module Prelude import public Builtins import public IO import public Prelude.Algebra import public Prelude.Basics import public Prelude.Bool import public Prelude.Interfaces import public Prelude.Cast import public Prelude.Nat import public Prelude.List import public Prelude.Maybe import public Prelude.Monad import public Prelude.Applicative import public Prelude.Foldable import public Prelude.Functor import public Prelude.Either import public Prelude.Strings import public Prelude.Chars import public Prelude.Traversable import public Prelude.Bits import public Prelude.Uninhabited import public Prelude.Pairs import public Prelude.Stream import public Prelude.Providers import public Prelude.Show import public Prelude.Interactive import public Prelude.File import public Prelude.Doubles import public Decidable.Equality import public Language.Reflection import public Language.Reflection.Elab import public Language.Reflection.Errors %access public export %default total -- Things that can't be elsewhere for import cycle reasons -- See comment after declaration of void in Builtins.idr -- for explanation of this definition's location %runElab (defineFunction $ DefineFun `{void} []) decAsBool : Dec p -> Bool decAsBool (Yes _) = True decAsBool (No _) = False ---- Functor implementations Functor PrimIO where map f io = prim_io_bind io (prim_io_return . f) Functor Maybe where map f (Just x) = Just (f x) map f Nothing = Nothing Functor (Either e) where map f (Left l) = Left l map f (Right r) = Right (f r) ---- Applicative implementations Applicative PrimIO where pure = prim_io_return am <*> bm = prim_io_bind am (\f => prim_io_bind bm (prim_io_return . f)) Applicative Maybe where pure = Just (Just f) <*> (Just a) = Just (f a) _ <*> _ = Nothing Applicative (Either e) where pure = Right (Left a) <*> _ = Left a (Right f) <*> (Right r) = Right (f r) (Right _) <*> (Left l) = Left l Applicative List where pure x = [x] fs <*> vs = concatMap (\f => map f vs) fs ---- Alternative implementations Alternative Maybe where empty = Nothing (Just x) <|> _ = Just x Nothing <|> v = v Alternative List where empty = [] (<|>) = (++) ---- Monad implementations Monad PrimIO where b >>= k = prim_io_bind b k Monad Maybe where Nothing >>= k = Nothing (Just x) >>= k = k x Monad (Either e) where (Left n) >>= _ = Left n (Right r) >>= f = f r Monad List where m >>= f = concatMap f m ---- Traversable implementations Traversable Maybe where traverse f Nothing = pure Nothing traverse f (Just x) = [| Just (f x) |] Traversable List where traverse f [] = pure List.Nil traverse f (x::xs) = [| List.(::) (f x) (traverse f xs) |] ---- some mathematical operations ---- XXX this should probably go some place else, pow : (Num a) => a -> Nat -> a pow x Z = 1 pow x (S n) = x * (pow x n) ---- Ranges natRange : Nat -> List Nat natRange n = List.reverse (go n) where go Z = [] go (S n) = n :: go n -- predefine Nat versions of Enum, so we can use them in the default impls total natEnumFromThen : Nat -> Nat -> Stream Nat natEnumFromThen n inc = n :: natEnumFromThen (inc + n) inc total natEnumFromTo : Nat -> Nat -> List Nat natEnumFromTo n m = map (plus n) (natRange (minus (S m) n)) total natEnumFromThenTo : Nat -> Nat -> Nat -> List Nat natEnumFromThenTo _ Z _ = [] natEnumFromThenTo n (S inc) m = map (plus n . (* (S inc))) (natRange (S (divNatNZ (minus m n) (S inc) SIsNotZ))) interface Enum a where total pred : a -> a total succ : a -> a succ e = fromNat (S (toNat e)) total toNat : a -> Nat total fromNat : Nat -> a total