{-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- A hybrid 'Vector' lets you make a 'Vector' which is 'partially unboxed', by -- making a 'Vector' out of two other 'Vector' types and using each for its -- corresponding side of a 'Vector' of pairs. -- -- This enables you to work with a mixture of boxed and unboxed data when -- you go to use something @like vector-algorithms@ ----------------------------------------------------------------------------- module Data.Vector.Hybrid ( Vector, MVector -- * Accessors -- ** Length information , length, null -- ** Indexing , (!), (!?), head, last , unsafeIndex, unsafeHead, unsafeLast -- ** Monadic indexing , indexM, headM, lastM , unsafeIndexM, unsafeHeadM, unsafeLastM -- ** Extracting subvectors (slicing) , slice, init, tail, take, drop, splitAt , unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop -- * Construction -- ** Initialisation , empty, singleton, replicate, generate, iterateN -- ** Monadic initialisation , replicateM, generateM, create -- ** Unfolding , unfoldr, unfoldrN , constructN, constructrN -- -- ** Enumeration -- , enumFromN, enumFromStepN, enumFromTo, enumFromThenTo -- ** Concatenation , cons, snoc, (++), concat -- ** Restricting memory usage , force -- * Modifying vectors -- ** Bulk updates , (//) , unsafeUpd -- , update_, unsafeUpdate_ -- ** Accumulations , accum, unsafeAccum -- , accumulate_, unsafeAccumulate_ -- ** Permutations , reverse -- , backpermute, unsafeBackpermute -- ** Safe destructive updates , modify -- * Elementwise operations -- ** Mapping , map, imap, concatMap -- ** Monadic mapping , mapM, mapM_, forM, forM_ -- ** Zipping , zipWith, zipWith3, zipWith4, zipWith5, zipWith6 , izipWith, izipWith3, izipWith4, izipWith5, izipWith6 -- ** Monadic zipping , zipWithM, zipWithM_ -- * Working with predicates -- ** Filtering , filter, ifilter, filterM , takeWhile, dropWhile -- ** Partitioning , partition, unstablePartition, span, break -- ** Searching , elem, notElem, find, findIndex , elemIndex -- , findIndices, elemIndices -- * Folding , foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1' , ifoldl, ifoldl', ifoldr, ifoldr' -- ** Specialised folds , all, any -- , sum, product , maximum, maximumBy, minimum, minimumBy , minIndex, minIndexBy, maxIndex, maxIndexBy -- ** Monadic folds , foldM, foldM', fold1M, fold1M' , foldM_, foldM'_, fold1M_, fold1M'_ -- * Prefix sums (scans) , prescanl, prescanl' , postscanl, postscanl' , scanl, scanl', scanl1, scanl1' , prescanr, prescanr' , postscanr, postscanr' , scanr, scanr', scanr1, scanr1' -- * Conversions , projectFst , projectSnd , unsafeZip -- ** Lists , toList, fromList, fromListN -- ** Other vector types , G.convert -- ** Mutable vectors , freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy ) where import Control.Monad.Primitive import Control.Monad.ST import Data.Vector.Hybrid.Internal import qualified Data.Vector.Generic as G import Prelude hiding ( length, null, replicate, (++), concat, head, last, init, tail, take, drop, splitAt, reverse, map, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, sum, product, minimum, maximum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_ ) -- Length -- ------ -- | /O(1)/ Yield the length of the vector. length :: G.Vector u a => Vector u v (a, b) -> Int length (V ks _) = G.length ks {-# INLINE length #-} -- | /O(1)/ Test whether a vector if empty null :: G.Vector u a => Vector u v (a, b) -> Bool null (V ks _) = G.null ks {-# INLINE null #-} -- Indexing -- -------- -- | O(1) Indexing (!) :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Int -> (a, b) (!) = (G.!) {-# INLINE (!) #-} -- | O(1) Safe indexing (!?) :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Int -> Maybe (a, b) (!?) = (G.!?) {-# INLINE (!?) #-} -- | /O(1)/ First element head :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> (a, b) head = G.head {-# INLINE head #-} -- | /O(1)/ Last element last :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> (a, b) last = G.last {-# INLINE last #-} -- | /O(1)/ Unsafe indexing without bounds checking unsafeIndex :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Int -> (a, b) {-# INLINE unsafeIndex #-} unsafeIndex = G.unsafeIndex -- | /O(1)/ First element without checking if the vector is empty unsafeHead :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> (a, b) {-# INLINE unsafeHead #-} unsafeHead = G.unsafeHead -- | /O(1)/ Last element without checking if the vector is empty unsafeLast :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> (a, b) {-# INLINE unsafeLast #-} unsafeLast = G.unsafeLast -- Monadic indexing -- ---------------- -- | /O(1)/ Indexing in a monad. -- -- The