#include "idris_rts.h" VAL idris_b8CopyForGC(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 1); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8; return cl; } VAL idris_b16CopyForGC(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 1); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16; return cl; } VAL idris_b32CopyForGC(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 1); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32; return cl; } VAL idris_b64CopyForGC(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 1); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64; return cl; } VAL idris_b8(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) GETINT(a); return cl; } VAL idris_b16(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) GETINT(a); return cl; } VAL idris_b32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) GETINT(a); return cl; } VAL idris_b64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) GETINT(a); return cl; } VAL idris_castB32Int(VM *vm, VAL a) { return MKINT((i_int)a->info.bits32); } VAL idris_b8const(VM *vm, uint8_t a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a; return cl; } VAL idris_b16const(VM *vm, uint16_t a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a; return cl; } VAL idris_b32const(VM *vm, uint32_t a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a; return cl; } VAL idris_b64const(VM *vm, uint64_t a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a; return cl; } VAL idris_b8Plus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 + b->info.bits8; return cl; } VAL idris_b8Minus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 - b->info.bits8; return cl; } VAL idris_b8Times(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 * b->info.bits8; return cl; } VAL idris_b8UDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 / b->info.bits8; return cl; } VAL idris_b8SDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) (((int8_t) a->info.bits8) / ((int8_t) b->info.bits8)); return cl; } VAL idris_b8URem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 % b->info.bits8; return cl; } VAL idris_b8SRem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) (((int8_t) a->info.bits8) % ((int8_t) b->info.bits8)); return cl; } VAL idris_b8Lt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits8 < b->info.bits8)); } VAL idris_b8Gt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits8 > b->info.bits8)); } VAL idris_b8Eq(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits8 == b->info.bits8)); } VAL idris_b8Lte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits8 <= b->info.bits8)); } VAL idris_b8Gte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits8 >= b->info.bits8)); } VAL idris_b8Compl(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = ~ a->info.bits8; return cl; } VAL idris_b8And(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 & b->info.bits8; return cl; } VAL idris_b8Or(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 | b->info.bits8; return cl; } VAL idris_b8Xor(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 ^ b->info.bits8; return cl; } VAL idris_b8Shl(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 << b->info.bits8; return cl; } VAL idris_b8LShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = a->info.bits8 >> b->info.bits8; return cl; } VAL idris_b8AShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) (((int8_t)a->info.bits8) >> ((int8_t)b->info.bits8)); return cl; } VAL idris_b16Plus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 + b->info.bits16; return cl; } VAL idris_b16Minus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 - b->info.bits16; return cl; } VAL idris_b16Times(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 * b->info.bits16; return cl; } VAL idris_b16UDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 / b->info.bits16; return cl; } VAL idris_b16SDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) (((int16_t) a->info.bits16) / ((int16_t) b->info.bits16)); return cl; } VAL idris_b16URem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 % b->info.bits16; return cl; } VAL idris_b16SRem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) (((int16_t) a->info.bits16) % ((int16_t) b->info.bits16)); return cl; } VAL idris_b16Lt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits16 < b->info.bits16)); } VAL idris_b16Gt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits16 > b->info.bits16)); } VAL idris_b16Eq(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits16 == b->info.bits16)); } VAL idris_b16Lte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits16 <= b->info.bits16)); } VAL idris_b16Gte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits16 >= b->info.bits16)); } VAL idris_b16Compl(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = ~ a->info.bits16; return cl; } VAL idris_b16And(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 & b->info.bits16; return cl; } VAL idris_b16Or(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 | b->info.bits16; return cl; } VAL idris_b16Xor(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 ^ b->info.bits16; return cl; } VAL idris_b16Shl(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 << b->info.bits16; return cl; } VAL idris_b16LShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = a->info.bits16 >> b->info.bits16; return cl; } VAL idris_b16AShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) (((int16_t)a->info.bits16) >> ((int16_t)b->info.bits16)); return cl; } VAL idris_b32Plus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 + b->info.bits32; return cl; } VAL idris_b32Minus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 - b->info.bits32; return cl; } VAL idris_b32Times(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 * b->info.bits32; return cl; } VAL