enumFrom : a -> Stream a enumFrom n = n :: enumFrom (succ n) total enumFromThen : a -> a -> Stream a enumFromThen x y = map fromNat (natEnumFromThen (toNat x) (toNat y)) total enumFromTo : a -> a -> List a enumFromTo x y = map fromNat (natEnumFromTo (toNat x) (toNat y)) total enumFromThenTo : a -> a -> a -> List a enumFromThenTo x1 x2 y = map fromNat (natEnumFromThenTo (toNat x1) (toNat x2) (toNat y)) Enum Nat where pred n = Nat.pred n succ n = S n toNat x = id x fromNat x = id x enumFromThen x y = natEnumFromThen x y enumFromThenTo x y z = natEnumFromThenTo x y z enumFromTo x y = natEnumFromTo x y Enum Integer where pred n = n - 1 succ n = n + 1 toNat n = cast n fromNat n = cast n enumFromThen n inc = n :: enumFromThen (inc + n) inc enumFromTo n m = if n <= m then go (natRange (S (cast {to = Nat} (m - n)))) else [] where go : List Nat -> List Integer go [] = [] go (x :: xs) = n + cast x :: go xs enumFromThenTo _ 0 _ = [] enumFromThenTo n inc m = go (natRange (S (divNatNZ (fromInteger (abs (m - n))) (S (fromInteger ((abs inc) - 1))) SIsNotZ))) where go : List Nat -> List Integer go [] = [] go (x :: xs) = n + (cast x * inc) :: go xs Enum Int where pred n = n - 1 succ n = n + 1 toNat n = cast n fromNat n = cast n enumFromTo n m = if n <= m then go [] (cast {to = Nat} (m - n)) m else [] where go : List Int -> Nat -> Int -> List Int go acc Z m = m :: acc go acc (S k) m = go (m :: acc) k (m - 1) enumFromThen n inc = n :: enumFromThen (inc + n) inc enumFromThenTo _ 0 _ = [] enumFromThenTo n inc m = go (natRange (S (divNatNZ (cast {to=Nat} (abs (m - n))) (S (cast {to=Nat} ((abs inc) - 1))) SIsNotZ))) where go : List Nat -> List Int go [] = [] go (x :: xs) = n + (cast x * inc) :: go xs Enum Char where toNat c = toNat (ord c) fromNat n = chr (fromNat n) pred c = fromNat (pred (toNat c)) syntax "[" [start] ".." [end] "]" = enumFromTo start end syntax "[" [start] "," [next] ".." [end] "]" = enumFromThenTo start (next - start) end syntax "[" [start] ".." "]" = enumFrom start syntax "[" [start] "," [next] ".." "]" = enumFromThen start (next - start) ---- More utilities curry : ((a, b) -> c) -> a -> b -> c curry f a b = f (a, b) uncurry : (a -> b -> c) -> (a, b) -> c uncurry f (a, b) = f a b namespace JSNull ||| Check if a foreign pointer is null partial nullPtr : Ptr -> JS_IO Bool nullPtr p = do ok <- foreign FFI_JS "isNull" (Ptr -> JS_IO Int) p return (ok /= 0) ||| Check if a supposed string was actually a null pointer partial nullStr : String -> JS_IO Bool nullStr p = do ok <- foreign FFI_JS "isNull" (String -> JS_IO Int) p return (ok /= 0) ||| Pointer equality eqPtr : Ptr -> Ptr -> IO Bool eqPtr x y = do eq <- foreign FFI_C "idris_eqPtr" (Ptr -> Ptr -> IO Int) x y return (eq /= 0) ||| Loop while some test is true ||| ||| @ test the condition of the loop ||| @ body the loop body partial -- obviously while : (test : IO' l Bool) -> (body : IO' l ()) -> IO' l () while t b = do v <- t if v then do b while t b else return () ------- Some error rewriting %language ErrorReflection private cast_part : TT -> ErrorReportPart cast_part (P Bound n t) = TextPart "unknown type" cast_part x = TermPart x %error_handler export cast_error : Err -> Maybe (List ErrorReportPart) cast_error (CantResolve `(Cast ~x ~y) _) = Just [TextPart "Can't cast from", cast_part x, TextPart "to", cast_part y] cast_error _ = Nothing %error_handler export num_error : Err -> Maybe (List ErrorReportPart) num_error (CantResolve `(Num ~x) _) = Just [TermPart x, TextPart "is not a numeric type"] num_error _ = Nothing