monad allows operations to be strict in the vector when necessary. -- Suppose vector copying is implemented like this: -- -- > copy mv v = ... write mv i (v ! i) ... -- -- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@ -- would unnecessarily retain a reference to @v@ in each element written. -- -- With 'indexM', copying can be implemented like this instead: -- -- > copy mv v = ... do -- > x <- indexM v i -- > write mv i x -- -- Here, no references to @v@ are retained because indexing (but /not/ the -- elements) is evaluated eagerly. -- indexM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> Int -> m (a, b) indexM = G.indexM {-# INLINE indexM #-} -- | /O(1)/ First element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. headM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> m (a, b) headM = G.headM {-# INLINE headM #-} -- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. lastM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> m (a, b) lastM = G.lastM {-# INLINE lastM #-} -- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an -- explanation of why this is useful. unsafeIndexM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> Int -> m (a, b) unsafeIndexM = G.unsafeIndexM {-# INLINE unsafeIndexM #-} -- | /O(1)/ First element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeHeadM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> m (a, b) unsafeHeadM = G.unsafeHeadM {-# INLINE unsafeHeadM #-} -- | /O(1)/ Last element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeLastM :: (G.Vector u a, G.Vector v b, Monad m) => Vector u v (a, b) -> m (a, b) unsafeLastM = G.unsafeLastM {-# INLINE unsafeLastM #-} -- Extracting subvectors (slicing) -- ------------------------------- -- | /O(1)/ Yield a slice of the vector without copying it. The vector must -- contain at least @i+n@ elements. slice :: (G.Vector u a, G.Vector v b) => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector u v (a, b) -> Vector u v (a, b) slice = G.slice {-# INLINE slice #-} -- | /O(1)/ Yield all but the last element without copying. The vector may not -- be empty. init :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) init = G.init {-# INLINE init #-} -- | /O(1)/ Yield all but the first element without copying. The vector may not -- be empty. tail :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) tail = G.tail {-# INLINE tail #-} -- | /O(1)/ Yield at the first @n@ elements without copying. The vector may -- contain less than @n@ elements in which case it is returned unchanged. take :: (G.Vector u a, G.Vector v b) => Int -> Vector u v (a, b) -> Vector u v (a, b) take = G.take {-# INLINE take #-} -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may -- contain less than @n@ elements in which case an empty vector is returned. drop :: (G.Vector u a, G.Vector v b) => Int -> Vector u v (a, b) -> Vector u v (a, b) drop = G.drop {-# INLINE drop #-} -- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying. -- -- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@ -- but slightly more efficient. splitAt :: (G.Vector u a, G.Vector v b) => Int -> Vector u v (a, b) -> (Vector u v (a, b), Vector u v (a, b)) splitAt = G.splitAt {-# INLINE splitAt #-} -- | /O(1)/ Yield a slice of the vector without copying. The vector must -- contain at least @i+n@ elements but this is not checked. unsafeSlice :: (G.Vector u a, G.Vector v b) => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector u v (a, b) -> Vector u v (a, b) unsafeSlice = G.unsafeSlice {-# INLINE unsafeSlice #-} -- | /O(1)/ Yield all but the last element without copying. The vector may not -- be empty but this is not checked. unsafeInit :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) unsafeInit = G.unsafeInit {-# INLINE unsafeInit #-} -- | /O(1)/ Yield all but the first element without copying. The vector may not -- be empty but this is not checked. unsafeTail :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) unsafeTail = G.unsafeTail {-# INLINE unsafeTail #-} -- | /O(1)/ Yield the first @n@ elements without copying. The vector must -- contain at least @n@ elements but this is not checked. unsafeTake :: (G.Vector u a, G.Vector v b) => Int -> Vector u v (a, b) -> Vector u v (a, b) unsafeTake = G.unsafeTake {-# INLINE unsafeTake #-} -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector -- must contain at least @n@ elements but this is not checked. unsafeDrop :: (G.Vector u a, G.Vector v b) => Int -> Vector u v (a, b) -> Vector u v (a, b) unsafeDrop = G.unsafeDrop {-# INLINE unsafeDrop #-} -- Initialisation -- -------------- -- | /O(1)/ Empty vector empty :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) empty = G.empty {-# INLINE empty #-} -- | /O(1)/ Vector with exactly one element singleton :: (G.Vector u a, G.Vector v b) => (a, b) -> Vector u v (a, b) singleton = G.singleton {-# INLINE singleton #-} -- | /O(n)/ Vector of the given length with the same value in each position replicate :: (G.Vector u a, G.Vector v b) => Int -> (a, b) -> Vector u v (a, b) replicate = G.replicate {-# INLINE replicate #-} -- | /O(n)/ Construct a vector of the given length by applying the function to -- each index generate :: (G.Vector u a, G.Vector v b) => Int -> (Int -> (a, b)) -> Vector u v (a, b) generate = G.generate {-# INLINE generate #-} -- | /O(n)/ Apply function n times to value. Zeroth element is original value. iterateN :: (G.Vector u a, G.Vector v b) => Int -> ((a, b) -> (a, b)) -> (a, b) -> Vector u v (a, b) iterateN = G.iterateN {-# INLINE iterateN #-} -- Unfolding -- --------- -- | /O(n)/ Construct a vector by repeatedly applying the generator function -- to a seed. The generator function yields 'Just' the next element and the -- new seed or 'Nothing' if there are no more elements. -- -- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10 -- > = <10,9,8,7,6,5,4,3,2,1> unfoldr :: (G.Vector u a, G.Vector v b) => (c -> Maybe ((a, b), c)) -> c -> Vector u v (a, b) unfoldr = G.unfoldr {-# INLINE unfoldr #-} -- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the -- generator function to the a seed. The generator function yields 'Just' the -- next element and the new seed or 'Nothing' if there are no more elements. -- -- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8> unfoldrN :: (G.Vector u a, G.Vector v b) => Int -> (c -> Maybe ((a, b), c)) -> c -> Vector u v (a, b) unfoldrN = G.unfoldrN {-# INLINE unfoldrN #-} -- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the -- generator function to the already constructed part of the vector. -- -- > constructN 3 f = let a = f <> ; b = f ; c = f in f -- constructN :: (G.Vector u a, G.Vector v b) => Int -> (Vector u v (a, b) -> (a, b)) -> Vector u v (a, b) constructN = G.constructN {-# INLINE constructN #-} -- | /O(n)/ Construct a vector with @n@ elements from right to left by -- repeatedly applying the generator function to the already constructed part -- of the vector. -- -- > constructrN 3 f = let a = f <> ; b = f ; c = f in f -- constructrN :: (G.Vector u a, G.Vector v b) => Int -> (Vector u v (a, b) -> (a, b)) -> Vector u v (a, b) constructrN = G.constructrN {-# INLINE constructrN #-} -- Concatenation -- ------------- -- | /O(n)/ Prepend an element cons :: (G.Vector u a, G.Vector v b) => (a, b) -> Vector u v (a, b) -> Vector u v (a, b) {-# INLINE cons #-} cons = G.cons -- | /O(n)/ Append an element snoc :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> (a, b) -> Vector u v (a, b) {-# INLINE snoc #-} snoc = G.snoc infixr 5 ++ -- | /O(m+n)/ Concatenate two vectors (++) :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) -> Vector u v (a, b) {-# INLINE (++) #-} (++) = (G.++) -- | /O(n)/ Concatenate all vectors in the list concat :: (G.Vector u a, G.Vector v b) => [Vector u v (a, b)] -> Vector u v (a, b) {-# INLINE concat #-} concat = G.concat -- Monadic initialisation -- ---------------------- -- | /O(n)/ Execute the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, G.Vector u a, G.Vector v b) => Int -> m (a, b) -> m (Vector u v (a, b)) replicateM = G.replicateM {-# INLINE replicateM #-} -- | /O(n)/ Construct a vector of the given length by applying the monadic -- action to each index generateM :: (Monad m, G.Vector u a, G.Vector v b) => Int -> (Int -> m (a, b)) -> m (Vector u v (a, b)) generateM = G.generateM {-# INLINE generateM #-} -- | Execute the monadic action and freeze the resulting vector. -- -- @ -- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\> -- @ create :: (G.Vector u a, G.Vector v b) => (forall s. ST s (G.Mutable (Vector u v) s (a, b))) -> Vector u v (a, b) -- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120 create p = G.create p {-# INLINE create #-} -- Restricting memory usage -- ------------------------ -- | /O(n)/ Yield the argument but force it not to retain any extra memory, -- possibly by copying it. -- -- This is especially useful when dealing with slices. For example: -- -- > force (slice 0 2 ) -- -- Here, the slice retains a reference to the huge vector. Forcing it creates -- a copy of just the elements that belong to the slice and allows the huge -- vector to be garbage collected. force :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) force = G.force {-# INLINE force #-} -- Bulk updates -- ------------ -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector -- element at position @i@ by @a@. -- -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7> -- (//) :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -- ^ initial vector (of length @m@) -> [(Int, (a, b))] -- ^ list of index/value pairs (of length @n@) -> Vector u v (a, b) (//) = (G.