idris_b32UDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 / b->info.bits32; return cl; } VAL idris_b32SDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) (((int32_t) a->info.bits32) / ((int32_t) b->info.bits32)); return cl; } VAL idris_b32URem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 % b->info.bits32; return cl; } VAL idris_b32SRem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) (((int32_t) a->info.bits32) % ((int32_t) b->info.bits32)); return cl; } VAL idris_b32Lt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits32 < b->info.bits32)); } VAL idris_b32Gt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits32 > b->info.bits32)); } VAL idris_b32Eq(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits32 == b->info.bits32)); } VAL idris_b32Lte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits32 <= b->info.bits32)); } VAL idris_b32Gte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits32 >= b->info.bits32)); } VAL idris_b32Compl(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = ~ a->info.bits32; return cl; } VAL idris_b32And(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 & b->info.bits32; return cl; } VAL idris_b32Or(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 | b->info.bits32; return cl; } VAL idris_b32Xor(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 ^ b->info.bits32; return cl; } VAL idris_b32Shl(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 << b->info.bits32; return cl; } VAL idris_b32LShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = a->info.bits32 >> b->info.bits32; return cl; } VAL idris_b32AShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) (((int32_t)a->info.bits32) >> ((int32_t)b->info.bits32)); return cl; } VAL idris_b64Plus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 + b->info.bits64; return cl; } VAL idris_b64Minus(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 - b->info.bits64; return cl; } VAL idris_b64Times(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 * b->info.bits64; return cl; } VAL idris_b64UDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 / b->info.bits64; return cl; } VAL idris_b64SDiv(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (((int64_t) a->info.bits64) / ((int64_t) b->info.bits64)); return cl; } VAL idris_b64URem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 % b->info.bits64; return cl; } VAL idris_b64SRem(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (((int64_t) a->info.bits64) % ((int64_t) b->info.bits64)); return cl; } VAL idris_b64Lt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits64 < b->info.bits64)); } VAL idris_b64Gt(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits64 > b->info.bits64)); } VAL idris_b64Eq(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits64 == b->info.bits64)); } VAL idris_b64Lte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits64 <= b->info.bits64)); } VAL idris_b64Gte(VM *vm, VAL a, VAL b) { return MKINT((i_int) (a->info.bits64 >= b->info.bits64)); } VAL idris_b64Compl(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = ~ a->info.bits64; return cl; } VAL idris_b64And(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 & b->info.bits64; return cl; } VAL idris_b64Or(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 | b->info.bits64; return cl; } VAL idris_b64Xor(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 ^ b->info.bits64; return cl; } VAL idris_b64Shl(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 << b->info.bits64; return cl; } VAL idris_b64LShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = a->info.bits64 >> b->info.bits64; return cl; } VAL idris_b64AShr(VM *vm, VAL a, VAL b) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (((int64_t)a->info.bits64) >> ((int64_t)b->info.bits64)); return cl; } VAL idris_b8Z16(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) a->info.bits8; return cl; } VAL idris_b8Z32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) a->info.bits8; return cl; } VAL idris_b8Z64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits64 = (uint64_t) a->info.bits8; return cl; } VAL idris_b8S16(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) (int16_t) (int8_t) a->info.bits8; return cl; } VAL idris_b8S32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) (int32_t) (int8_t) a->info.bits8; return cl; } VAL idris_b8S64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (int64_t) (int8_t) a->info.bits8; return cl; } VAL idris_b16Z32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) a->info.bits16; return cl; } VAL idris_b16Z64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) a->info.bits16; return cl; } VAL idris_b16S32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) (int32_t) (int16_t) a->info.bits16; return cl; } VAL idris_b16S64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (int64_t) (int16_t) a->info.bits16; return cl; } VAL idris_b16T8(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) a->info.bits16; return cl; } VAL idris_b32Z64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) a->info.bits32; return cl; } VAL idris_b32S64(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS64); cl->info.bits64 = (uint64_t) (int64_t) (int32_t) a->info.bits32; return cl; } VAL idris_b32T8(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) a->info.bits32; return cl; } VAL idris_b32T16(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) a->info.bits32; return cl; } VAL idris_b64T8(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS8); cl->info.bits8 = (uint8_t) a->info.bits64; return cl; } VAL idris_b64T16(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS16); cl->info.bits16 = (uint16_t) a->info.bits64; return cl; } VAL idris_b64T32(VM *vm, VAL a) { VAL cl = allocate(vm, sizeof(Closure), 0); SETTY(cl, BITS32); cl->info.bits32 = (uint32_t) a->info.bits64; return cl; }