{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} module HaskellWorks.Data.Json.Conduit ( blankedJsonToInterestBits , byteStringToBits , blankedJsonToBalancedParens , blankedJsonToBalancedParens2 , compressWordAsBit , interestingWord8s ) where import Control.Monad import Data.Array.Unboxed as A import qualified Data.Bits as BITS import Data.ByteString as BS import Data.Conduit import Data.Int import Data.Word import Data.Word8 import HaskellWorks.Data.Bits.BitWise import Prelude as P interestingWord8s :: A.UArray Word8 Word8 interestingWord8s = A.array (0, 255) [ (w, if w == _bracketleft || w == _braceleft || w == _parenleft || w == _t || w == _f || w == _n || w == _1 then 1 else 0) | w <- [0 .. 255]] blankedJsonToInterestBits :: Monad m => Conduit BS.ByteString m BS.ByteString blankedJsonToInterestBits = blankedJsonToInterestBits' "" padRight :: Word8 -> Int -> BS.ByteString -> BS.ByteString padRight w n bs = if BS.length bs >= n then bs else fst (BS.unfoldrN n gen bs) where gen :: ByteString -> Maybe (Word8, ByteString) gen cs = case BS.uncons cs of Just (c, ds) -> Just (c, ds) Nothing -> Just (w, BS.empty) blankedJsonToInterestBits' :: Monad m => BS.ByteString -> Conduit BS.ByteString m BS.ByteString blankedJsonToInterestBits' rs = do mbs <- await case mbs of Just bs -> do let cs = if BS.length rs /= 0 then BS.concat [rs, bs] else bs let lencs = BS.length cs let q = lencs + 7 `quot` 8 let (ds, es) = BS.splitAt (q * 8) cs let (fs, _) = BS.unfoldrN q gen ds yield fs blankedJsonToInterestBits' es Nothing -> return () where gen :: ByteString -> Maybe (Word8, ByteString) gen as = if BS.length as == 0 then Nothing else Just ( BS.foldr (\b m -> (interestingWord8s ! b) .|. (m .<. 1)) 0 (padRight 0 8 (BS.take 8 as)) , BS.drop 8 as ) blankedJsonToBalancedParens :: Monad m => Conduit BS.ByteString m Bool blankedJsonToBalancedParens = do mbs <- await case mbs of Just bs -> blankedJsonToBalancedParens' bs Nothing -> return () blankedJsonToBalancedParens' :: Monad m => BS.ByteString -> Conduit BS.ByteString m Bool blankedJsonToBalancedParens' bs = case BS.uncons bs of Just (c, cs) -> do case c of d | d == _braceleft -> yield True d | d == _braceright -> yield False d | d == _bracketleft -> yield True d | d == _bracketright -> yield False d | d == _parenleft -> yield True d | d == _parenright -> yield False d | d == _t -> yield True >> yield False d | d == _f -> yield True >> yield False d | d == _1 -> yield True >> yield False d | d == _n -> yield True >> yield False _ -> return () blankedJsonToBalancedParens' cs Nothing -> return () compressWordAsBit :: Monad m => Conduit BS.ByteString m BS.ByteString compressWordAsBit = do mbs <- await case mbs of Just bs -> do let (cs, _) = BS.unfoldrN (BS.length bs + 7 `div` 8) gen bs yield cs Nothing -> return () where gen :: ByteString -> Maybe (Word8, ByteString) gen xs = if BS.length xs == 0 then Nothing else Just ( BS.foldr (\b m -> ((b .&. 1) .|. (m .<. 1))) 0 (padRight 0 8 (BS.take 8 xs)) , BS.drop 8 xs ) blankedJsonToBalancedParens2 :: Monad m => Conduit BS.ByteString m BS.ByteString blankedJsonToBalancedParens2 = do mbs <- await case mbs of Just bs -> do let (cs, _) = BS.unfoldrN (BS.length bs * 2) gen (Nothing, bs) yield cs Nothing -> return () where gen :: (Maybe Bool, ByteString) -> Maybe (Word8, (Maybe Bool, ByteString)) gen (Just True , bs) = Just (0xFF, (Nothing, bs)) gen (Just False , bs) = Just (0x00, (Nothing, bs)) gen (Nothing , bs) = case BS.uncons bs of Just (c, cs) -> case balancedParensOf c of MiniN -> gen (Nothing , cs) MiniT -> Just (0xFF, (Nothing , cs)) MiniF -> Just (0x00, (Nothing , cs)) MiniTF -> Just (0xFF, (Just False , cs)) Nothing -> Nothing data MiniBP = MiniN | MiniT | MiniF | MiniTF balancedParensOf :: Word8 -> MiniBP balancedParensOf c = case c of d | d == _braceleft -> MiniT d | d == _braceright -> MiniF d | d == _bracketleft -> MiniT d | d == _bracketright -> MiniF d | d == _parenleft -> MiniT d | d == _parenright -> MiniF d | d == _t -> MiniTF d | d == _f -> MiniTF d | d == _1 -> MiniTF d | d == _n -> MiniTF _ -> MiniN yieldBitsOfWord8 :: Monad m => Word8 -> Conduit BS.ByteString m Bool yieldBitsOfWord8 w = do yield ((w .&. BITS.bit 0) /= 0) yield ((w .&. BITS.bit 1) /= 0) yield ((w .&. BITS.bit 2) /= 0) yield ((w .&. BITS.bit 3) /= 0) yield ((w .&. BITS.bit 4) /= 0) yield ((w .&. BITS.bit 5) /= 0) yield ((w .&. BITS.bit 6) /= 0) yield ((w .&. BITS.bit 7) /= 0) yieldBitsofWord8s :: Monad m => [Word8] -> Conduit BS.ByteString m Bool yieldBitsofWord8s = P.foldr ((>>) . yieldBitsOfWord8) (return ()) byteStringToBits :: Monad m => Conduit BS.ByteString m Bool byteStringToBits = do mbs <- await case mbs of Just bs -> yieldBitsofWord8s (BS.unpack bs) >> byteStringToBits Nothing -> return ()