//) {-# INLINE (//) #-} -- | Same as ('//') but without bounds checking. unsafeUpd :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> [(Int, (a, b))] -> Vector u v (a, b) unsafeUpd = G.unsafeUpd {-# INLINE unsafeUpd #-} -- Accumulations -- ------------- -- | /O(m+n)/ For each pair @(i,c)@ from the list, replace the vector element -- @a@ at position @i@ by @f a c@. -- -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4> accum :: (G.Vector u a, G.Vector v b) => ((a, b) -> c -> (a, b)) -- ^ accumulating function @f@ -> Vector u v (a, b) -- ^ initial vector (of length @m@) -> [(Int,c)] -- ^ list of index/value pairs (of length @n@) -> Vector u v (a, b) accum = G.accum {-# INLINE accum #-} -- | Same as 'accum' but without bounds checking. unsafeAccum :: (G.Vector u a, G.Vector v b) => ((a, b) -> c -> (a, b)) -> Vector u v (a, b) -> [(Int,c)] -> Vector u v (a, b) unsafeAccum = G.unsafeAccum {-# INLINE unsafeAccum #-} -- Permutations -- ------------ -- | /O(n)/ Reverse a vector reverse :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> Vector u v (a, b) {-# INLINE reverse #-} reverse = G.reverse -- Safe destructive updates -- ------------------------ -- | Apply a destructive operation to a vector. The operation will be -- performed in place if it is safe to do so and will modify a copy of the -- vector otherwise. -- -- @ -- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\> -- @ modify :: (G.Vector u a, G.Vector v b) => (forall s. G.Mutable (Vector u v) s (a, b) -> ST s ()) -> Vector u v (a, b) -> Vector u v (a, b) {-# INLINE modify #-} modify p = G.modify p -- Mapping -- ------- -- | /O(n)/ Map a function over a vector map :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d)) -> Vector u v (a, b) -> Vector u v (c, d) map = G.map {-# INLINE map #-} -- | /O(n)/ Apply a function to every element of a vector and its index imap :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => (Int -> (a, b) -> (c, d)) -> Vector u v (a, b) -> Vector u v (c, d) imap = G.imap {-# INLINE imap #-} -- | Map a function over a vector and concatenate the results. concatMap :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> Vector u v (c, d)) -> Vector u v (a, b) -> Vector u v (c, d) concatMap = G.concatMap {-# INLINE concatMap #-} -- Monadic mapping -- --------------- -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results mapM :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> m (c, d)) -> Vector u v (a, b) -> m (Vector u v (c, d)) mapM = G.mapM {-# INLINE mapM #-} -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> m (c, d)) -> Vector u v (a, b) -> m () mapM_ = G.mapM_ {-# INLINE mapM_ #-} -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results. Equvalent to @flip 'mapM'@. forM :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => Vector u v (a, b) -> ((a, b) -> m (c, d)) -> m (Vector u v (c, d)) forM = G.forM {-# INLINE forM #-} -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results. Equivalent to @flip 'mapM_'@. forM_ :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => Vector u v (a, b) -> ((a, b) -> m (c, d)) -> m () forM_ = G.forM_ {-# INLINE forM_ #-} -- Zipping -- ------- -- | /O(min(m,n))/ Zip two vectors with the given function. zipWith :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' ) => ((a,a') -> (b,b') -> (c,c')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') zipWith = G.zipWith {-# INLINE zipWith #-} -- | Zip three vectors with the given function. zipWith3 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' ) => ((a,a') -> (b,b') -> (c,c') -> (d, d')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') zipWith3 = G.zipWith3 {-# INLINE zipWith3 #-} zipWith4 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' ) => ((a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') zipWith4 = G.zipWith4 {-# INLINE zipWith4 #-} zipWith5 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' , G.Vector u f, G.Vector v f' ) => ((a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e') -> (f,f')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') -> Vector u v (f,f') zipWith5 = G.zipWith5 {-# INLINE zipWith5 #-} zipWith6 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' , G.Vector u f, G.Vector v f' , G.Vector u g, G.Vector v g' ) => ((a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e') -> (f,f') -> (g,g')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') -> Vector