing compileSpecialFormBody env ast copts (\ _ -> do Atom symCallfunc <- _gensym "lambdaFuncEntryPt" compiledParams <- compileLambdaList fparams bodyEnv <- liftIO $ extendEnv env [] -- bind lambda params in the extended env _ <- defineLambdaVars bodyEnv fparams compiledBody <- compileBlock symCallfunc Nothing bodyEnv [] fbody -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " result <- makeNormalHFunc env (" ++ compiledParams ++ ") " ++ symCallfunc, createAstCont copts "result" "" ] return $ [createAstFunc copts f] ++ compiledBody) compile env ast@(List (Atom "lambda" : DottedList fparams varargs : fbody)) copts@(CompileOptions _ _ _ _) = do _ <- validateFuncParams (fparams ++ [varargs]) Nothing compileSpecialFormBody env ast copts (\ _ -> do Atom symCallfunc <- _gensym "lambdaFuncEntryPt" compiledParams <- compileLambdaList fparams bodyEnv <- liftIO $ extendEnv env [] -- bind lambda params in the extended env _ <- defineLambdaVars bodyEnv $ fparams ++ [varargs] compiledBody <- compileBlock symCallfunc Nothing bodyEnv [] fbody -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " result <- makeHVarargs (" ++ ast2Str varargs ++ ") env (" ++ compiledParams ++ ") " ++ symCallfunc, createAstCont copts "result" "" ] return $ [createAstFunc copts f] ++ compiledBody) compile env ast@(List (Atom "lambda" : varargs@(Atom _) : fbody)) copts@(CompileOptions _ _ _ _) = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCallfunc <- _gensym "lambdaFuncEntryPt" bodyEnv <- liftIO $ extendEnv env [] -- bind lambda params in the extended env _ <- defineLambdaVars bodyEnv [varargs] compiledBody <- compileBlock symCallfunc Nothing bodyEnv [] fbody -- Entry point; ensure var is not rebound f <- return $ [ AstValue $ " result <- makeHVarargs (" ++ ast2Str varargs ++ ") env [] " ++ symCallfunc, createAstCont copts "result" "" ] return $ [createAstFunc copts f] ++ compiledBody) compile env ast@(List [Atom "string-set!", Atom var, i, character]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symDefine <- _gensym "stringSetFunc" Atom symMakeDefine <- _gensym "stringSetFuncMakeSet" Atom symChr <- _gensym "stringSetChar" Atom symCompiledI <- _gensym "stringI" entryPt <- compileSpecialFormEntryPoint "string-set!" symChr copts compChr <- compileExpr env character symChr $ Just symDefine compDefine <- return $ AstFunction symDefine " env cont chr _ " [ AstValue $ " " ++ symCompiledI ++ " env (makeCPSWArgs env cont " ++ symMakeDefine ++ " [chr]) (Nil \"\") (Just []) " ] compI <- compileExpr env i symCompiledI Nothing compMakeDefine <- return $ AstFunction symMakeDefine " env cont idx (Just [chr]) " [ AstValue $ " tmp <- getVar env \"" ++ var ++ "\"", AstValue $ " derefValue <- recDerefPtrs tmp", AstValue $ " result <- substr (derefValue, chr, idx)", AstValue $ " _ <- updateObject env \"" ++ var ++ "\" result", createAstCont copts "result" ""] return $ [entryPt, compDefine, compMakeDefine] ++ compI ++ compChr) compile env ast@(List [Atom "string-set!", nonvar, _, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "string-set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "string-set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "string-set!" ("throwError $ NumArgs 3 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "set-car!", Atom var, argObj]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symGetVar <- _gensym "setCarGetVar" Atom symCompiledObj <- _gensym "setCarCompiledObj" Atom symObj <- _gensym "setCarObj" Atom symDoSet <- _gensym "setCarDoSet" -- Code to all into next continuation from copts, if one exists let finalContinuation = case copts of (CompileOptions _ _ _ (Just nextFunc)) -> "continueEval e (makeCPSWArgs e c " ++ nextFunc ++ " [])\n" _ -> "continueEval e c\n" -- Entry point that allows set-car! to be redefined entryPt <- compileSpecialFormEntryPoint "set-car!" symGetVar copts -- Function to read existing var compGetVar <- return $ AstFunction symGetVar " env cont idx _ " [ AstValue $ " result <- getVar env \"" ++ var ++ "\"", AstValue $ " derefValue <- recDerefPtrs result", AstValue $ " " ++ symObj ++ " env cont derefValue (Just []) "] -- Compiled version of argObj compiledObj <- compileExpr env argObj symCompiledObj Nothing -- Function to check looked-up var and call into appropriate handlers; -- based on code from Core -- -- This is so verbose because we need to have overloads of symObj to -- deal with many possible inputs. -- FUTURE: consider making these functions part of the runtime. compObj <- return $ AstValue $ "" ++ symObj ++ " :: Env -> LispVal -> LispVal -> Maybe [LispVal] -> IOThrowsError LispVal\n" ++ symObj ++ " _ _ obj@(List []) _ = throwError $ TypeMismatch \"pair\" obj\n" ++ symObj ++ " e c obj@(List (_ : _)) _ = " ++ symCompiledObj ++ " e (makeCPSWArgs e c " ++ symDoSet ++ " [obj]) (Nil \"\") Nothing\n" ++ symObj ++ " e c obj@(DottedList _ _) _ = " ++ symCompiledObj ++ " e (makeCPSWArgs e c " ++ symDoSet ++ " [obj]) (Nil \"\") Nothing\n" ++ symObj ++ " _ _ obj _ = throwError $ TypeMismatch \"pair\" obj\n" -- Function to do the actual (set!), based on code from Core -- -- This is so verbose because we need to have overloads of symObj to deal -- with many possible inputs. -- FUTURE: consider making these functions part of the runtime. compDoSet <- return $ AstValue $ "" ++ symDoSet ++ " :: Env -> LispVal -> LispVal -> Maybe [LispVal] -> IOThrowsError LispVal\n" ++ symDoSet ++ " e c obj (Just [List (_ : ls)]) = updateObject e \"" ++ var ++ "\" (List (obj : ls)) >>= " ++ finalContinuation ++ symDoSet ++ " e c obj (Just [DottedList (_ : ls) l]) = updateObject e \"" ++ var ++ "\" (DottedList (obj : ls) l) >>= " ++ finalContinuation ++ symDoSet ++ " _ _ _ _ = throwError $ InternalError \"Unexpected argument to " ++ symDoSet ++ "\"\n" -- Return a list of all the compiled code return $ [entryPt, compGetVar, compObj, compDoSet] ++ compiledObj) compile env ast@(List [Atom "set-car!", nonvar, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set-car!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "set-car!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set-car!" ("throwError $ NumArgs 2 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "set-cdr!", Atom var, argObj]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symGetVar <- _gensym "setCdrGetVar" Atom symCompiledObj <- _gensym "setCdrCompiledObj" Atom symObj <- _gensym "setCdrObj" Atom symDoSet <- _gensym "setCdrDoSet" -- Code to all into next continuation from copts, if one exists let finalContinuation = case copts of (CompileOptions _ _ _ (Just nextFunc)) -> "continueEval e (makeCPSWArgs e c " ++ nextFunc ++ " [])\n" _ -> "continueEval e c\n" -- Entry point that allows set-car! to be redefined entryPt <- compileSpecialFormEntryPoint "set-car!" symGetVar copts -- Function to read existing var compGetVar <- return $ AstFunction symGetVar " env cont idx _ " [ AstValue $ " result <- getVar env \"" ++ var ++ "\"", AstValue $ " derefValue <- recDerefPtrs result", AstValue $ " " ++ symObj ++ " env cont derefValue (Just []) "] -- Compiled version of argObj compiledObj <- compileExpr env argObj symCompiledObj Nothing -- Function to check looked-up var and call into appropriate handlers; based on code from Core -- -- This is so verbose because we need to have overloads of symObj to deal with many possible inputs. -- FUTURE: consider making these functions part of the runtime. compObj <- return $ AstValue $ "" ++ symObj ++ " :: Env -> LispVal -> LispVal -> Maybe [LispVal] -> IOThrowsError LispVal\n" ++ symObj ++ " _ _ obj@(List []) _ = throwError $ TypeMismatch \"pair\" obj\n" ++ -- TODO: below, we want to make sure obj is of the right type. if so, -- compile obj and call into the "set" -- function below to do the actual set-car symObj ++ " e c obj@(List (_ : _)) _ = " ++ symCompiledObj ++ " e (makeCPSWArgs e c " ++ symDoSet ++ " [obj]) (Nil \"\") Nothing\n" ++ symObj ++ " e c obj@(DottedList _ _) _ = " ++ symCompiledObj ++ " e (makeCPSWArgs e c " ++ symDoSet ++ " [obj]) (Nil \"\") Nothing\n" ++ symObj ++ " _ _ obj _ = throwError $ TypeMismatch \"pair\" obj\n" -- Function to do the actual (set!), based on code from Core -- -- This is so verbose because we need to have overloads of symObj -- to deal with many possible inputs. -- FUTURE: consider making these functions part of the runtime. compDoSet <- return $ AstValue $ "" ++ symDoSet ++ " :: Env -> LispVal -> LispVal -> Maybe [LispVal] -> IOThrowsError LispVal\n" ++ symDoSet ++ " e c obj (Just [List (l : _)]) = do\n" ++ " l' <- recDerefPtrs l\n" ++ " obj' <- recDerefPtrs obj\n" ++ " (cons [l', obj']) >>= updateObject e \"" ++ var ++ "\" >>= " ++ finalContinuation ++ symDoSet ++ " e c obj (Just [DottedList (l : _) _]) = do\n" ++ " l' <- recDerefPtrs l\n" ++ " obj' <- recDerefPtrs obj\n" ++ " (cons [l', obj']) >>= updateObject e \"" ++ var ++ "\" >>= " ++ finalContinuation ++ symDoSet ++ " _ _ _ _ = throwError $ InternalError \"Unexpected argument to " ++ symDoSet ++ "\"\n" -- Return a list of all the compiled code return $ [entryPt, compGetVar, compObj, compDoSet] ++ compiledObj) compile env ast@(List [Atom "set-cdr!", nonvar, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set-cdr!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "set-cdr!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "set-cdr!" ("throwError $ NumArgs 2 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "list-set!", Atom var, i, object]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCompiledIdx <- _gensym "listSetIdx" Atom symCompiledObj <- _gensym "listSetObj" Atom symUpdateVec <- _gensym "listSetUpdate" Atom symIdxWrapper <- _gensym "listSetIdxWrapper" -- Entry point that allows this form to be redefined entryPt <- compileSpecialFormEntryPoint "list-set!" symCompiledIdx copts -- Compile index, then use a wrapper to pass it as an arg while compiling obj compiledIdx <- compileExpr env i symCompiledIdx (Just symIdxWrapper) compiledIdxWrapper <- return $ AstFunction symIdxWrapper " env cont idx _ " [ AstValue $ " " ++ symCompiledObj ++ " env (makeCPSWArgs env cont " ++ symUpdateVec ++ " [idx]) (Nil \"\") (Just []) " ] compiledObj <- compileExpr env object symCompiledObj Nothing -- Do actual update compiledUpdate <- return $ AstFunction symUpdateVec " env cont obj (Just [idx]) " [ AstValue $ " vec <- getVar env \"" ++ var ++ "\"", AstValue $ " result <- updateList vec idx obj >>= updateObject env \"" ++ var ++ "\"", createAstCont copts "result" ""] return $ [entryPt, compiledIdxWrapper, compiledUpdate] ++ compiledIdx ++ compiledObj) compile env ast@(List [Atom "list-set!", nonvar, _, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "list-set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "list-set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "list-set!" ("throwError $ NumArgs 3 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "vector-set!", Atom var, i, object]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCompiledIdx <- _gensym "vectorSetIdx" Atom symCompiledObj <- _gensym "vectorSetObj" Atom symUpdateVec <- _gensym "vectorSetUpdate" Atom symIdxWrapper <- _gensym "vectorSetIdxWrapper" -- Entry point that allows this form to be redefined entryPt <- compileSpecialFormEntryPoint "vector-set!" symCompiledIdx copts -- Compile index, then use a wrapper to pass it as an arg while compiling obj compiledIdx <- compileExpr env i symCompiledIdx (Just symIdxWrapper) compiledIdxWrapper <- return $ AstFunction symIdxWrapper " env cont idx _ " [ AstValue $ " " ++ symCompiledObj ++ " env (makeCPSWArgs env cont " ++ symUpdateVec ++ " [idx]) (Nil \"\") (Just []) " ] compiledObj <- compileExpr env object symCompiledObj Nothing -- Do actual update compiledUpdate <- return $ AstFunction symUpdateVec " env cont obj (Just [idx]) " [ AstValue $ " vec <- getVar env \"" ++ var ++ "\"", AstValue $ " result <- updateVector vec idx obj >>= updateObject env \"" ++ var ++ "\"", createAstCont copts "result" ""] return $ [entryPt, compiledIdxWrapper, compiledUpdate] ++ compiledIdx ++ compiledObj) compile env ast@(List [Atom "vector-set!", nonvar, _, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "vector-set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "vector-set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "vector-set!" ("throwError $ NumArgs 3 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "bytevector-u8-set!", Atom var, i, object]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCompiledIdx <- _gensym "bytevectorSetIdx" Atom symCompiledObj <- _gensym "bytevectorSetObj" Atom symUpdateVec <- _gensym "bytevectorSetUpdate" Atom symIdxWrapper <- _gensym "bytevectorSetIdxWrapper" -- Entry point that allows this form to be redefined entryPt <- compileSpecialFormEntryPoint "bytevector-u8-set!" symCompiledIdx copts -- Compile index, then use a wrapper to pass it as an arg while compiling obj compiledIdx <- compileExpr env i symCompiledIdx (Just symIdxWrapper) compiledIdxWrapper <- return $ AstFunction symIdxWrapper " env cont idx _ " [ AstValue $ " " ++ symCompiledObj ++ " env (makeCPSWArgs env cont " ++ symUpdateVec ++ " [idx]) (Nil \"\") (Just []) " ] compiledObj <- compileExpr env object symCompiledObj Nothing -- Do actual update compiledUpdate <- return $ AstFunction symUpdateVec " env cont obj (Just [idx]) " [ AstValue $ " vec <- getVar env \"" ++ var ++ "\"", AstValue $ " result <- updateByteVector vec idx obj >>= updateObject env \"" ++ var ++ "\"", createAstCont copts "result" ""] return $ [entryPt, compiledIdxWrapper, compiledUpdate] ++ compiledIdx ++ compiledObj) compile env ast@(List [Atom "bytevector-u8-set!", nonvar, _, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "bytevector-u8-set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "bytevector-u8-set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "bytevector-u8-set!" ("throwError $ NumArgs 3 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "hash-table-set!", Atom var, rkey, rvalue]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCompiledIdx <- _gensym "hashTableSetIdx" Atom symCompiledObj <- _gensym "hashTableSetObj" Atom symUpdateVec <- _gensym "hashTableSetUpdate" Atom symIdxWrapper <- _gensym "hashTableSetIdxWrapper" -- Entry point that allows this form to be redefined entryPt <- compileSpecialFormEntryPoint "hash-table-set!" symCompiledIdx copts -- Compile index, then use a wrapper to pass it as an arg while compiling obj compiledIdx <- compileExpr env rkey symCompiledIdx (Just symIdxWrapper) compiledIdxWrapper <- return $ AstFunction symIdxWrapper " env cont idx _ " [ AstValue $ " " ++ symCompiledObj ++ " env (makeCPSWArgs env cont " ++ symUpdateVec ++ " [idx]) (Nil \"\") (Just []) " ] compiledObj <- compileExpr env rvalue symCompiledObj Nothing -- Do actual update compiledUpdate <- return $ AstFunction symUpdateVec " env cont obj (Just [rkey]) " [ -- TODO: this should be more robust, than just assuming ht is a HashTable AstValue $ " HashTable ht <- getVar env \"" ++ var ++ "\"", AstValue $ " HashTable ht' <- recDerefPtrs $ HashTable ht", AstValue $ " result <- updateObject env \"" ++ var ++ "\" (HashTable $ Data.Map.insert rkey obj ht') ", createAstCont copts "result" ""] return $ [entryPt, compiledIdxWrapper, compiledUpdate] ++ compiledIdx ++ compiledObj) compile env ast@(List [Atom "hash-table-set!", nonvar, _, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "hash-table-set!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "hash-table-set!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "hash-table-set!" ("throwError $ NumArgs 3 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List [Atom "hash-table-delete!", Atom var, rkey]) copts = do compileSpecialFormBody env ast copts (\ _ -> do Atom symCompiledIdx <- _gensym "hashTableDeleteIdx" Atom symDoDelete <- _gensym "hashTableDelete" -- Entry point that allows this form to be redefined entryPt <- compileSpecialFormEntryPoint "hash-table-delete!" symCompiledIdx copts -- Compile index, then use a wrapper to pass it as an arg while compiling obj compiledIdx <- compileExpr env rkey symCompiledIdx (Just symDoDelete) -- Do actual update compiledUpdate <- return $ AstFunction symDoDelete " env cont rkey _ " [ -- TODO: this should be more robust, than just assuming ht is a HashTable AstValue $ " HashTable ht <- getVar env \"" ++ var ++ "\"", AstValue $ " HashTable ht' <- recDerefPtrs $ HashTable ht", AstValue $ " result <- updateObject env \"" ++ var ++ "\" (HashTable $ Data.Map.delete rkey ht') ", createAstCont copts "result" ""] return $ [entryPt, compiledUpdate] ++ compiledIdx) compile env ast@(List [Atom "hash-table-delete!", nonvar, _]) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "hash-table-delete!" ("throwError $ TypeMismatch \"variable\"" ++ " $ String \"" ++ (show nonvar) ++ "\"") copts return [f]) compile env ast@(List (Atom "hash-table-delete!" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do f <- compileSpecialForm "hash-table-delete!" ("throwError $ NumArgs 2 $ [String \"" ++ (show args) ++ "\"]") copts return [f]) compile env ast@(List (Atom "%import" : args)) copts = do compileSpecialFormBody env ast copts (\ _ -> do throwError $ NotImplemented $ "%import, with args: " ++ show args) compile env (List [a@(Atom "husk-interpreter?")]) copts = do mfunc env (List [a, Bool True]) compile copts compile env args@(List [Atom "load", filename, envSpec]) copts = do -- Explicitly do NOT call compileSpecialFormBody here, since load is not normally a special form -- F*ck it, just run the evaluator here since filename is req'd at compile time fname <- LSC.evalLisp env filename case fname of -- Compile contents of the file String fn -> compileFile fn -- Unable to get filename at compile time, fall back to loading at runtime _ -> mfunc env args compileApply copts where compileFile filename' = do Atom symEnv <- _gensym "loadEnv" Atom symLoad <- _gensym "load" compEnv <- compileExpr env envSpec symEnv Nothing -- Return env to our custom func -- WORKAROUND #1 -- Special case to support require-extension env' <- case envSpec of Atom a -> do v <- getVar env a case v of LispEnv e -> return e _ -> return env _ -> return env -- End special case compLoad <- compileLisp env' filename' symLoad Nothing -- Entry point f <- return $ [ -- TODO: should do runtime error checking if something else -- besides a LispEnv is returned AstValue $ " LispEnv e <- " ++ symEnv ++ " env (makeNullContinuation env) (Nil \"\") (Just []) ", AstValue $ " result <- " ++ symLoad ++ " e (makeNullContinuation e) (Nil \"\") Nothing", createAstCont copts "result" ""] -- Join compiled code together return $ [createAstFunc copts f] ++ compEnv ++ compLoad compile env (List [Atom "load", filename]) copts = do -- TODO: allow filename from a var, support env optional arg -- TODO: error handling for string below String filename' <- LSC.evalLisp env filename Atom symEntryPt <- _gensym "load" result <- compileLisp env filename' symEntryPt Nothing return $ result ++ [createAstFunc copts [ AstValue $ " result <- " ++ symEntryPt ++ " env (makeNullContinuation env) (Nil \"\") Nothing", createAstCont copts "result" ""]] -- FUTURE: eventually it should be possible to evaluate the args instead of assuming -- that they are all strings, but lets keep it simple for now compile env (List [Atom "load-ffi", String moduleName, String externalFuncName, String internalFuncName]) copts = do -- Atom symLoadFFI <- _gensym "loadFFI" -- Only append module again if it is not already in the list List l <- getNamespacedVar env 't' {-"internal"-} "imports" _ <- if not ((String moduleName) `elem` l) then setNamespacedVar env 't' {-"internal"-} "imports" $ List $ l ++ [String moduleName] else return $ String "" -- Pass along moduleName as another top-level import return [createAstFunc copts [ AstValue $ " result <- defineVar env \"" ++ internalFuncName ++ "\" $ IOFunc " ++ moduleName ++ "." ++ externalFuncName, createAstCont copts "result" ""]] compile env args@(List (_ : _)) copts = mfunc env args compileApply copts compile _ badForm _ = throwError $ BadSpecialForm "Unrecognized special form" badForm -- |Expand macros and compile the resulting code mcompile :: Env -> LispVal -> CompOpts -> IOThrowsError [HaskAST] mcompile env lisp copts = mfunc env lisp compile copts -- |Expand macros and then pass control to the given function mfunc :: Env -> LispVal -> (Env -> LispVal -> CompOpts -> IOThrowsError [HaskAST]) -> CompOpts -> IOThrowsError [HaskAST] mfunc env lisp func copts = do expanded <- Language.Scheme.Macro.macroEval env lisp LSC.apply divertVars env expanded copts func -- |Do the actual insertion of diverted variables back to the -- compiled program. divertVars :: Env -- ^ Current compile Environment -> LispVal -- ^ Lisp code after macro expansion -> CompOpts -- ^ Compiler options -> (Env -> LispVal -> CompOpts -> IOThrowsError [HaskAST]) -- ^ Continuation to call into after vars are diverted -> IOThrowsError [HaskAST] -- ^ Code generated by the continuation, along with the code -- added to divert vars to the compiled program divertVars env expanded copts@(CompileOptions _ uvar uargs nfnc) func = do vars <- Language.Scheme.Macro.getDivertedVars env case vars of [] -> func env expanded copts _ -> do Atom symNext <- _gensym "afterDivert" diverted <- compileDivertedVars symNext env vars copts rest <- func env expanded $ CompileOptions symNext uvar uargs nfnc return $ [diverted] ++ rest -- |Take a list of variables diverted into env at compile time, and -- divert them into the env at runtime compileDivertedVars :: String -> Env -> [LispVal] -> CompOpts -> IOThrowsError HaskAST compileDivertedVars formNext _ vars copts@(CompileOptions _ useVal useArgs _) = do let val = case useVal of True -> "value" _ -> "Nil \"\"" args = case useArgs of True -> "(Just args)" _ -> "(Just [])" comp (List [Atom renamed, Atom orig]) = do [AstValue $ " v <- getVar env \"" ++ orig ++ "\"", AstValue $ " _ <- defineVar env \"" ++ renamed ++ "\" v"] comp _ = [] cvars = map comp vars f = (concat cvars) ++ [AstValue $ " " ++ formNext ++ " env cont (" ++ val ++ ") " ++ args] return $ createAstFunc copts f -- |Create the function entry point for a special form compileSpecialFormEntryPoint :: String -> String -> CompOpts -> IOThrowsError HaskAST compileSpecialFormEntryPoint formName formSym copts = do compileSpecialForm formName ("" ++ formSym ++ " env cont (Nil \"\") (Just [])") copts -- | Helper function for compiling a special form compileSpecialForm :: String -> String -> CompOpts -> IOThrowsError HaskAST compileSpecialForm _ formCode copts = do f <- return $ [ AstValue $ " " ++ formCode] return $ createAstFunc copts f -- |A wrapper for each special form that allows the form variable -- (EG: "if") to be redefined at compile time compileSpecialFormBody :: Env -> LispVal -> CompOpts -> (Maybe String -> ErrorT LispError IO [HaskAST]) -> ErrorT LispError IO [HaskAST] compileSpecialFormBody env ast@(List (Atom fnc : _)) copts@(CompileOptions _ _ _ nextFunc) spForm = do isDefined <- liftIO $ isRecBound env fnc case isDefined of True -> mfunc env ast compileApply copts False -> spForm nextFunc compileSpecialFormBody _ _ _ _ = throwError $ InternalError "compileSpecialFormBody" -- | Compile an intermediate expression (such as an arg to if) and -- call into the next continuation with it's value compileExpr :: Env -> LispVal -> String -> Maybe String -> IOThrowsError [HaskAST] compileExpr env expr symThisFunc fForNextExpr = do mcompile env expr (CompileOptions symThisFunc False False fForNextExpr) -- |Compile a function call compileApply :: Env -> LispVal -> CompOpts -> IOThrowsError [HaskAST] compileApply env (List (func : fparams)) copts@(CompileOptions coptsThis _ _ coptsNext) = do -- -- TODO: it is probably possible to mix creating conts and not when there are func and non-func args. -- -- _ <- case (trace ("calling compileApply: " ++ show (List (func : fparams))) func) of _ <- case func of List _ -> return $ Nil "" Atom _ -> return $ Nil "" _ -> throwError $ BadSpecialForm "Unable to evaluate form" $ List (func : fparams) primitive <- isPrim env func let literals = collectLiterals fparams nonFunctionCalls = collectLiteralsAndVars fparams case (primitive, literals, nonFunctionCalls) of -- Primitive (non-I/O) function with literal args, -- evaluate at compile time (Just primFunc, Just ls, _) -> do result <- LSC.apply (makeNullContinuation env) primFunc ls return $ [createAstFunc copts [ AstValue $ " let result = " ++ (ast2Str result), createAstCont copts "result" ""]] -- Other function with literal args, no need to create a -- continuation chain. But this case may include I/O funcs and -- variables, so everything must be executed at runtime (_, _, Just ls) -> compileFuncLitArgs ls -- Any other function, do it the hard way... -- -- Compile the function and each argument as a link in -- a chain of continuations. _ -> compileAllArgs func where -- |Compile a function call that contains arguments that are not -- function calls executed at runtime. compileFuncLitArgs args = do -- Keep track of any variables since we need to do a -- 'getRtVar' lookup for each of them prior to apply let pack (Atom p : ps) strs vars i = do let varName = "v" ++ show i pack ps (strs ++ [varName]) (vars ++ [(p, varName)]) (i + 1) pack (p : ps) strs vars i = pack ps (strs ++ [ast2Str p]) vars i pack [] strs vars _ = (strs, vars) let (paramStrs, vars) = pack args [] [] (0::Int) _compileFuncLitArgs func vars $ "[" ++ joinL paramStrs "," ++ "]" _compileFuncLitArgs fnc vars args = do Atom stubFunc <- _gensym "applyStubF" Atom nextFunc <- _gensym "applyNextF" c <- return $ AstFunction coptsThis " env cont _ _ " [ AstValue $ " continueEval env (makeCPSWArgs env (makeCPSWArgs env cont " ++ nextFunc ++ " []) " ++ stubFunc ++ " []) $ Nil\"\""] _comp <- mcompile env fnc $ CompileOptions stubFunc False False Nothing -- Haskell variables must be used to retrieve each atom from the env let varLines = map (\ (rt, cp) -> AstValue $ " " ++ cp ++ " <- getRTVar env \"" ++ rt ++ "\"") vars rest <- case coptsNext of Nothing -> return $ [ AstFunction nextFunc " env cont value _ " $ varLines ++ [AstValue $ " apply cont value " ++ args]] Just fnextExpr -> return $ [ AstFunction nextFunc " env cont value _ " $ varLines ++ [AstValue $ " apply (makeCPSWArgs env cont " ++ fnextExpr ++ " []) value " ++ args]] return $ [c] ++ _comp ++ rest -- |Compile function and args as a chain of continuations -- TODO: compileAllArgs (Atom fncName) = do rest <- case fparams of --rest <- case (trace "fncName" fparams) of [] -> do throwError $ Default $ " unreachable code in compileAllArgs for " ++ fncName -- fnc <- compileInlineVar env fncName "fnc" -- return [AstFunction -- coptsThis -- " env cont (Nil _) (Just (a:as)) " -- [fnc, -- AstValue $ " apply " ++ applyCont ++ " fnc (a:as) "], -- AstFunction -- coptsThis -- " env cont value (Just (a:as)) " -- [fnc, -- AstValue $ " apply " ++ applyCont ++ " fnc $ (a:as) ++ [value] "]] _ -> compileArgs coptsThis True (Just fncName) fparams -- True, passing fnc as value return $ rest --return $ [c, wrapper ] ++ _comp ++ rest compileAllArgs func' = do Atom stubFunc <- _gensym "applyStubF" Atom wrapperFunc <- _gensym "applyWrapper" Atom nextFunc <- _gensym "applyNextF" c <- return $ AstFunction coptsThis " env cont _ _ " [ AstValue $ " continueEval env (makeCPSWArgs env (makeCPSWArgs env cont " ++ wrapperFunc ++ " []) " ++ stubFunc ++ " []) $ Nil\"\""] -- Use wrapper to pass high-order function (func) as an argument to apply wrapper <- return $ AstFunction wrapperFunc " env cont value _ " [ AstValue $ " continueEval env (makeCPSWArgs env cont " ++ nextFunc ++ " [value]) $ Nil \"\""] _comp <- mcompile env func' $ CompileOptions stubFunc False False Nothing rest <- case fparams of [] -> do return [AstFunction nextFunc " env cont (Nil _) (Just (a:as)) " [AstValue $ " apply " ++ applyCont ++ " a as "], AstFunction nextFunc " env cont value (Just (a:as)) " [AstValue $ " apply " ++ applyCont ++ " a $ as ++ [value] "]] _ -> compileArgs nextFunc False Nothing fparams -- False since no value passed in this time return $ [c, wrapper ] ++ _comp ++ rest applyCont :: String applyCont = case coptsNext of Nothing -> "cont" Just fnextExpr -> "(makeCPSWArgs env cont " ++ fnextExpr ++ " [])" -- |Compile