u v (f,f') -> Vector u v (g,g') zipWith6 = G.zipWith6 {-# INLINE zipWith6 #-} -- | /O(min(m,n))/ Zip two vectors with a function that also takes the -- elements' indices. izipWith :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' ) => (Int -> (a,a') -> (b,b') -> (c,c')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') izipWith = G.izipWith {-# INLINE izipWith #-} -- | Zip three vectors and their indices with the given function. izipWith3 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' ) => (Int -> (a,a') -> (b,b') -> (c,c') -> (d, d')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') izipWith3 = G.izipWith3 {-# INLINE izipWith3 #-} izipWith4 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' ) => (Int -> (a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') izipWith4 = G.izipWith4 {-# INLINE izipWith4 #-} izipWith5 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' , G.Vector u f, G.Vector v f' ) => (Int -> (a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e') -> (f,f')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') -> Vector u v (f,f') izipWith5 = G.izipWith5 {-# INLINE izipWith5 #-} izipWith6 :: ( G.Vector u a, G.Vector v a' , G.Vector u b, G.Vector v b' , G.Vector u c, G.Vector v c' , G.Vector u d, G.Vector v d' , G.Vector u e, G.Vector v e' , G.Vector u f, G.Vector v f' , G.Vector u g, G.Vector v g' ) => (Int -> (a,a') -> (b,b') -> (c,c') -> (d, d') -> (e,e') -> (f,f') -> (g,g')) -> Vector u v (a,a') -> Vector u v (b,b') -> Vector u v (c,c') -> Vector u v (d,d') -> Vector u v (e,e') -> Vector u v (f,f') -> Vector u v (g,g') izipWith6 = G.izipWith6 {-# INLINE izipWith6 #-} -- Monadic zipping -- --------------- -- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a -- vector of results zipWithM :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d, G.Vector u e, G.Vector v f) => ((a, b) -> (c, d) -> m (e,f)) -> Vector u v (a, b) -> Vector u v (c, d) -> m (Vector u v (e,f)) zipWithM = G.zipWithM {-# INLINE zipWithM #-} -- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the -- results zipWithM_ :: (Monad m, G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> m e) -> Vector u v (a, b) -> Vector u v (c, d) -> m () zipWithM_ = G.zipWithM_ {-# INLINE zipWithM_ #-} -- Filtering -- --------- -- | /O(n)/ Drop elements that do not satisfy the predicate filter :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Vector u v (a, b) filter = G.filter {-# INLINE filter #-} -- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to -- values and their indices ifilter :: (G.Vector u a, G.Vector v b) => (Int -> (a, b) -> Bool) -> Vector u v (a, b) -> Vector u v (a, b) ifilter = G.ifilter {-# INLINE ifilter #-} -- | /O(n)/ Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, G.Vector u a, G.Vector v b) => ((a, b) -> m Bool) -> Vector u v (a, b) -> m (Vector u v (a, b)) filterM = G.filterM {-# INLINE filterM #-} -- | /O(n)/ Yield the longest prefix of elements satisfying the predicate -- without copying. takeWhile :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Vector u v (a, b) takeWhile = G.takeWhile {-# INLINE takeWhile #-} -- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate -- without copying. dropWhile :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Vector u v (a, b) dropWhile = G.dropWhile {-# INLINE dropWhile #-} -- Parititioning -- ------------- -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a sometimes -- reduced performance compared to 'unstablePartition'. partition :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> (Vector u v (a, b), Vector u v (a, b)) {-# INLINE partition #-} partition = G.partition -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. -- The order of the elements is not preserved but the operation is often -- faster than 'partition'. unstablePartition :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> (Vector u v (a, b), Vector u v (a, b)) {-# INLINE unstablePartition #-} unstablePartition = G.unstablePartition -- | /O(n)/ Split the vector into the longest prefix of elements that satisfy -- the predicate and the rest without copying. span :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> (Vector u v (a, b), Vector u v (a, b)) {-# INLINE span #-} span = G.span -- | /O(n)/ Split the vector into the longest prefix of elements that do not -- satisfy the predicate and the rest without copying. break :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> (Vector u v (a, b), Vector u v (a, b)) {-# INLINE break #-} break = G.break -- Searching -- --------- infix 4 `elem` -- | /O(n)/ Check if the vector contains an element elem :: (G.Vector u a, G.Vector v b, Eq a, Eq b) => (a, b) -> Vector u v (a, b) -> Bool elem = G.elem {-# INLINE elem #-} infix 4 `notElem` -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem') notElem :: (G.Vector u a, G.Vector v b, Eq a, Eq b) => (a, b) -> Vector u v (a, b) -> Bool notElem = G.notElem {-# INLINE notElem #-} -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing' -- if no such element exists. find :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Maybe (a, b) find = G.find {-# INLINE find #-} -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate -- or 'Nothing' if no such element exists. findIndex :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Maybe Int findIndex = G.findIndex {-# INLINE findIndex #-} {- -- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending -- order. findIndices :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Vector u v Int findIndices = G.findIndices {-# INLINE findIndices #-} -} -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element. This is a specialised -- version of 'findIndex'. elemIndex :: (G.Vector u a, G.Vector v b, Eq a, Eq b) => (a, b) -> Vector u v (a, b) -> Maybe Int elemIndex = G.elemIndex {-# INLINE elemIndex #-} {- -- | /O(n)/ Yield the indices of all occurences of the given element in -- ascending order. This is a specialised version of 'findIndices'. elemIndices :: (G.Vector u a, G.Vector v b, Eq a, Eq b) => (a, b) -> Vector u v (a, b) -> Vector Int elemIndices = G.elemIndices {-# INLINE elemIndices #-} -} -- Folding -- ------- -- | /O(n)/ Left fold foldl :: (G.Vector u a, G.Vector v b) => (r -> (a, b) -> r) -> r -> Vector u v (a, b) -> r foldl = G.foldl {-# INLINE foldl #-} -- | /O(n)/ Left fold on non-empty vectors foldl1 :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> (a, b) foldl1 = G.foldl1 {-# INLINE foldl1 #-} -- | /O(n)/ Left fold with strict accumulator foldl' :: (G.Vector u a, G.Vector v b) => (r -> (a, b) -> r) -> r -> Vector u v (a, b) -> r foldl' = G.foldl' {-# INLINE foldl' #-} -- | /O(n)/ Left fold on non-empty vectors with strict accumulator foldl1' :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> (a, b) foldl1' = G.foldl1' {-# INLINE foldl1' #-} -- | /O(n)/ Right fold foldr :: (G.Vector u a, G.Vector v b) => ((a, b) -> r -> r) -> r -> Vector u v (a, b) -> r foldr = G.foldr {-# INLINE foldr #-} -- | /O(n)/ Right fold on non-empty vectors foldr1 :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> (a, b) foldr1 = G.foldr1 {-# INLINE foldr1 #-} -- | /O(n)/ Right fold with a strict accumulator foldr' :: (G.Vector u a, G.Vector v b) => ((a, b) -> r -> r) -> r -> Vector u v (a, b) -> r foldr' = G.foldr' {-# INLINE foldr' #-} -- | /O(n)/ Right fold on non-empty vectors with strict accumulator foldr1' :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> (a, b) foldr1' = G.foldr1' {-# INLINE foldr1' #-} -- | /O(n)/ Left fold (function applied to each element and its index) ifoldl :: (G.Vector u a, G.Vector v b) => (r -> Int -> (a, b) -> r) -> r -> Vector u v (a, b) -> r ifoldl = G.ifoldl {-# INLINE ifoldl #-} -- | /O(n)/ Left fold with strict accumulator (function applied to each element -- and its index) ifoldl' :: (G.Vector u a, G.Vector v b) => (r -> Int -> (a, b) -> r) -> r -> Vector u v (a, b) -> r ifoldl' = G.ifoldl' {-# INLINE ifoldl' #-} -- | /O(n)/ Right fold (function applied to each element and its index) ifoldr :: (G.Vector u a, G.Vector v b) => (Int -> (a, b) -> r -> r) -> r -> Vector u v (a, b) -> r ifoldr = G.ifoldr {-# INLINE ifoldr #-} -- | /O(n)/ Right fold with strict accumulator (function applied to each -- element and its index) ifoldr' :: (G.Vector u a, G.Vector v b) => (Int -> (a, b) -> r -> r) -> r -> Vector u v (a, b) -> r ifoldr' = G.ifoldr' {-# INLINE ifoldr' #-} -- Specialised folds -- ----------------- -- | /O(n)/ Check if all elements satisfy the predicate. all :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Bool {-# INLINE all #-} all = G.all -- | /O(n)/ Check if any element satisfies the predicate. any :: (G.Vector u a, G.Vector v b) => ((a, b) -> Bool) -> Vector u v (a, b) -> Bool {-# INLINE any #-} any = G.any {- -- | /O(n)/ Compute the sum of the elements sum :: (G.Vector u a, G.Vector v b, Num a) => Vector u v (a, b) -> (a, b) {-# INLINE sum #-} sum = G.sum -- | /O(n)/ Compute the product of the elements product :: ((G.Vector u a, G.Vector v b), Num a) => Vector u v (a, b) -> (a, b) {-# INLINE product #-} product = G.product -} -- | /O(n)/ Yield the maximum element of the vector. The vector may not be -- empty. maximum :: (G.Vector u a, G.Vector v b, Ord a, Ord b) => Vector u v (a, b) -> (a, b) {-# INLINE maximum #-} maximum = G.maximum -- | /O(n)/ Yield the maximum element of the vector according to the given -- comparison function. The vector may not be empty. maximumBy :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> Ordering) -> Vector u v (a, b) -> (a, b) {-# INLINE maximumBy #-} maximumBy = G.maximumBy -- | /O(n)/ Yield the minimum element of the vector. The vector may not be -- empty. minimum :: (G.Vector u a, G.Vector v b, Ord a, Ord b) => Vector u v (a, b) -> (a, b) {-# INLINE minimum #-} minimum = G.minimum -- | /O(n)/ Yield the minimum element of the vector according to the given -- comparison function. The vector may not be empty. minimumBy :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> Ordering) -> Vector u v (a, b) -> (a, b) {-# INLINE minimumBy #-} minimumBy = G.minimumBy -- | /O(n)/ Yield the index of the maximum element of the vector. The vector -- may not be empty. maxIndex :: (G.Vector u a, G.Vector v b, Ord a, Ord b) => Vector u v (a, b) -> Int {-# INLINE maxIndex #-} maxIndex = G.maxIndex -- | /O(n)/ Yield the index of the maximum element of the vector according to -- the given comparison function. The vector may not be empty. maxIndexBy :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> Ordering) -> Vector u v (a, b) -> Int {-# INLINE maxIndexBy #-} maxIndexBy = G.maxIndexBy -- | /O(n)/ Yield the index of the minimum element of the vector. The vector -- may not be empty. minIndex :: (G.Vector u a, G.Vector v b, Ord a, Ord b) => Vector u v (a, b) -> Int {-# INLINE minIndex #-} minIndex = G.minIndex -- | /O(n)/ Yield the index of the minimum element of the vector according to -- the given comparison function. The vector may not be empty. minIndexBy :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> Ordering) -> Vector u v (a, b) -> Int {-# INLINE minIndexBy #-} minIndexBy = G.minIndexBy -- Monadic folds -- ------------- -- | /O(n)/ Monadic fold foldM :: (Monad m, G.Vector u a, G.Vector v b) => (r -> (a, b) -> m r) -> r -> Vector u v (a, b) -> m r foldM = G.foldM {-# INLINE foldM #-} -- | /O(n)/ Monadic fold over non-empty vectors fold1M :: (Monad m, G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> m (a, b)) -> Vector u v (a, b) -> m (a, b) {-# INLINE fold1M #-} fold1M = G.fold1M -- | /O(n)/ Monadic fold with strict accumulator foldM' :: (Monad m, G.Vector u a, G.Vector v b) => (r -> (a, b) -> m r) -> r -> Vector u v (a, b) -> m r {-# INLINE foldM' #-} foldM' = G.foldM' -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> m (a, b)) -> Vector u v (a, b) -> m (a, b) {-# INLINE fold1M' #-} fold1M' = G.fold1M' -- | /O(n)/ Monadic fold that discards the result foldM_ :: (Monad m, G.Vector u a, G.Vector v b) => (r -> (a, b) -> m r) -> r -> Vector u v (a, b) -> m () {-# INLINE foldM_ #-} foldM_ = G.foldM_ -- | /O(n)/ Monadic fold over non-empty vectors that discards the result fold1M_ :: (Monad m, G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> m (a, b)) -> Vector u v (a, b) -> m () {-# INLINE fold1M_ #-} fold1M_ = G.fold1M_ -- | /O(n)/ Monadic fold with strict accumulator that discards the result foldM'_ :: (Monad m, G.Vector u a, G.Vector v b) => (r -> (a, b) -> m r) -> r -> Vector u v (a, b) -> m () {-# INLINE foldM'_ #-} foldM'_ = G.foldM'_ -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator -- that discards the result fold1M'_ :: (Monad m, G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> m (a, b)) -> Vector u v (a, b) -> m () {-# INLINE fold1M'_ #-} fold1M'_ = G.fold1M'_ -- Prefix sums (scans) -- ------------------- -- | /O(n)/ Prescan -- -- @ -- prescanl f z = 'init' . 'scanl' f z -- @ -- -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@ -- prescanl :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) prescanl = G.prescanl {-# INLINE prescanl #-} -- | /O(n)/ Prescan with strict accumulator prescanl' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) prescanl' = G.prescanl' {-# INLINE prescanl' #-} -- | /O(n)/ Scan -- -- @ -- postscanl f z = 'tail' . 