each argument as its own continuation (lambda), and then -- call the function using "applyWrapper" compileArgs :: String -> Bool -> (Maybe String) -> [LispVal] -> IOThrowsError [HaskAST] compileArgs thisFunc thisFuncUseValue maybeFnc args = do case args of (a:as) -> do let (asRest, asLiterals) = (as, []) --TODO: takeLiterals a as let lastArg = null asRest Atom stubFunc <- _gensym "applyFirstArg" -- Call into compiled stub Atom nextFunc <- do case lastArg of True -> return $ Atom "applyWrapper" -- Use wrapper to call into 'apply' _ -> _gensym "applyNextArg" -- Next func argument to execute... _comp <- mcompile env a $ CompileOptions stubFunc thisFuncUseValue False Nothing -- inline function? fnc <- case maybeFnc of Just fncName -> compileInlineVar env fncName "value" _ -> return $ AstValue "" -- Flag below means that the expression's value matters, add it to args f <- if thisFuncUseValue then return $ AstValue $ thisFunc ++ " env cont value (Just args) = do " else return $ AstValue $ thisFunc ++ " env cont _ (Just args) = do " c <- do let nextCont' = case (lastArg, coptsNext) of (True, Just fnextExpr) -> "(makeCPSWArgs env cont " ++ fnextExpr ++ " [])" _ -> "cont" let literalArgs = asts2Str asLiterals let argsCode = case thisFuncUseValue of True -> " $ args ++ [value] ++ " ++ literalArgs ++ ") " False -> " $ args ++ " ++ literalArgs ++ ") " if thisFuncUseValue then return $ AstValue $ " continueEval env (makeCPSWArgs env (makeCPSWArgs env " ++ nextCont' ++ " " ++ nextFunc ++ argsCode ++ stubFunc ++ " []) (Nil \"\") " else return $ AstValue $ " continueEval env (makeCPSWArgs env (makeCPSWArgs env " ++ nextCont' ++ " " ++ nextFunc ++ argsCode ++ stubFunc ++ " []) $ Nil\"\"" rest <- case lastArg of True -> return [] -- Using apply wrapper, so no more code _ -> compileArgs nextFunc True Nothing asRest -- True indicates nextFunc needs to use value arg passed into it return $ [ f, fnc, c] ++ _comp ++ rest _ -> throwError $ TypeMismatch "nonempty list" $ List args compileApply _ err _ = do throwError $ Default $ "compileApply - Unexpected argument: " ++ show err -- |Determines if the given lispval is a primitive function isPrim :: Env -> LispVal -> IOThrowsError (Maybe LispVal) isPrim env (Atom func) = do val <- getVar env func >>= recDerefPtrs case val of p@(PrimitiveFunc _) -> return $ Just p _ -> return Nothing isPrim _ p@(PrimitiveFunc _) = return $ Just p isPrim _ _ = return Nothing -- |Determine if the given list of expressions contains only literal identifiers -- EG: 1, "2", etc. And return them if that is all that is found. -- -- Atoms are a special case since they denote variables that will only be -- available at runtime, so a flag is used to selectively include them. -- _collectLiterals :: [LispVal] -> [LispVal] -> Bool -> (Maybe [LispVal]) _collectLiterals (List _ : _) _ _ = Nothing _collectLiterals (Atom _ : _) _ False = Nothing _collectLiterals (a : as) nfs varFlag = _collectLiterals as (a : nfs) varFlag _collectLiterals [] nfs _ = Just $ reverse nfs -- Wrappers for the above function collectLiterals, collectLiteralsAndVars :: [LispVal] -> (Maybe [LispVal]) collectLiteralsAndVars args = _collectLiterals args [] True collectLiterals args = _collectLiterals args [] False -- Take as many literals as possible from the given list, and -- return those literals and the rest of the list takeLiterals :: LispVal -> [LispVal] -> ([LispVal], [LispVal]) takeLiterals (List _) ls = (ls, []) takeLiterals _ ls' = do loop ls' [] where loop (l : ls) acc = do if isLiteral l then loop ls (l : acc) else ((l:ls), acc) loop [] acc = ([], Data.List.reverse acc) isLiteral (List _) = False isLiteral (Atom _) = False isLiteral _ = True -- Compile variable as a stand-alone line of code compileInlineVar :: Env -> String -> String -> IOThrowsError HaskAST compileInlineVar env a hsName = do isDefined <- liftIO $ isRecBound env a case isDefined of True -> return $ AstValue $ " " ++ hsName ++ " <- getRTVar env \"" ++ a ++ "\"" False -> throwError $ UnboundVar "Variable is not defined" a