'scanl' f z -- @ -- -- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@ -- postscanl :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) postscanl = G.postscanl {-# INLINE postscanl #-} -- | /O(n)/ Scan with strict accumulator postscanl' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) postscanl' = G.postscanl' {-# INLINE postscanl' #-} -- | /O(n)/ Haskell-style scan -- -- > scanl f z = -- > where y1 = z -- > yi = f y(i-1) x(i-1) -- -- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@ -- scanl :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) scanl = G.scanl {-# INLINE scanl #-} -- | /O(n)/ Haskell-style scan with strict accumulator scanl' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (a, b)) -> (a, b) -> Vector u v (c, d) -> Vector u v (a, b) scanl' = G.scanl' {-# INLINE scanl' #-} -- | /O(n)/ Scan over a non-empty vector -- -- > scanl f = -- > where y1 = x1 -- > yi = f y(i-1) xi -- scanl1 :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> Vector u v (a, b) scanl1 = G.scanl1 {-# INLINE scanl1 #-} -- | /O(n)/ Scan over a non-empty vector with a strict accumulator scanl1' :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> Vector u v (a, b) scanl1' = G.scanl1' {-# INLINE scanl1' #-} -- | /O(n)/ Right-to-left prescan -- -- @ -- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse' -- @ -- prescanr :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) {-# INLINE prescanr #-} prescanr = G.prescanr -- | /O(n)/ Right-to-left prescan with strict accumulator prescanr' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) prescanr' = G.prescanr' {-# INLINE prescanr' #-} -- | /O(n)/ Right-to-left scan postscanr :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) postscanr = G.postscanr {-# INLINE postscanr #-} -- | /O(n)/ Right-to-left scan with strict accumulator postscanr' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) postscanr' = G.postscanr' {-# INLINE postscanr' #-} -- | /O(n)/ Right-to-left Haskell-style scan scanr :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) scanr = G.scanr {-# INLINE scanr #-} -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator scanr' :: (G.Vector u a, G.Vector v b, G.Vector u c, G.Vector v d) => ((a, b) -> (c, d) -> (c, d)) -> (c, d) -> Vector u v (a, b) -> Vector u v (c, d) scanr' = G.scanr' {-# INLINE scanr' #-} -- | /O(n)/ Right-to-left scan over a non-empty vector scanr1 :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> Vector u v (a, b) {-# INLINE scanr1 #-} scanr1 = G.scanr1 -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict -- accumulator scanr1' :: (G.Vector u a, G.Vector v b) => ((a, b) -> (a, b) -> (a, b)) -> Vector u v (a, b) -> Vector u v (a, b) {-# INLINE scanr1' #-} scanr1' = G.scanr1' -- Conversions - Lists -- ------------------------ projectFst :: Vector u v (a, b) -> u a projectFst (V as _) = as {-# INLINE projectFst #-} projectSnd :: Vector u v (a, b) -> v b projectSnd (V _ bs) = bs {-# INLINE projectSnd #-} -- | Warning: The vectors are assumed to have the same length. This is not checked! unsafeZip :: u a -> v b -> Vector u v (a, b) unsafeZip = V {-# INLINE unsafeZip #-} -- | /O(n)/ Convert a vector to a list toList :: (G.Vector u a, G.Vector v b) => Vector u v (a, b) -> [(a, b)] toList = G.toList {-# INLINE toList #-} -- | /O(n)/ Convert a list to a vector fromList :: (G.Vector u a, G.Vector v b) => [(a, b)] -> Vector u v (a, b) fromList = G.fromList {-# INLINE fromList #-} -- | /O(n)/ Convert the first @n@ elements of a list to a vector -- -- @ -- fromListN n xs = 'fromList' ('take' n xs) -- @ fromListN :: (G.Vector u a, G.Vector v b) => Int -> [(a, b)] -> Vector u v (a, b) fromListN = G.fromListN {-# INLINE fromListN #-} -- Conversions - Mutable vectors -- ----------------------------- -- | /O(1)/ Unsafe convert a mutable vector to an immutable one without -- copying. The mutable vector may not be used after this operation. unsafeFreeze :: (G.Vector u a, G.Vector v b, PrimMonad m) => G.Mutable (Vector u v) (PrimState m) (a, b) -> m (Vector u v (a, b)) unsafeFreeze = G.unsafeFreeze {-# INLINE unsafeFreeze #-} -- | /O(1)/ Unsafely convert an immutable vector to a mutable one without -- copying. The immutable vector may not be used after this operation. unsafeThaw :: (G.Vector u a, G.Vector v b, PrimMonad m) => Vector u v (a, b) -> m (G.Mutable (Vector u v) (PrimState m) (a, b)) unsafeThaw = G.unsafeThaw {-# INLINE unsafeThaw #-} -- | /O(n)/ Yield a mutable copy of the immutable vector. thaw :: (G.Vector u a, G.Vector v b, PrimMonad m) => Vector u v (a, b) -> m (G.Mutable (Vector u v) (PrimState m) (a, b)) thaw = G.thaw {-# INLINE thaw #-} -- | /O(n)/ Yield an immutable copy of the mutable vector. freeze :: (G.Vector u a, G.Vector v b, PrimMonad m) => G.Mutable (Vector u v) (PrimState m) (a, b) -> m (Vector u v (a, b)) freeze = G.freeze {-# INLINE freeze #-} -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. This is not checked. unsafeCopy :: (G.Vector u a, G.Vector v b, PrimMonad m) => G.Mutable (Vector u v) (PrimState m) (a, b) -> Vector u v (a, b) -> m () unsafeCopy = G.unsafeCopy {-# INLINE unsafeCopy #-} -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. copy :: (G.Vector u a, G.Vector v b, PrimMonad m) => G.Mutable (Vector u v) (PrimState m) (a, b) -> Vector u v (a, b) -> m () copy = G.copy {-# INLINE copy #-}